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Abstract— Workforce scheduling has become increasingly 

important for both the public sector and private companies. 

Good rosters have many benefits for an organization, such as 

lower costs, more effective utilization of resources and fairer 

workloads and distribution of shifts. This paper presents a 

framework and an algorithm that have been successfully used 

to model and solve workforce scheduling problems in Finnish 

companies. The algorithm has been integrated into market-

leading workforce management software in Finland. 

 
Index Terms—computational intelligence, metaheuristics, 

staff scheduling, workforce scheduling 

 

I. INTRODUCTION 

ORKFORCE scheduling, also called staff 

scheduling and labor scheduling, is a difficult and 

time consuming problem that every company or institution 

that has employees working on shifts or on irregular working 

days must solve. The workforce scheduling problem has a 

fairly broad definition. Most of the studies focus on 

assigning employees to shifts, determining working days and 

rest days or constructing flexible shifts and their starting 

times. Different variations of the problem and subproblems 

are NP-hard and NP-complete [1]-[5], and thus extremely 

hard to solve. The first mathematical formulation of the 

problem based on a generalized set covering model was 

proposed by Dantzig [6]. Good overviews of workforce 

scheduling are published by Alfares [7], Ernst et al. [8] and 

Meisels and Schaerf  [9]. 

This paper is composed as follows. Section II briefly 

introduces the necessary terminology and the workforce 

scheduling process as we have encountered it in various real-

world cases. In Section III we describe the preprocessing 

phase of the workforce scheduling process.  Section IV 

presents the staff scheduling phase. Along with the problems 

and definitions of the subphases themselves we introduce 

some new real-world cases. Section V gives an outline of 

our computational intelligence algorithm. Section VI 

presents conclusions and some of our future work. 

We have used the PEAST algorithm, as described in 

Section V, to solve numerous real-world staff scheduling 

problems for different Finnish companies. The algorithm has 

been integrated into the workforce management system of 

our business partner, and it is in constant real-world use. 
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II. TERMINOLOGY AND THE WORKFORCE SCHEDULING 

PROCESS IN BRIEF 

The planning horizon is the time interval over which the 

employees have to be scheduled. Each employee has a total 

working time that he/she has to work during the planning 

horizon. Furthermore, each employee has competences 

(qualifications and skills) that enable him/her to carry out 

certain tasks. Days are divided into working days (days-on) 

and rest days (days-off). Each day is divided into periods or 

timeslots. A timeslot is the smallest unit of time and the 

length of a timeslot determines the granularity of the 

schedule. A shift is a contiguous set of working hours and is 

defined by a day and a starting period on that day along with 

a shift length (the number of occupied timeslots) or shift 

time. Shifts are sometimes grouped into shift types, such as 

morning, day and night shifts. Each shift is composed of 

tasks and breaks. The sum of the length of a shift’s tasks is 

called working time, whereas sometimes the sum of the 

length of a shift’s breaks is called linkage time. A timeslot-

long piece of a task or break is called an activity. A 

consecutive sequence of activities dedicated to a single task 

is called a stretch. A shift or a task may require the 

employee assigned to it to possess one or more competences. 

A work schedule over the planning horizon for an employee 

is called a roster. A roster is a combination of shifts and 

days-off assignments that covers a fixed period of time. 
 

 
Fig. 1.  The workforce scheduling process. The upper boxes represent the 

subphases that may occur in both mid-term and short-term planning 

(preprocessing phase). The subphases represented by the lower boxes (staff 

scheduling phase) only occur in short term planning, although information 

gathered from these may prove useful in future mid-term planning.  
 

Workload prediction, also referred to as demand 

forecasting or demand modeling, is the process of 

determining the staffing levels - that is, how many 
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employees are needed for each timeslot in the planning 

horizon. The staffing is preceded by actual workload 

prediction or workload determination based on static 

workload constraints given by the company, depending on 

the situation. In preference scheduling, each employee gives 

a list of preferences and attempts are made to fulfill them as 

well as possible. The employees’ preferences are often 

considered in the days-off scheduling and staff rostering 

subphases, but may also be considered during shift 

generation. Together these two subphases form the 

preprocessing phase. 

Shift generation is the process of determining the shift 

structure, along with the activities to be carried out in 

particular shifts and the competences required for different 

shifts. Days-off scheduling deals with the assignment of rest 

days between working days over a given planning horizon. 

Days-off scheduling also includes the assignment of 

vacations and special days, such as union steward duties and 

training sessions. Staff rostering, also referred to as shift 

scheduling, deals with the assignment of employees to shifts. 

It can also specify the starting time and duration of shifts for 

a given day, even though in most cases they are pre-assigned 

during shift generation. This subphase may include both 

resource analysis to examine the compatibility between the 

available workforce and the shifts, and partitioning in the 

case of massive datasets (i.e. hundreds of employees) to 

speed up and improve on the results of the rostering. 

Together these five subphases form the staff scheduling 

phase. 

Rescheduling deals with ad hoc changes that are necessary 

due to sick leaves or other no-shows. The changes are 

usually carried out manually. Finally, participation in 

evaluation ranges from the individual employee through 

personnel managers to executives. A reporting tool should 

provide performance measures in such a way that the 

personnel managers can easily evaluate both the realized 

staffing levels and the employee satisfaction. When 

necessary, parts of the whole workforce scheduling process 

may be restarted.  Workforce scheduling consists roughly 

of everything from determining the needs of the customers to 

determining the exact schedule of each employee. 

The workforce scheduling process presented in this paper 

is mostly concerned with short-term planning, as defined in 

[10]. We have chosen to split the problem into subphases as 

seen in Fig. 1. This may cause problems in extremely 

difficult cases, due to the search space at each subphase 

being constrained by the choices made during previous 

subphases. This would be an untenable approach for finding 

the global optimum for most problems. However, our goal is 

to find a good enough solution for a broad range of 

problems. Our subphase-based approach is flexible enough 

to achieve this goal. Another benefit is decreased 

computational complexity due to the constantly narrowing 

search space. 

The staff scheduling phase can be solved using 

computational intelligence. Computational workforce 

scheduling is key to increased productivity, quality of 

service, customer satisfaction and employee satisfaction. 

Other advantages include reduced planning time, reduced 

payroll expenses and ensured regulatory compliance. 

III. THE PREPROCESSING PHASE 

The preprocessing phase is the foundation upon which the 

actual staff scheduling phase is built. It may involve 

identifying both the needs of the customer(s) and the 

attributes (preferences, skills etc.) of the employees, and 

determining staffing requirements based on the former. This 

phase can be thought of as the transition between mid-term 

and short-term planning, since it touches both. This is the 

point in the workforce scheduling process where historical 

data and the schedules of previous planning horizons are 

most useful. 

 

A. Workload prediction/determination 

The nature of determining the amount and type of work to 

be done at any given time during the next planning horizon 

depends greatly on the nature of the job. If the workload is 

uncertain then some form of workload prediction is called 

for [8]. Some examples of this are the calls incoming to a 

call center or the customer influx to a hospital. 

We define the service level SL(n) as the percentage of 

customers that need to wait for service for at most n seconds. 

Usually workload prediction aims to provide a certain 

service level (or above) for some fixed n. We simulate the 

randomly distributed workload based on historical data and 

statistical analysis, and find a suitable working employee 

structure (i.e. how many and what kinds of employees are 

needed) over time [11]. Computationally this approach is 

much more intensive than methods based on queuing theory. 

However, it has the benefit of being applicable to almost any 

real-world situation. 

If the workload is static, no forecasting is necessary. For 

example, a local transport company might be under a strict 

contract to drive completely pre-assigned bus lines. In such a 

case shift generation may be necessary to combine the 

different bus lines into shifts, but the workload as such is 

static and thus calls for no forecasting. 

 

B. Preference scheduling 

Research by Kellogg and Walczak [12] indicates that it is 

crucial for a workforce management system to allow the 

employees to affect their own schedules. In general it 

improves employee satisfaction. This in turn reduces sick 

leaves and improves the efficiency of the employees, which 

means more profit for the employer. Hence we use an easy-

to-use user interface that allows the employees to input their 

preferences into the workforce management system. This 

eases the organizational workload of the personnel manager. 

A measure of fairness is incorporated via limiting the 

number and type of different wishes that can be expressed 

per employee. We are looking into incorporating more 

rigorous fairness measures and more complex preferences to 

the system. In our experience our current system is 

satisfactory, yet there is always room for improvement. 

Preferences can be considered at every subphase of the 

staff scheduling phase [13-15]. The different types of 

preferences we consider are found under the respective 

subphases of the workforce scheduling process. 
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IV. THE STAFF SCHEDULING PHASE 

A. Shift generation 

Shift generation transforms the determined workload into 

shifts. This includes deciding break times when applicable. 

Shift generation is essential especially in cases where the 

workload is not static. In other cases companies often want 

to hold on to their own established shift building methods. 

A basic shift generation problem includes a variable 

number of activities for each task in each timeslot. Some 

tasks are not time-dependent; instead, there may be a daily 

quota to be fulfilled. Activities may require competences. 

The most important optimization target is to match the shifts 

to the workload as accurately as possible. In our solutions 

we create the shifts for each day separately, each shift 

corresponding to a single employee’s competences and 

preferences. We do not minimize the number of different 

shifts. The choice between hard and soft constraints is given 

by the instances themselves. We have used the following list 

of constraints to successfully model and solve some real-

world cases [16, 17]. The names have been prefixed in order 

to distinguish constraints between different subphases. 

 

Structural constraints: 
(SGS1) No shift should contain timeslots with multiple 

types of activities (i.e. different tasks or both 
breaks and tasks). 

(SGS2) No shift should contain gaps, i.e. timeslots with 
no activities. 

Coverage constraints: 
(SGC1) The number of employees at each timeslot over 

the planning horizon must be exactly as given 
(strict version) for each strictly time-dependent 
task. 

(SGC2) The sum of the excesses of employees at each 
timeslot over the planning horizon must be 
minimized for each strictly time-dependent task. 

(SGC3) The sum of the shortages of employees at each 
timeslot over the planning horizon must be 
minimized for each strictly time-dependent task. 

(SGC4) The total workload for each task must be 
carried out before a given timeslot. 

(SGC5) No working time should be wasted. 

Volume constraints: 
(SGV1) The number of shifts, i.e. the number of 

employees at work, must be minimized. 

(SGV2) Shifts of exactly k1 timeslots in length must be 
maximized. 

(SGV3) Shifts of less than k2 and over k3 in length must 
be minimized. 

(SGV4) The average shift length should be as close to k4 

timeslots as possible.  

(SGV5) The lengths of the shifts must match the 
employees’ available hours. 

(SGV6) The competences necessary to carry out the 
shifts must match the available workforce. 

Placement constraints: 
(SGP1) Shifts that start between timeslots k5 and k6 must 

be minimized. 

(SGP2) Shifts that end between timeslots k7 and k8 must 
be minimized. 

(SGP3) Each shift must contain a given number of 
breaks of certain lengths, depending on the 
length of the shift. 

(SGP4) The breaks in any given shift must be evenly 
spaced and positioned in correct order. 

(SGP5) For each task t define ct. Whenever task t 
appears in a shift, it must be as part of a stretch 
consisting only of task t and at least ct slots 
long. 

(SGP6) Each shift should contain at most k9 switches 
from one task to another. 

(SGP7) Each switch between tasks should occur during 
a break. 

 

We now present a real-world case from a Finnish haulage 

company. The problem as it was presented to us, related to a 

cargo terminal of theirs, is as follows. The planning horizon 

is five days, extending from a Sunday evening to a Friday 

evening. Each hour a number M(d,h), where d=day and 

h=hour, of arrival manifests needs to be processed. The 

arrivals not handled immediately are queued, and the queue 

needs to be empty in the morning (6.30) and in the evening 

(20.30). The values of M for different days and hours are 

shown in Table I.  

 
TABLE I 

MANIFEST ARRIVALS BY TIME 

 

Mon Tue Wed Thu Fri 

22-23 429 584 472 432 376 

23-24 429 584 472 432 376 

24-1 429 584 472 432 376 

1-2 377 316 336 360 366 

2-3 377 316 336 360 366 

3-4 377 316 336 360 366 

4-5 480 389 436 417 465 

5-6 480 389 436 410 425 

6-7 118 80 51 43 54 

7-8 31 40 36 18 38 

8-9 17 26 15 24 21 

9-10 50 20 15 51 24 

10-11 93 28 29 134 30 

11-12 83 19 10 19 100 

12-13 107 88 158 74 81 

13-14 259 132 192 142 134 

14-15 279 263 178 189 255 

15-16 615 614 405 467 484 

16-17 720 654 654 565 784 

17-18 1055 908 913 1242 1002 

18-19 912 969 847 842 863 

19-20 429 476 728 854 423 

 

It is assumed that the employees are identical in their 

processing capacity: each employee can handle 11 manifests 

per hour during the day (6-22) and 17,5 manifests per hour 

during the night (22-6). There are 76 full-time employees 

and 13 part-time employees. A full-time employee’s shifts 

must be 4 to 10 hours long, and the total working time over a 

6-week period must be 240 hours. A part-time employee’s 
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shifts must be 4 to 6 hours long. Additionally, a part-time 

employee should have 3 shifts per week, and the total 

number of part-timers’ working hours must be at most 10% 

of the total working hours of all the employees. 

The length of a timeslot is 30 minutes. The number of 

full-time employees was restricted to 69 in order to keep the 

workload of the part-time employees suitable. Thus we end 

up with 82 employees in total. The following hard 

constraints were used. 

 

(SGS1): No shift should contain timeslots with multiple 

types of activities. 

(SGS2): No shift should contain gaps. 

(SGP3):  Each shift must contain a 30-minute lunch 

break. 

(SGV5): Each shift’s length must be within the allowed 

limits of the corresponding employee. 

 

The following soft constraints were used. 

(SGP4): For shift s, let ds be the distance of its break 

from the midpoint of the shift in slots (it does 

not matter if the optimal positions are not 

integers), and let as be 0.25 × (length of s). If ds 

> as, then a cost of round(ds – as) is incurred. 

(SGC4) + (SGC5): 

 A compound constraint is used in order to make 

sure that the queue of arrivals is empty at 6.30 

and 20.30, and that no working time is lost due 

to having too much workforce at work too early. 

The cumulative effective workload CEW[day, 

type, time] represents the workload that has 

effectively been contributed to handling the 

manifests up to timeslot time. It is calculated as  

  

where w is the number of workers scheduled to 

do a certain task at a certain time and MCS is 

the maximum cumulative workload given in 

Table III. For each day, the penalty given is the 

sum of differences between total workload and 

effective workload for day and night tasks. 

 
TABLE II 

COMPARISON BETWEEN OUR SOLUTION AND A MANUAL SOLUTION 

 

Our solution Manual solution 

Total working minutes (actual) 175020 201300 

Effective working minutes (actual) 158700 144330 

Total job minutes (goal) 178170 178170 

Job completion % 89 % 81 % 

% of wasted working time 9 % 28 % 

 

The results are briefly described in Table II along with 

comparative numbers from the company’s own solution. Our 

solution has no violations in SGP4, so the total penalty (649) 

represents exactly the number of timeslots that the effective 

working time is short of the total time that the jobs require 

(649×30=178170-158700). The numbers from the 

company’s current scheduling method made us doubt 

whether all the assumptions were close enough to reality and 

if the data/model were precise enough, but based on our 

results a contract for the use of our optimization software 

was signed. We hope to get more precise data in the future 

in order to improve both our model and our solutions. In 

Section IV.C.3 we’ll roster the staff using the generated 

shifts. 

 
TABLE III 

MAXIMUM CUMULATIVE WORKLOAD BY TIME AND TASK TYPE 

 

Mon Tue Wed Thu Fri 

 

N D N D N D N D N D 

22:00 24 0 34 0 27 0 25 0 22 0 

22:30 48 0 67 0 54 0 50 0 43 0 

23:00 73 0 101 0 81 0 75 0 65 0 

23:30 98 0 134 0 108 0 99 0 86 0 

0:00 122 0 167 0 135 0 124 0 108 0 

0:30 146 0 201 0 162 0 149 0 129 0 

1:00 168 0 219 0 182 0 169 0 150 0 

1:30 190 0 237 0 201 0 190 0 171 0 

2:00 211 0 255 0 220 0 210 0 192 0 

2:30 232 0 273 0 239 0 231 0 213 0 

3:00 254 0 291 0 258 0 251 0 234 0 

3:30 276 0 309 0 278 0 272 0 255 0 

4:00 303 0 331 0 302 0 296 0 281 0 

4:30 330 0 354 0 327 0 320 0 308 0 

5:00 359 0 376 0 352 0 343 0 332 0 

5:30 388 0 398 0 377 0 367 0 357 0 

6:00 388 10 398 8 377 5 367 4 357 5 

6:30 388 20 398 15 377 10 367 8 357 10 

7:00 388 23 398 19 377 13 367 10 357 14 

7:30 388 26 398 22 377 16 367 12 357 17 

8:00 388 28 398 25 377 18 367 14 357 19 

8:30 388 30 398 27 377 19 367 16 357 21 

9:00 388 34 398 29 377 20 367 21 357 23 

9:30 388 38 398 31 377 22 367 25 357 25 

10:00 388 47 398 33 377 24 367 37 357 28 

10:30 388 56 398 36 377 27 367 50 357 31 

11:00 388 63 398 37 377 28 367 51 357 40 

11:30 388 70 398 39 377 29 367 53 357 49 

12:00 388 80 398 47 377 43 367 60 357 56 

12:30 388 90 398 55 377 58 367 66 357 64 

13:00 388 113 398 67 377 75 367 79 357 76 

13:30 388 136 398 79 377 92 367 92 357 88 

14:00 388 162 398 103 377 109 367 109 357 111 

14:30 388 188 398 127 377 125 367 127 357 134 

15:00 388 244 398 183 377 162 367 169 357 178 

15:30 388 300 398 239 377 198 367 212 357 222 

16:00 388 365 398 298 377 258 367 263 357 294 

16:30 388 430 398 358 377 317 367 314 357 365 

17:00 388 526 398 440 377 400 367 427 357 456 

17:30 388 622 398 523 377 483 367 540 357 547 

18:00 388 705 398 611 377 560 367 617 357 626 

18:30 388 788 398 699 377 637 367 693 357 704 

19:00 388 828 398 742 377 704 367 771 357 743 

19:30 388 868 398 785 377 770 367 848 357 781 

20:00 388 868 398 785 377 770 367 848 357 781 

20:30 388 868 398 785 377 770 367 848 357 781 

21:00 388 868 398 785 377 770 367 848 357 781 

21:30 388 868 398 785 377 770 367 848 357 781 

 The maximum cumulative workload MCS[day, type, time] for both 

night (N) and day (D) tasks, calculated from M[day, time] using the 

efficiency assumption of the employees based on the time of day and 

assuming that the workload is evenly distributed during each hour. 

B. Days-off scheduling 

Days-off scheduling decides the rest days and the working 

 CEW ,  ,   = day type time

 

 

 

MCS ,  ,  ,

min CEW ,  ,  -1 ,

w ,  ,  

day type time

day type time

day type time

 
 
 
 
 
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days of the employees. It is based on the result of the shift 

generation: for each day a set of suitable employees must be 

available to carry out the shifts. This is the first subphase 

where employees’ preferences usually have a big emphasis. 

The choice between hard and soft constraints is highly 

dependent on the problem instance. The following list of 

constraints is a slightly modified version of the list from 

[18]. The constraint names have been prefixed and 

renumbered in order to distinguish constraints between 

different phases. 

 

Coverage requirements: 

(DOC1) A minimum number of employees of particular 
competences must be guaranteed for each shift 
or each timeslot. 

(DOC2) A maximum number of employees of particular 
competences cannot be exceeded for each shift 
or each timeslot. 

(DOC3) A balanced number of surplus employees must 
be guaranteed in each working day. 

Regulatory requirements: 

(DOR1) The required number of working days and days-
off within a timeframe must be respected. 

(DOR2) The required number of holidays within a 
timeframe must be respected. 

(DOR3) The required number of free weekends (both 
Saturday and Sunday free) within a timeframe 
must be respected. 

(DOR4) Employees cannot work consecutively for more 
than k3 days (the maximum length of a work 
stretch). 

(DOR5) Some employees cannot work on weekends or 
during specific hours of the day. 

Operational requirements: 

(DOO1) At least k4 working days must be assigned 
between two separate days-off. 

(DOO2) An employee cannot be assigned to more than 
k5 weekend days within a timeframe. 

(DOO3) An employee must be assigned to a particular 
shift or on-duty or off-duty on a particular day 
or during a particular timeslot. 

Operational preferences: 

(DOE1) Single days-off should be avoided. 

(DOE2) Single working days should be avoided. 

(DOE3) The maximum length of consecutive days-off is 
k6. 

(DOE4) A balanced assignment of single days-off and 
single working days must be guaranteed 
between the employees. 

(DOE5) A balanced assignment of weekdays must be 
guaranteed between employees. 

Personal preferences: 

(DOP1) Assign or avoid assigning given employees to 
the same shifts. 

(DOP2) Assign a requested day-on or avoid a requested 
day-off. 

 

We have used these constraints to successfully model and 

solve some real-world days-off scheduling problems [13] 

and some nurse rostering problems [17]. 

 

C. Staff rostering 

1) Resource analysis (optional) 

To see if there will be any chance of succeeding at 

matching the workforce with the shifts while adhering to the 

given constraints, an analysis is run on the data. If we have 

already optimized the days-off, this subphase is not 

necessary but it may still be useful. In addition to helping the 

personnel manager see the problem with the data, it may 

help in convincing the management level that the current 

practices and processes of generating the schedules are 

simply untenable. We have developed a statistical tool for 

this. 

 

2) Partitioning of massive data (optional) 

Some real-world datasets are huge. They may consist of 

hundreds of employees with a corresponding number of 

jobs. Usually employees are trivially partitioned at some 

level, but that is not always the case. For example, consider 

a nationwide chain of service stations that sell food around 

the clock. Each station needs cooks, miscellaneous 

restaurant staff, cleaners, and so on. Let’s take a look at a 

cluster of 5 stations in the radius of 50 kilometers. Each 

station employs around 50 people. The staff from each can 

move freely between the stations, although every employee 

has one or more home bases, i.e. they prefer being stationed 

to particular stations. If the employees were bound to a 

singular preferred station, the staff of the stations could be 

rostered one station at a time, i.e. we would have a trivial 

partitioning of the employees. Since this will not produce 

optimal schedules, we need to roster all the 5×50 employees 

as a singular unit. 

In the previous example it is still possible for us to 

consider the employees one station at a time, if the number 

of employees is very high, since it may be computationally 

infeasible to try to roster the whole set of employees at once. 

We use the PEAST algorithm to do such a partitioning in the 

general case, when there is no “obvious”, trivial partitioning 

to be done, as in [14]. 

We now present a real-world case from a Finnish bus 

company. The problem consists of rostering 175 bus drivers 

over a planning horizon of 2 weeks. The days-off are 

invariant. There are 6 different kinds of days-off. The hard 

constraints (from the list in section IV.C.3) of the problem 

are as follows. 

 

(SRR1): The working time of an employee must be 

strictly less than his/her goal working time. The 

shift time of an employee must be greater than 

his/her goal working time. 

(SRR3): The rest time of 9 hours must be respected 

between adjacent shifts. 

(SRR5): There is 1 person with 6 working days during 
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which he/she cannot work certain shifts. 

(SRO3): The 3 most common kinds of days-off (90% of 

all days-offs) must be whole, i.e. they cannot be 

immediately preceded by a shift that ends after 

midnight 

(SRO4): There are in total 140 pre-assigned shifts. 

 

The soft constraints of the problem are as follows. 

 

(SRR1): The required number of working hours must be 

respected. The total working hours of the 

employees range from 1200 minutes to 4815 

minutes. The working minutes per day per 

employee range from 360 to 535. The 

difference (17888 minutes) between employees’ 

total working time goal (786750 minutes) and 

the sum of the working time of all the shifts 

(768862 minutes) should be evenly distributed 

among the shifts. There are 1643 shifts, which 

results in approximately 10.9 minutes per shift. 

Each employee should thus be SG(e) = 10.9 × 

(number of working days of employee e) 

minutes short of their personal workload goal. 

Define S(e) as the actual shortage for employee 

e. If |S(e)-SG(e)| > 0.1×SG(e), then the cost 

given is |S(e)-SG(e)| - 0.1×SG(e). This ensures 

fairness in regard to the working time. The 

arbitrary threshold is used, since the goal is to 

have highly similar but not necessarily equal 

shortages. 

  Additionally, the linkage time (i.e. time spent 

having lunch or waiting for another vehicle, 

totalling 24322 minutes in this instance) should 

be distributed evenly among the employees. 

This means approximately 14.8 minutes of 

linkage time per shift. Thus each employee 

should have LG(e) = 14.8 × (number of 

working days of employee e) linkage minutes. 

Define L(e) as the actual linkage time for 

employee e. If |L(e)-LG(e)| > 0.1×LG(e), then 

the cost given is |L(e)-LG(e)| - 0.1×LG(e).  The 

linkage time is not nearly evenly distributed 

among different shift types. Almost 90% of all 

linkage time belongs to the 60% of shifts that 

start before 9 o’clock in the morning, which 

means that the early shifts have on average 6 

times as much linkage time as the later shifts. 

Since some employees only want morning shifts 

while others only want later shifts, compromises 

have to be made. 

(SRR3): Each employee should have at least 11 hours of 

rest time between two adjacent shifts. Each 

violation of this rule incurs a cost of 1. 

(SRP2): There are 1102 working days with a shift type 

preference defined. Each unfulfilled wish incurs 

a cost of 1. 

 

Our results both using and not using partitioning are 

briefly described in Table IV. One hard constraint violation 

is unavoidable: there is an employee whose previous 

planning horizon ended with a late job, yet he has an early 

pre-assigned job on the first Monday of the new planning 

horizon, causing a rest time violation. This is a very 

challenging dataset and as such it shows that partitioning has 

its benefits. However, in order to eliminate the remaining 

hard constraint violations with consistency we need to either 

consider alternative methods or, as the preferred alternative, 

point out to the problem owner the inaccuracies in their 

current system and investigate what could be done to rectify 

the problems caused by their contradictory constraints. 

 
TABLE IV 

AVERAGE AND QUARTILES OF 6 RUNS FOR TOTAL HARD, TOTAL SOFT AND 

PREFERENCE CONSTRAINT VIOLATIONS 

 
No partitions Partitions 

 
Hard Soft Pref Hard Soft Pref 

Average 11,7 383,8 284,5 2,5 499,0 224,7 

Min 9,0 329,0 264,0 1,0 266,0 214,0 

Q1 10,3 343,8 268,5 2,0 373,5 223,5 

Q2 12,0 372,5 283,0 2,5 408,5 225,0 

Q3 13,0 423,8 297,5 3,0 586,0 228,0 

Max 14,0 454,0 311,0 4,0 904,0 232,0 

 

3) Staff rostering (shift scheduling) 

The final optimized subphase of the workforce scheduling 

process is staff rostering, during which the shifts are 

assigned to the employees. The length of the planning 

horizon for this subphase is usually between two and six 

weeks. The preferences of the employees are usually given a 

relatively large weight but, as before, the choice between 

hard and soft constraints stems from the instances 

themselves. The most important constraints are usually 

resting times and certain competences, since these are often 

laid down by the collective labour agreements and 

government regulations. Working hours of the employees 

are also important. We have used the following list of 

constraints to successfully model and solve some real-world 

staff rostering cases [14, 19] along with some nurse rostering 

cases [17]. 

 

Coverage requirements: 

(SRC1) An employee cannot be assigned to overlapping 
shifts. 

Regulatory requirements: 

(SRR1) The required number of working days, working 
hours, shift hours and days-off within a 
timeframe must be respected 

(SRR2) The minimum rest time within a timeframe must 
be respected. 

(SRR3) The minimum rest time between two adjacent 
shifts must be respected. 

(SRR4) The number of special shifts (such as union 
steward duties and training sessions) for 
particular employees within a timeframe must 
be respected. 
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(SRR5) Some employees cannot work during specific 
hours of the day. 

(SRR6) The maximum number of shifts in a single day 
must be respected. 

Operational requirements: 

(SRO1) An employee can only be assigned to a shift 
he/she has competence for. 

(SRO2) An employee cannot be assigned to more/less 
than k7 shifts of a given type within a timeframe. 

(SRO3) An employee assigned to a shift type t1 must not 
be assigned to a shift type t2 on the following 
day. 

(SRO4) An employee must be assigned to a particular 
shift or on-duty or off-duty on a particular day 
or during a particular timeslot. 

Operational preferences: 

 (SRE1) A balanced assignment of different shift types 
must be guaranteed between the employees. 

(SRE2) A balanced assignment of different tasks must 
be guaranteed between the employees. 

(SRE3) Assign or avoid a given shift type before or 
after a free period (days-off, vacation). 

(SRE4) Assign as many wanted, and avoid as many 
unwanted, stints as possible. 

Personal preferences: 

 (SRP1) Assign or avoid assigning given employees to 
the same shifts. 

(SRP2) Assign a requested shift or avoid an unwanted 
shift. 

(SRP3) Assign a shift (work) in a requested timeslot or 
assign no shift (free) to a requested timeslot. 

 

In Section IV.A. we generated the shifts for a haulage 

company. Next we will schedule those shifts in order to 

optimize working time and resting time for each employee. 

In this case no separate days-off scheduling is necessary, 

since there are no constraints involving days-off directly. 

 We generated shifts for 69 full-time employees and 13 

part-time employees. A full-time employee’s shifts must be 4 

to 10 hours long, and the total working time over a 6-week 

period must be 240 hours. However, our planning horizon is 

only 5 days (one week), so each full-timer should have 

approximately 40 hours of work. A part-time employee’s 

shifts must be 4 to 6 hours long, and a part-time employee 

should have 3 shifts per week. The following hard 

constraints were used. 

 

(SRR3): Each employee must have at least 7 hours of 

rest time between two adjacent shifts. 

(SRO1): Part-timers only have competence to work shifts 

that are less than 6 hours in length. 

 

The following soft constraints were used. 

(SRR1): Each full-time employee should have a total 

working time of 2400 minutes. Each part-time 

employee should work 3 shifts. 

(SRR3): Each employee should have at least 11 hours of 

rest time between two adjacent shifts. Each 

violation of this rule incurs a cost of 1. 

 

We scheduled 52 full-time employees with a total working 

time of 2400 minutes and 17 full-time employees with a total 

working time of 2370 minutes, which is optimal. There are 

13 violations in the rest time constraint (SRR3). Every part-

timer has 3 shifts. Thus the schedule is acceptable. 

V. OUR SOLUTION METHOD 

The usefulness of an algorithm depends on several 

criteria. The two most important are the quality of the 

generated solutions and the algorithmic power of the 

algorithm (i.e. its efficiency and effectiveness). Other 

important criteria include flexibility, extensibility and 

learning capabilities. We can steadily note that our PEAST 

algorithm [20] realizes these criteria. The acronym PEAST 

stems from the methods used: Population, Ejection, 

Annealing, Shuffling and Tabu. Aside from workforce 

scheduling, it has been used to solve real-world school 

timetabling problems [21] and real-world sports scheduling 

problems [22]. We are currently investigating the impact of 

different components of the algorithm in order to improve it 

[23]. We are also working on a comparison between PEAST 

and CPLEX performance [24]. 

 
 

Fig. 2. The pseudo-code of the PEAST algorithm. 

 

 

 

Set the time limit t, no_change limit m and the population size n 

Generate a random initial population of individuals 

Set no_change = 0 and better_found = 0 

WHILE elapsed_time < t 

REPEAT n times 

     Select an individual A by using a marriage selection with k = 3 

     (explore promising areas in the search space) 

     Apply GHCM to A to get a new individual A’ 

     Calculate the change Δ in objective function value 

     IF Δ < = 0 THEN 

           Replace A with A’ 

           IF Δ < 0 THEN 

               better_found = better_found  + 1 

               no_change = 0 

               END IF 

          ELSE 

               no_change = no_change + 1 

     END IF 

END REPEAT 

IF better_found > n THEN 

     Replace the worst individual with the best individual 

     Set better_found = 0 

END IF 

IF no_change > m THEN 

     (escape from the local optimum) 

     Apply shuffling operators 

     Set no_change = 0 

END IF 

 (avoid staying stuck in the promising search areas too long) 

Update simulated annealing framework 

Update the dynamic weights of the hard constraints (ADAGEN) 

END WHILE 

Choose the best individual from the population 
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The PEAST algorithm is a population-based local search 

method. The main difficulty for a local search is 

 

1) to explore promising areas in the search space that is, to 

zoom-in to find local optimum solutions to a sufficient 

extent while at the same time 

2) avoiding staying stuck in these areas for too long and 

3) escaping from these local optima in a systematic way. 
 

 

Population-based methods use a population of solutions in 

each iteration. The outcome of each iteration is also a 

population of solutions. Population-based methods are a 

good way to escape from local optima. The PEAST 

algorithm uses GHCM, the Greedy Hill-Climbing Mutation 

heuristic introduced in [25] as its local search method. The 

pseudo-code of the algorithm is given in Fig. 2. 

 

The reproduction phase of the algorithm is, to a certain 

extent, based on steady-state reproduction: the new schedule 

replaces the old one if it has a better or equal objective 

function value. Furthermore, the least fit is replaced with the 

best one when n better schedules have been found, where n 

is the size of the population. Marriage selection is used to 

select a schedule from the population of schedules for a 

single GHCM operation. In the marriage selection we 

randomly pick a schedule, S, and then we try at most k – 1 

times to randomly pick a better one. We choose the first 

better schedule, or, if none is found, we choose S. 

The heart of the GHCM heuristic is based on similar ideas 

to the Lin-Kernighan procedures [26] and ejection chains 

[27]. The basic hill-climbing step is extended to generate a 

sequence of moves in one step, leading from one solution 

candidate to another. The GHCM heuristic moves an object, 

o1, from its old position in some cell, c1, to a new cell, c2, 

and then moves another object, o2, from cell c2 to a new cell, 

c3, and so on, ending up with a sequence of moves. An 

object is a task-based activity or a whole break (in shift 

generation), a day-off (in days-off scheduling) or a shift (in 

shift scheduling). A cell is a shift (in shift generation) or an 

employee (in days-off scheduling and shift scheduling). A 

move involves removing an object from a certain position 

within a cell and inserting it either into a new cell (position 

is invariant) or a new position (cell is invariant). 

The initial cell selection is random. The cell that receives 

an object is selected by considering all the possible cells and 

selecting the one that causes the least increase in the 

objective function when only considering the relocation cost. 

Then, another object from that cell is selected by 

considering all the objects in that cell and picking the one 

for which the removal causes the biggest decrease in the 

objective function when only considering the removal cost. 

Next, a new cell for that object is selected, and so on. The 

sequence of moves stops if the last move causes an increase 

in the objective function value and if the value is larger than 

that of the previous non-improving move. Then, a new 

sequence of moves is started. The initial solution is 

randomly generated. 

The decision whether or not to commit to a sequence of 

moves in the GHCM heuristic is determined by a refinement 

[25] of the standard simulated annealing method [28]. 

Simulated annealing is useful to avoid staying stuck in the 

promising search areas for too long. The initial temperature 

T0 is calculated by 

where X0 is the degree to which we want to accept an 

increase in the cost function (we use a value of 0.75). The 

exponential cooling scheme is used to decrement the 

temperature: 

where α is usually chosen between 0.8 and 0.995. We stop 

the cooling at some predefined temperature. Therefore, after 

a certain number of iterations, m, we continued to accept an 

increase in the cost function with some constant probability, 

p. Using the initial temperature given above and the 

exponential cooling scheme, we can calculate the value 

We choose m equal to the maximum number of iterations 

with no improvement to the cost function and p equal to 

0.0015.  

For most PEAST applications we introduce a number of 

shuffling operators – simple heuristics used to perturb a 

solution into a potentially worse solution in order to escape 

from local optima – that are called upon according to some 

rule. The most used heuristics include moving a single 

random object from one cell to another random cell, or 

swapping two random objects between two random cells. 

For further details on the different shuffling operators used, 

see [13-17, 19].  The operator is called every l/20th iteration 

of the algorithm, where l equals the maximum number of 

iterations with no improvement to the cost function. 

We use the weighted-sum approach for multi-objective 

optimization. A traditional penalty method assigns positive 

weights (penalties) to the soft constraints and sums the 

violation scores to the hard constraint values to get a single 

value to be optimized. We use the ADAGEN method [25] 

which assigns dynamic weights to the hard constraints. The 

weights are updated every kth generation using the formula 

given in [25]. 

VI. CONCLUSIONS AND FUTURE WORK 

We introduced the workforce scheduling process using 

the PEAST algorithm, along with some new datasets 

provided by Finnish companies. The exact datasets can be 

obtained from the authors by email. We believe that a great 

number of real-world scenarios can be modeled and solved 

using the framework presented in this paper. This research 

has contributed to improved systems for our industry partner 

and its customers. 

We will next publish a comparison between PEAST and 

CPLEX performance [24]. We are also investigating the 

crucial components of the PEAST algorithm [23]. 

Our future work includes investigating the actual impact 

of fulfilling employees’ wishes and ensuring fairness among 

them in some of the companies we work with. The principal 

questions are, does optimization (i.e. considering 

preferences) actually make the employees more satisfied and 
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how does the company benefit from that? 

Other future work includes improving and formally 

modeling workload prediction and resource analysis. 
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