



Abstract— Workforce scheduling has become increasingly

important for both the public sector and private companies.

Good rosters have many benefits for an organization, such as

lower costs, more effective utilization of resources and fairer

workloads and distribution of shifts. This paper presents a

framework and an algorithm that have been successfully used

to model and solve workforce scheduling problems in Finnish

companies. The algorithm has been integrated into market-

leading workforce management software in Finland.

Index Terms—computational intelligence, metaheuristics,

staff scheduling, workforce scheduling

I. INTRODUCTION

ORKFORCE scheduling, also called staff

scheduling and labor scheduling, is a difficult and

time consuming problem that every company or institution

that has employees working on shifts or on irregular working

days must solve. The workforce scheduling problem has a

fairly broad definition. Most of the studies focus on

assigning employees to shifts, determining working days and

rest days or constructing flexible shifts and their starting

times. Different variations of the problem and subproblems

are NP-hard and NP-complete [1]-[5], and thus extremely

hard to solve. The first mathematical formulation of the

problem based on a generalized set covering model was

proposed by Dantzig [6]. Good overviews of workforce

scheduling are published by Alfares [7], Ernst et al. [8] and

Meisels and Schaerf [9].

This paper is composed as follows. Section II briefly

introduces the necessary terminology and the workforce

scheduling process as we have encountered it in various real-

world cases. In Section III we describe the preprocessing

phase of the workforce scheduling process. Section IV

presents the staff scheduling phase. Along with the problems

and definitions of the subphases themselves we introduce

some new real-world cases. Section V gives an outline of

our computational intelligence algorithm. Section VI

presents conclusions and some of our future work.

We have used the PEAST algorithm, as described in

Section V, to solve numerous real-world staff scheduling

problems for different Finnish companies. The algorithm has

been integrated into the workforce management system of

our business partner, and it is in constant real-world use.

Manuscript received December 07, 2012; revised January 10, 2013.

All the authors are with the Satakunta University of Applied Sciences,

Tiedepuisto 3, 28600 Pori, Finland (phone: +358447103371; e-mail:

{nico.kyngas, cimmo.nurmi, jari.kyngas}@samk.fi).

II. TERMINOLOGY AND THE WORKFORCE SCHEDULING

PROCESS IN BRIEF

The planning horizon is the time interval over which the

employees have to be scheduled. Each employee has a total

working time that he/she has to work during the planning

horizon. Furthermore, each employee has competences

(qualifications and skills) that enable him/her to carry out

certain tasks. Days are divided into working days (days-on)

and rest days (days-off). Each day is divided into periods or

timeslots. A timeslot is the smallest unit of time and the

length of a timeslot determines the granularity of the

schedule. A shift is a contiguous set of working hours and is

defined by a day and a starting period on that day along with

a shift length (the number of occupied timeslots) or shift

time. Shifts are sometimes grouped into shift types, such as

morning, day and night shifts. Each shift is composed of

tasks and breaks. The sum of the length of a shift’s tasks is

called working time, whereas sometimes the sum of the

length of a shift’s breaks is called linkage time. A timeslot-

long piece of a task or break is called an activity. A

consecutive sequence of activities dedicated to a single task

is called a stretch. A shift or a task may require the

employee assigned to it to possess one or more competences.

A work schedule over the planning horizon for an employee

is called a roster. A roster is a combination of shifts and

days-off assignments that covers a fixed period of time.

Fig. 1. The workforce scheduling process. The upper boxes represent the

subphases that may occur in both mid-term and short-term planning

(preprocessing phase). The subphases represented by the lower boxes (staff

scheduling phase) only occur in short term planning, although information

gathered from these may prove useful in future mid-term planning.

Workload prediction, also referred to as demand

forecasting or demand modeling, is the process of

determining the staffing levels - that is, how many

The Workforce Scheduling Process Using the

PEAST Algorithm

Nico R. M. Kyngäs, Kimmo J. Nurmi, and Jari R. Kyngäs

W

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

employees are needed for each timeslot in the planning

horizon. The staffing is preceded by actual workload

prediction or workload determination based on static

workload constraints given by the company, depending on

the situation. In preference scheduling, each employee gives

a list of preferences and attempts are made to fulfill them as

well as possible. The employees’ preferences are often

considered in the days-off scheduling and staff rostering

subphases, but may also be considered during shift

generation. Together these two subphases form the

preprocessing phase.

Shift generation is the process of determining the shift

structure, along with the activities to be carried out in

particular shifts and the competences required for different

shifts. Days-off scheduling deals with the assignment of rest

days between working days over a given planning horizon.

Days-off scheduling also includes the assignment of

vacations and special days, such as union steward duties and

training sessions. Staff rostering, also referred to as shift

scheduling, deals with the assignment of employees to shifts.

It can also specify the starting time and duration of shifts for

a given day, even though in most cases they are pre-assigned

during shift generation. This subphase may include both

resource analysis to examine the compatibility between the

available workforce and the shifts, and partitioning in the

case of massive datasets (i.e. hundreds of employees) to

speed up and improve on the results of the rostering.

Together these five subphases form the staff scheduling

phase.

Rescheduling deals with ad hoc changes that are necessary

due to sick leaves or other no-shows. The changes are

usually carried out manually. Finally, participation in

evaluation ranges from the individual employee through

personnel managers to executives. A reporting tool should

provide performance measures in such a way that the

personnel managers can easily evaluate both the realized

staffing levels and the employee satisfaction. When

necessary, parts of the whole workforce scheduling process

may be restarted. Workforce scheduling consists roughly

of everything from determining the needs of the customers to

determining the exact schedule of each employee.

The workforce scheduling process presented in this paper

is mostly concerned with short-term planning, as defined in

[10]. We have chosen to split the problem into subphases as

seen in Fig. 1. This may cause problems in extremely

difficult cases, due to the search space at each subphase

being constrained by the choices made during previous

subphases. This would be an untenable approach for finding

the global optimum for most problems. However, our goal is

to find a good enough solution for a broad range of

problems. Our subphase-based approach is flexible enough

to achieve this goal. Another benefit is decreased

computational complexity due to the constantly narrowing

search space.

The staff scheduling phase can be solved using

computational intelligence. Computational workforce

scheduling is key to increased productivity, quality of

service, customer satisfaction and employee satisfaction.

Other advantages include reduced planning time, reduced

payroll expenses and ensured regulatory compliance.

III. THE PREPROCESSING PHASE

The preprocessing phase is the foundation upon which the

actual staff scheduling phase is built. It may involve

identifying both the needs of the customer(s) and the

attributes (preferences, skills etc.) of the employees, and

determining staffing requirements based on the former. This

phase can be thought of as the transition between mid-term

and short-term planning, since it touches both. This is the

point in the workforce scheduling process where historical

data and the schedules of previous planning horizons are

most useful.

A. Workload prediction/determination

The nature of determining the amount and type of work to

be done at any given time during the next planning horizon

depends greatly on the nature of the job. If the workload is

uncertain then some form of workload prediction is called

for [8]. Some examples of this are the calls incoming to a

call center or the customer influx to a hospital.

We define the service level SL(n) as the percentage of

customers that need to wait for service for at most n seconds.

Usually workload prediction aims to provide a certain

service level (or above) for some fixed n. We simulate the

randomly distributed workload based on historical data and

statistical analysis, and find a suitable working employee

structure (i.e. how many and what kinds of employees are

needed) over time [11]. Computationally this approach is

much more intensive than methods based on queuing theory.

However, it has the benefit of being applicable to almost any

real-world situation.

If the workload is static, no forecasting is necessary. For

example, a local transport company might be under a strict

contract to drive completely pre-assigned bus lines. In such a

case shift generation may be necessary to combine the

different bus lines into shifts, but the workload as such is

static and thus calls for no forecasting.

B. Preference scheduling

Research by Kellogg and Walczak [12] indicates that it is

crucial for a workforce management system to allow the

employees to affect their own schedules. In general it

improves employee satisfaction. This in turn reduces sick

leaves and improves the efficiency of the employees, which

means more profit for the employer. Hence we use an easy-

to-use user interface that allows the employees to input their

preferences into the workforce management system. This

eases the organizational workload of the personnel manager.

A measure of fairness is incorporated via limiting the

number and type of different wishes that can be expressed

per employee. We are looking into incorporating more

rigorous fairness measures and more complex preferences to

the system. In our experience our current system is

satisfactory, yet there is always room for improvement.

Preferences can be considered at every subphase of the

staff scheduling phase [13-15]. The different types of

preferences we consider are found under the respective

subphases of the workforce scheduling process.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

IV. THE STAFF SCHEDULING PHASE

A. Shift generation

Shift generation transforms the determined workload into

shifts. This includes deciding break times when applicable.

Shift generation is essential especially in cases where the

workload is not static. In other cases companies often want

to hold on to their own established shift building methods.

A basic shift generation problem includes a variable

number of activities for each task in each timeslot. Some

tasks are not time-dependent; instead, there may be a daily

quota to be fulfilled. Activities may require competences.

The most important optimization target is to match the shifts

to the workload as accurately as possible. In our solutions

we create the shifts for each day separately, each shift

corresponding to a single employee’s competences and

preferences. We do not minimize the number of different

shifts. The choice between hard and soft constraints is given

by the instances themselves. We have used the following list

of constraints to successfully model and solve some real-

world cases [16, 17]. The names have been prefixed in order

to distinguish constraints between different subphases.

Structural constraints:
(SGS1) No shift should contain timeslots with multiple

types of activities (i.e. different tasks or both
breaks and tasks).

(SGS2) No shift should contain gaps, i.e. timeslots with
no activities.

Coverage constraints:
(SGC1) The number of employees at each timeslot over

the planning horizon must be exactly as given
(strict version) for each strictly time-dependent
task.

(SGC2) The sum of the excesses of employees at each
timeslot over the planning horizon must be
minimized for each strictly time-dependent task.

(SGC3) The sum of the shortages of employees at each
timeslot over the planning horizon must be
minimized for each strictly time-dependent task.

(SGC4) The total workload for each task must be
carried out before a given timeslot.

(SGC5) No working time should be wasted.

Volume constraints:
(SGV1) The number of shifts, i.e. the number of

employees at work, must be minimized.

(SGV2) Shifts of exactly k1 timeslots in length must be
maximized.

(SGV3) Shifts of less than k2 and over k3 in length must
be minimized.

(SGV4) The average shift length should be as close to k4

timeslots as possible.

(SGV5) The lengths of the shifts must match the
employees’ available hours.

(SGV6) The competences necessary to carry out the
shifts must match the available workforce.

Placement constraints:
(SGP1) Shifts that start between timeslots k5 and k6 must

be minimized.

(SGP2) Shifts that end between timeslots k7 and k8 must
be minimized.

(SGP3) Each shift must contain a given number of
breaks of certain lengths, depending on the
length of the shift.

(SGP4) The breaks in any given shift must be evenly
spaced and positioned in correct order.

(SGP5) For each task t define ct. Whenever task t
appears in a shift, it must be as part of a stretch
consisting only of task t and at least ct slots
long.

(SGP6) Each shift should contain at most k9 switches
from one task to another.

(SGP7) Each switch between tasks should occur during
a break.

We now present a real-world case from a Finnish haulage

company. The problem as it was presented to us, related to a

cargo terminal of theirs, is as follows. The planning horizon

is five days, extending from a Sunday evening to a Friday

evening. Each hour a number M(d,h), where d=day and

h=hour, of arrival manifests needs to be processed. The

arrivals not handled immediately are queued, and the queue

needs to be empty in the morning (6.30) and in the evening

(20.30). The values of M for different days and hours are

shown in Table I.

TABLE I

MANIFEST ARRIVALS BY TIME

Mon Tue Wed Thu Fri

22-23 429 584 472 432 376

23-24 429 584 472 432 376

24-1 429 584 472 432 376

1-2 377 316 336 360 366

2-3 377 316 336 360 366

3-4 377 316 336 360 366

4-5 480 389 436 417 465

5-6 480 389 436 410 425

6-7 118 80 51 43 54

7-8 31 40 36 18 38

8-9 17 26 15 24 21

9-10 50 20 15 51 24

10-11 93 28 29 134 30

11-12 83 19 10 19 100

12-13 107 88 158 74 81

13-14 259 132 192 142 134

14-15 279 263 178 189 255

15-16 615 614 405 467 484

16-17 720 654 654 565 784

17-18 1055 908 913 1242 1002

18-19 912 969 847 842 863

19-20 429 476 728 854 423

It is assumed that the employees are identical in their

processing capacity: each employee can handle 11 manifests

per hour during the day (6-22) and 17,5 manifests per hour

during the night (22-6). There are 76 full-time employees

and 13 part-time employees. A full-time employee’s shifts

must be 4 to 10 hours long, and the total working time over a

6-week period must be 240 hours. A part-time employee’s

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

shifts must be 4 to 6 hours long. Additionally, a part-time

employee should have 3 shifts per week, and the total

number of part-timers’ working hours must be at most 10%

of the total working hours of all the employees.

The length of a timeslot is 30 minutes. The number of

full-time employees was restricted to 69 in order to keep the

workload of the part-time employees suitable. Thus we end

up with 82 employees in total. The following hard

constraints were used.

(SGS1): No shift should contain timeslots with multiple

types of activities.

(SGS2): No shift should contain gaps.

(SGP3): Each shift must contain a 30-minute lunch

break.

(SGV5): Each shift’s length must be within the allowed

limits of the corresponding employee.

The following soft constraints were used.

(SGP4): For shift s, let ds be the distance of its break

from the midpoint of the shift in slots (it does

not matter if the optimal positions are not

integers), and let as be 0.25 × (length of s). If ds

> as, then a cost of round(ds – as) is incurred.

(SGC4) + (SGC5):

 A compound constraint is used in order to make

sure that the queue of arrivals is empty at 6.30

and 20.30, and that no working time is lost due

to having too much workforce at work too early.

The cumulative effective workload CEW[day,

type, time] represents the workload that has

effectively been contributed to handling the

manifests up to timeslot time. It is calculated as

where w is the number of workers scheduled to

do a certain task at a certain time and MCS is

the maximum cumulative workload given in

Table III. For each day, the penalty given is the

sum of differences between total workload and

effective workload for day and night tasks.

TABLE II

COMPARISON BETWEEN OUR SOLUTION AND A MANUAL SOLUTION

Our solution Manual solution

Total working minutes (actual) 175020 201300

Effective working minutes (actual) 158700 144330

Total job minutes (goal) 178170 178170

Job completion % 89 % 81 %

% of wasted working time 9 % 28 %

The results are briefly described in Table II along with

comparative numbers from the company’s own solution. Our

solution has no violations in SGP4, so the total penalty (649)

represents exactly the number of timeslots that the effective

working time is short of the total time that the jobs require

(649×30=178170-158700). The numbers from the

company’s current scheduling method made us doubt

whether all the assumptions were close enough to reality and

if the data/model were precise enough, but based on our

results a contract for the use of our optimization software

was signed. We hope to get more precise data in the future

in order to improve both our model and our solutions. In

Section IV.C.3 we’ll roster the staff using the generated

shifts.

TABLE III

MAXIMUM CUMULATIVE WORKLOAD BY TIME AND TASK TYPE

Mon Tue Wed Thu Fri

N D N D N D N D N D

22:00 24 0 34 0 27 0 25 0 22 0

22:30 48 0 67 0 54 0 50 0 43 0

23:00 73 0 101 0 81 0 75 0 65 0

23:30 98 0 134 0 108 0 99 0 86 0

0:00 122 0 167 0 135 0 124 0 108 0

0:30 146 0 201 0 162 0 149 0 129 0

1:00 168 0 219 0 182 0 169 0 150 0

1:30 190 0 237 0 201 0 190 0 171 0

2:00 211 0 255 0 220 0 210 0 192 0

2:30 232 0 273 0 239 0 231 0 213 0

3:00 254 0 291 0 258 0 251 0 234 0

3:30 276 0 309 0 278 0 272 0 255 0

4:00 303 0 331 0 302 0 296 0 281 0

4:30 330 0 354 0 327 0 320 0 308 0

5:00 359 0 376 0 352 0 343 0 332 0

5:30 388 0 398 0 377 0 367 0 357 0

6:00 388 10 398 8 377 5 367 4 357 5

6:30 388 20 398 15 377 10 367 8 357 10

7:00 388 23 398 19 377 13 367 10 357 14

7:30 388 26 398 22 377 16 367 12 357 17

8:00 388 28 398 25 377 18 367 14 357 19

8:30 388 30 398 27 377 19 367 16 357 21

9:00 388 34 398 29 377 20 367 21 357 23

9:30 388 38 398 31 377 22 367 25 357 25

10:00 388 47 398 33 377 24 367 37 357 28

10:30 388 56 398 36 377 27 367 50 357 31

11:00 388 63 398 37 377 28 367 51 357 40

11:30 388 70 398 39 377 29 367 53 357 49

12:00 388 80 398 47 377 43 367 60 357 56

12:30 388 90 398 55 377 58 367 66 357 64

13:00 388 113 398 67 377 75 367 79 357 76

13:30 388 136 398 79 377 92 367 92 357 88

14:00 388 162 398 103 377 109 367 109 357 111

14:30 388 188 398 127 377 125 367 127 357 134

15:00 388 244 398 183 377 162 367 169 357 178

15:30 388 300 398 239 377 198 367 212 357 222

16:00 388 365 398 298 377 258 367 263 357 294

16:30 388 430 398 358 377 317 367 314 357 365

17:00 388 526 398 440 377 400 367 427 357 456

17:30 388 622 398 523 377 483 367 540 357 547

18:00 388 705 398 611 377 560 367 617 357 626

18:30 388 788 398 699 377 637 367 693 357 704

19:00 388 828 398 742 377 704 367 771 357 743

19:30 388 868 398 785 377 770 367 848 357 781

20:00 388 868 398 785 377 770 367 848 357 781

20:30 388 868 398 785 377 770 367 848 357 781

21:00 388 868 398 785 377 770 367 848 357 781

21:30 388 868 398 785 377 770 367 848 357 781

 The maximum cumulative workload MCS[day, type, time] for both

night (N) and day (D) tasks, calculated from M[day, time] using the

efficiency assumption of the employees based on the time of day and

assuming that the workload is evenly distributed during each hour.

B. Days-off scheduling

Days-off scheduling decides the rest days and the working

 CEW , , = day type time

 

 

 

MCS , , ,

min CEW , , -1 ,

w , ,

day type time

day type time

day type time

 
 
 
 
 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

days of the employees. It is based on the result of the shift

generation: for each day a set of suitable employees must be

available to carry out the shifts. This is the first subphase

where employees’ preferences usually have a big emphasis.

The choice between hard and soft constraints is highly

dependent on the problem instance. The following list of

constraints is a slightly modified version of the list from

[18]. The constraint names have been prefixed and

renumbered in order to distinguish constraints between

different phases.

Coverage requirements:

(DOC1) A minimum number of employees of particular
competences must be guaranteed for each shift
or each timeslot.

(DOC2) A maximum number of employees of particular
competences cannot be exceeded for each shift
or each timeslot.

(DOC3) A balanced number of surplus employees must
be guaranteed in each working day.

Regulatory requirements:

(DOR1) The required number of working days and days-
off within a timeframe must be respected.

(DOR2) The required number of holidays within a
timeframe must be respected.

(DOR3) The required number of free weekends (both
Saturday and Sunday free) within a timeframe
must be respected.

(DOR4) Employees cannot work consecutively for more
than k3 days (the maximum length of a work
stretch).

(DOR5) Some employees cannot work on weekends or
during specific hours of the day.

Operational requirements:

(DOO1) At least k4 working days must be assigned
between two separate days-off.

(DOO2) An employee cannot be assigned to more than
k5 weekend days within a timeframe.

(DOO3) An employee must be assigned to a particular
shift or on-duty or off-duty on a particular day
or during a particular timeslot.

Operational preferences:

(DOE1) Single days-off should be avoided.

(DOE2) Single working days should be avoided.

(DOE3) The maximum length of consecutive days-off is
k6.

(DOE4) A balanced assignment of single days-off and
single working days must be guaranteed
between the employees.

(DOE5) A balanced assignment of weekdays must be
guaranteed between employees.

Personal preferences:

(DOP1) Assign or avoid assigning given employees to
the same shifts.

(DOP2) Assign a requested day-on or avoid a requested
day-off.

We have used these constraints to successfully model and

solve some real-world days-off scheduling problems [13]

and some nurse rostering problems [17].

C. Staff rostering

1) Resource analysis (optional)

To see if there will be any chance of succeeding at

matching the workforce with the shifts while adhering to the

given constraints, an analysis is run on the data. If we have

already optimized the days-off, this subphase is not

necessary but it may still be useful. In addition to helping the

personnel manager see the problem with the data, it may

help in convincing the management level that the current

practices and processes of generating the schedules are

simply untenable. We have developed a statistical tool for

this.

2) Partitioning of massive data (optional)

Some real-world datasets are huge. They may consist of

hundreds of employees with a corresponding number of

jobs. Usually employees are trivially partitioned at some

level, but that is not always the case. For example, consider

a nationwide chain of service stations that sell food around

the clock. Each station needs cooks, miscellaneous

restaurant staff, cleaners, and so on. Let’s take a look at a

cluster of 5 stations in the radius of 50 kilometers. Each

station employs around 50 people. The staff from each can

move freely between the stations, although every employee

has one or more home bases, i.e. they prefer being stationed

to particular stations. If the employees were bound to a

singular preferred station, the staff of the stations could be

rostered one station at a time, i.e. we would have a trivial

partitioning of the employees. Since this will not produce

optimal schedules, we need to roster all the 5×50 employees

as a singular unit.

In the previous example it is still possible for us to

consider the employees one station at a time, if the number

of employees is very high, since it may be computationally

infeasible to try to roster the whole set of employees at once.

We use the PEAST algorithm to do such a partitioning in the

general case, when there is no “obvious”, trivial partitioning

to be done, as in [14].

We now present a real-world case from a Finnish bus

company. The problem consists of rostering 175 bus drivers

over a planning horizon of 2 weeks. The days-off are

invariant. There are 6 different kinds of days-off. The hard

constraints (from the list in section IV.C.3) of the problem

are as follows.

(SRR1): The working time of an employee must be

strictly less than his/her goal working time. The

shift time of an employee must be greater than

his/her goal working time.

(SRR3): The rest time of 9 hours must be respected

between adjacent shifts.

(SRR5): There is 1 person with 6 working days during

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

which he/she cannot work certain shifts.

(SRO3): The 3 most common kinds of days-off (90% of

all days-offs) must be whole, i.e. they cannot be

immediately preceded by a shift that ends after

midnight

(SRO4): There are in total 140 pre-assigned shifts.

The soft constraints of the problem are as follows.

(SRR1): The required number of working hours must be

respected. The total working hours of the

employees range from 1200 minutes to 4815

minutes. The working minutes per day per

employee range from 360 to 535. The

difference (17888 minutes) between employees’

total working time goal (786750 minutes) and

the sum of the working time of all the shifts

(768862 minutes) should be evenly distributed

among the shifts. There are 1643 shifts, which

results in approximately 10.9 minutes per shift.

Each employee should thus be SG(e) = 10.9 ×

(number of working days of employee e)

minutes short of their personal workload goal.

Define S(e) as the actual shortage for employee

e. If |S(e)-SG(e)| > 0.1×SG(e), then the cost

given is |S(e)-SG(e)| - 0.1×SG(e). This ensures

fairness in regard to the working time. The

arbitrary threshold is used, since the goal is to

have highly similar but not necessarily equal

shortages.

 Additionally, the linkage time (i.e. time spent

having lunch or waiting for another vehicle,

totalling 24322 minutes in this instance) should

be distributed evenly among the employees.

This means approximately 14.8 minutes of

linkage time per shift. Thus each employee

should have LG(e) = 14.8 × (number of

working days of employee e) linkage minutes.

Define L(e) as the actual linkage time for

employee e. If |L(e)-LG(e)| > 0.1×LG(e), then

the cost given is |L(e)-LG(e)| - 0.1×LG(e). The

linkage time is not nearly evenly distributed

among different shift types. Almost 90% of all

linkage time belongs to the 60% of shifts that

start before 9 o’clock in the morning, which

means that the early shifts have on average 6

times as much linkage time as the later shifts.

Since some employees only want morning shifts

while others only want later shifts, compromises

have to be made.

(SRR3): Each employee should have at least 11 hours of

rest time between two adjacent shifts. Each

violation of this rule incurs a cost of 1.

(SRP2): There are 1102 working days with a shift type

preference defined. Each unfulfilled wish incurs

a cost of 1.

Our results both using and not using partitioning are

briefly described in Table IV. One hard constraint violation

is unavoidable: there is an employee whose previous

planning horizon ended with a late job, yet he has an early

pre-assigned job on the first Monday of the new planning

horizon, causing a rest time violation. This is a very

challenging dataset and as such it shows that partitioning has

its benefits. However, in order to eliminate the remaining

hard constraint violations with consistency we need to either

consider alternative methods or, as the preferred alternative,

point out to the problem owner the inaccuracies in their

current system and investigate what could be done to rectify

the problems caused by their contradictory constraints.

TABLE IV

AVERAGE AND QUARTILES OF 6 RUNS FOR TOTAL HARD, TOTAL SOFT AND

PREFERENCE CONSTRAINT VIOLATIONS

No partitions Partitions

Hard Soft Pref Hard Soft Pref

Average 11,7 383,8 284,5 2,5 499,0 224,7

Min 9,0 329,0 264,0 1,0 266,0 214,0

Q1 10,3 343,8 268,5 2,0 373,5 223,5

Q2 12,0 372,5 283,0 2,5 408,5 225,0

Q3 13,0 423,8 297,5 3,0 586,0 228,0

Max 14,0 454,0 311,0 4,0 904,0 232,0

3) Staff rostering (shift scheduling)

The final optimized subphase of the workforce scheduling

process is staff rostering, during which the shifts are

assigned to the employees. The length of the planning

horizon for this subphase is usually between two and six

weeks. The preferences of the employees are usually given a

relatively large weight but, as before, the choice between

hard and soft constraints stems from the instances

themselves. The most important constraints are usually

resting times and certain competences, since these are often

laid down by the collective labour agreements and

government regulations. Working hours of the employees

are also important. We have used the following list of

constraints to successfully model and solve some real-world

staff rostering cases [14, 19] along with some nurse rostering

cases [17].

Coverage requirements:

(SRC1) An employee cannot be assigned to overlapping
shifts.

Regulatory requirements:

(SRR1) The required number of working days, working
hours, shift hours and days-off within a
timeframe must be respected

(SRR2) The minimum rest time within a timeframe must
be respected.

(SRR3) The minimum rest time between two adjacent
shifts must be respected.

(SRR4) The number of special shifts (such as union
steward duties and training sessions) for
particular employees within a timeframe must
be respected.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

(SRR5) Some employees cannot work during specific
hours of the day.

(SRR6) The maximum number of shifts in a single day
must be respected.

Operational requirements:

(SRO1) An employee can only be assigned to a shift
he/she has competence for.

(SRO2) An employee cannot be assigned to more/less
than k7 shifts of a given type within a timeframe.

(SRO3) An employee assigned to a shift type t1 must not
be assigned to a shift type t2 on the following
day.

(SRO4) An employee must be assigned to a particular
shift or on-duty or off-duty on a particular day
or during a particular timeslot.

Operational preferences:

 (SRE1) A balanced assignment of different shift types
must be guaranteed between the employees.

(SRE2) A balanced assignment of different tasks must
be guaranteed between the employees.

(SRE3) Assign or avoid a given shift type before or
after a free period (days-off, vacation).

(SRE4) Assign as many wanted, and avoid as many
unwanted, stints as possible.

Personal preferences:

 (SRP1) Assign or avoid assigning given employees to
the same shifts.

(SRP2) Assign a requested shift or avoid an unwanted
shift.

(SRP3) Assign a shift (work) in a requested timeslot or
assign no shift (free) to a requested timeslot.

In Section IV.A. we generated the shifts for a haulage

company. Next we will schedule those shifts in order to

optimize working time and resting time for each employee.

In this case no separate days-off scheduling is necessary,

since there are no constraints involving days-off directly.

 We generated shifts for 69 full-time employees and 13

part-time employees. A full-time employee’s shifts must be 4

to 10 hours long, and the total working time over a 6-week

period must be 240 hours. However, our planning horizon is

only 5 days (one week), so each full-timer should have

approximately 40 hours of work. A part-time employee’s

shifts must be 4 to 6 hours long, and a part-time employee

should have 3 shifts per week. The following hard

constraints were used.

(SRR3): Each employee must have at least 7 hours of

rest time between two adjacent shifts.

(SRO1): Part-timers only have competence to work shifts

that are less than 6 hours in length.

The following soft constraints were used.

(SRR1): Each full-time employee should have a total

working time of 2400 minutes. Each part-time

employee should work 3 shifts.

(SRR3): Each employee should have at least 11 hours of

rest time between two adjacent shifts. Each

violation of this rule incurs a cost of 1.

We scheduled 52 full-time employees with a total working

time of 2400 minutes and 17 full-time employees with a total

working time of 2370 minutes, which is optimal. There are

13 violations in the rest time constraint (SRR3). Every part-

timer has 3 shifts. Thus the schedule is acceptable.

V. OUR SOLUTION METHOD

The usefulness of an algorithm depends on several

criteria. The two most important are the quality of the

generated solutions and the algorithmic power of the

algorithm (i.e. its efficiency and effectiveness). Other

important criteria include flexibility, extensibility and

learning capabilities. We can steadily note that our PEAST

algorithm [20] realizes these criteria. The acronym PEAST

stems from the methods used: Population, Ejection,

Annealing, Shuffling and Tabu. Aside from workforce

scheduling, it has been used to solve real-world school

timetabling problems [21] and real-world sports scheduling

problems [22]. We are currently investigating the impact of

different components of the algorithm in order to improve it

[23]. We are also working on a comparison between PEAST

and CPLEX performance [24].

Fig. 2. The pseudo-code of the PEAST algorithm.

Set the time limit t, no_change limit m and the population size n

Generate a random initial population of individuals

Set no_change = 0 and better_found = 0

WHILE elapsed_time < t

REPEAT n times

 Select an individual A by using a marriage selection with k = 3

 (explore promising areas in the search space)

 Apply GHCM to A to get a new individual A’

 Calculate the change Δ in objective function value

 IF Δ < = 0 THEN

 Replace A with A’

 IF Δ < 0 THEN

 better_found = better_found + 1

 no_change = 0

 END IF

 ELSE

 no_change = no_change + 1

 END IF

END REPEAT

IF better_found > n THEN

 Replace the worst individual with the best individual

 Set better_found = 0

END IF

IF no_change > m THEN

 (escape from the local optimum)

 Apply shuffling operators

 Set no_change = 0

END IF

 (avoid staying stuck in the promising search areas too long)

Update simulated annealing framework

Update the dynamic weights of the hard constraints (ADAGEN)

END WHILE

Choose the best individual from the population

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

The PEAST algorithm is a population-based local search

method. The main difficulty for a local search is

1) to explore promising areas in the search space that is, to

zoom-in to find local optimum solutions to a sufficient

extent while at the same time

2) avoiding staying stuck in these areas for too long and

3) escaping from these local optima in a systematic way.

Population-based methods use a population of solutions in

each iteration. The outcome of each iteration is also a

population of solutions. Population-based methods are a

good way to escape from local optima. The PEAST

algorithm uses GHCM, the Greedy Hill-Climbing Mutation

heuristic introduced in [25] as its local search method. The

pseudo-code of the algorithm is given in Fig. 2.

The reproduction phase of the algorithm is, to a certain

extent, based on steady-state reproduction: the new schedule

replaces the old one if it has a better or equal objective

function value. Furthermore, the least fit is replaced with the

best one when n better schedules have been found, where n

is the size of the population. Marriage selection is used to

select a schedule from the population of schedules for a

single GHCM operation. In the marriage selection we

randomly pick a schedule, S, and then we try at most k – 1

times to randomly pick a better one. We choose the first

better schedule, or, if none is found, we choose S.

The heart of the GHCM heuristic is based on similar ideas

to the Lin-Kernighan procedures [26] and ejection chains

[27]. The basic hill-climbing step is extended to generate a

sequence of moves in one step, leading from one solution

candidate to another. The GHCM heuristic moves an object,

o1, from its old position in some cell, c1, to a new cell, c2,

and then moves another object, o2, from cell c2 to a new cell,

c3, and so on, ending up with a sequence of moves. An

object is a task-based activity or a whole break (in shift

generation), a day-off (in days-off scheduling) or a shift (in

shift scheduling). A cell is a shift (in shift generation) or an

employee (in days-off scheduling and shift scheduling). A

move involves removing an object from a certain position

within a cell and inserting it either into a new cell (position

is invariant) or a new position (cell is invariant).

The initial cell selection is random. The cell that receives

an object is selected by considering all the possible cells and

selecting the one that causes the least increase in the

objective function when only considering the relocation cost.

Then, another object from that cell is selected by

considering all the objects in that cell and picking the one

for which the removal causes the biggest decrease in the

objective function when only considering the removal cost.

Next, a new cell for that object is selected, and so on. The

sequence of moves stops if the last move causes an increase

in the objective function value and if the value is larger than

that of the previous non-improving move. Then, a new

sequence of moves is started. The initial solution is

randomly generated.

The decision whether or not to commit to a sequence of

moves in the GHCM heuristic is determined by a refinement

[25] of the standard simulated annealing method [28].

Simulated annealing is useful to avoid staying stuck in the

promising search areas for too long. The initial temperature

T0 is calculated by

where X0 is the degree to which we want to accept an

increase in the cost function (we use a value of 0.75). The

exponential cooling scheme is used to decrement the

temperature:

where α is usually chosen between 0.8 and 0.995. We stop

the cooling at some predefined temperature. Therefore, after

a certain number of iterations, m, we continued to accept an

increase in the cost function with some constant probability,

p. Using the initial temperature given above and the

exponential cooling scheme, we can calculate the value

We choose m equal to the maximum number of iterations

with no improvement to the cost function and p equal to

0.0015.

For most PEAST applications we introduce a number of

shuffling operators – simple heuristics used to perturb a

solution into a potentially worse solution in order to escape

from local optima – that are called upon according to some

rule. The most used heuristics include moving a single

random object from one cell to another random cell, or

swapping two random objects between two random cells.

For further details on the different shuffling operators used,

see [13-17, 19]. The operator is called every l/20th iteration

of the algorithm, where l equals the maximum number of

iterations with no improvement to the cost function.

We use the weighted-sum approach for multi-objective

optimization. A traditional penalty method assigns positive

weights (penalties) to the soft constraints and sums the

violation scores to the hard constraint values to get a single

value to be optimized. We use the ADAGEN method [25]

which assigns dynamic weights to the hard constraints. The

weights are updated every kth generation using the formula

given in [25].

VI. CONCLUSIONS AND FUTURE WORK

We introduced the workforce scheduling process using

the PEAST algorithm, along with some new datasets

provided by Finnish companies. The exact datasets can be

obtained from the authors by email. We believe that a great

number of real-world scenarios can be modeled and solved

using the framework presented in this paper. This research

has contributed to improved systems for our industry partner

and its customers.

We will next publish a comparison between PEAST and

CPLEX performance [24]. We are also investigating the

crucial components of the PEAST algorithm [23].

Our future work includes investigating the actual impact

of fulfilling employees’ wishes and ensuring fairness among

them in some of the companies we work with. The principal

questions are, does optimization (i.e. considering

preferences) actually make the employees more satisfied and

,1 kk TT 

.))log/(1(/1

0

mpT

 1

0 01/ log ,T X 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

how does the company benefit from that?

Other future work includes improving and formally

modeling workload prediction and resource analysis.

REFERENCES

[1] M.R. Garey and D.S. Johnson, Computers and Intractability: A

Guide to the Theory of NP-Completeness. New York: Freeman, 1979.

[2] J. Tien and A. Kamiyama, “On Manpower Scheduling Algorithms,”

in SIAM Rev. 24 (3), 1982, pp. 275–287.

[3] H.C. Lau, “On the Complexity of Manpower Shift Scheduling,”

Computers and Operations Research 23(1), 1996, pp. 93-102.

[4] D. Marx, “Graph coloring problems and their applications in

scheduling,” Periodica Polytechnica Ser. El. Eng. 48, 2004, pp. 5–

10.

[5] L. Di Gaspero, J. Gärtner, G. Kortsarz, N. Musliu, A. Schaerf and W.

Slany, “The minimum shift design problem,” Annals of Operations

Research, 155(1), 2007, pp. 79–105.

[6] G.B. Dantzig, “A comment on Edie’s traffic delays at toll booths,”

Operations Research 2, 1954, pp. 339–341.

[7] H.K. Alfares, “Survey, categorization and comparison of recent tour

scheduling literature,” Annals of Operations Research 127, 2004, pp.

145-175.

[8] A.T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier, “Staff

scheduling and rostering: A review of applications, methods and

models,” European Journal of Operational Research 153 (1), 2004,

pp. 3-27.

[9] A. Meisels and A. Schaerf, “Modelling and solving employee

timetabling problems,” Annals of Mathematics and Artificial

Intelligence 39, 2003, pp. 41-59.

[10] P. De Causmaecker and G. Vanden Berghe, “Towards a reference

model for timetabling and rostering,” Annals of Operations Research

194 (1), 2012, pp. 167-176.

[11] K. Nurmi, N. Kyngäs and J. Salli, “A workload prediction, staffing

and shift generation method for contact centers,” in Proc. of the 4th

EURO Working Group on Stochastic Modeling, Paris, France, 2012.

[12] D. L. Kellogg and S. Walczak, “Nurse Scheduling: From Academia to

Implementation or Not?”, Interfaces 37 (4), 2007, pp. 355-369.

[13] J. Kyngäs and K. Nurmi, “Days-off Scheduling for a Bus

Transportation Company,” International Journal of Innovative

Computing and Applications 3 (1), 2011, pp. 42-49.

[14] N. Kyngäs, K. Nurmi and J. Kyngäs, “Optimizing Large-Scale Staff

Rostering Instances,” Lecture Notes in Engineering and Computer

Science: Proceedings of The International MultiConference of

Engineers and Computer Scientists, Hong Kong, 2012, pp. 1524-

1531.

[15] N. Kyngäs, D. Goossens, K. Nurmi and J. Kyngäs, “Optimizing the

Unlimited Shift Generation Problem,” in Proc. of the International

Conference on the Applications of Evolutionary Computation,

Malaga, Spain, 2012, pp. 508-518.

[16] N. Kyngäs, K. Nurmi and J. Kyngäs, ”Solving the person-based

multitask shift generation problem with breaks,” IEEE SSCI 2013,

submitted for publication.

[17] N. Kyngäs, K. Nurmi, E.I. Ásgeirsson and J. Kyngäs, ”Using the

PEAST Algorithm to Roster Nurses in an Intensive-Care Unit in a

Finnish Hospital,” in Proc of the 9th Conference on the Practice and

Theory of Automated Timetabling (PATAT), Son, Norway, 2012.

[18] E.I. Ásgeirsson, J. Kyngäs, K. Nurmi and M. Stølevik, “A Framework

for Implementation-Oriented Staff Scheduling”, in Proc of the 5th

Multidisciplinary Int. Scheduling Conf.: Theory and Applications

(MISTA), Phoenix, USA, 2011, pp. 308-321.

[19] K. Nurmi, J. Kyngäs and G.Post , “Driver Rostering for a Finnish

Transportation Company”, in Ao, Sio-Iong (ed.): IAENG

Transactions on Engineering Technologies Volume 7, Springer,

USA, 2012.

[20] J. Kyngäs, “Solving Challenging Real-World Scheduling Problems,”

Ph.D. dissertation, Dept. of Information Technology, University of

Turku, Finland, 2011. Available: http://urn.fi/URN:ISBN:978-952-

12-2634-2

[21] K. Nurmi and J. Kyngäs, “A Framework for School Timetabling

Problem,” Proceedings of the 3rd Multidisciplinary International

Scheduling Conference: Theory and Applications, Paris, France,

2007, pp. 386–393.

[22] J. Kyngäs and K. Nurmi, “Scheduling the Finnish Major Ice Hockey

League,” Proceedings of the IEEE Symposium on Computational

Intelligence in Scheduling, Nashville, USA, 2009.

[23] N. Kyngäs, K. Nurmi and J. Kyngäs, “Crucial Components of the

PEAST Algorithm in Solving Real-World Scheduling Problems,” 2nd

International Conference on Software and Computer Applications, to

be submitted for publication.

[24] N. Kyngäs, D. Goossens, K. Nurmi and J. Kyngäs, ”PEAST versus

CPLEX,” Multidisciplinary International Scheduling Conference:

Theory and Applications, to be submitted for publication.

[25] K. Nurmi, “Genetic Algorithms for Timetabling and Traveling

Salesman Problems,” Ph.D. dissertation, Dept. of Applied Math.,

University of Turku, Finland, 1998. Available:

http://www.bit.spt.fi/cimmo.nurmi/dissertation/cimmodis.zip

[26] S. Lin and B. W. Kernighan, “An effective heuristic for the traveling

salesman problem,” Operations Research 21, 1973, pp. 498–516.

[27] F. Glover, “New ejection chain and alternating path methods for

traveling salesman problems,” Computer Science and Operations

Research: New Developments in Their Interfaces, edited by Sharda,

Balci and Zenios, Elsevier, 1992, pp. 449–509.

[28] P.J.M. van Laarhoven and E.H.L. Aarts, “Simulated annealing:

Theory and applications,” Kluwer Academic Publishers, 1987.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

http://urn.fi/URN:ISBN:978-952-12-2634-2
http://urn.fi/URN:ISBN:978-952-12-2634-2

