
 

  
Abstract—We consider a machine repair problem with server 

breakdowns, in which an unreliable server (repairman) operates 
the threshold recovery policy. When there are no failed 
machines in the system, the server leaves for a vacation. If the 
server returns from a vacation to find no failed machines in the 
system, he/she immediately takes another vacation. And the 
server continues in this manner until he/she finds at least one 
failed machine waiting in the queue upon returning from a 
vacation. It is assumed that the failure and service times of each 
machine are exponentially distributed. The server breaks down 
with a constant failure rate. The repair and vacation times obey 
exponential distributions. Using the Runge–Kutta method of 
fourth order, we solve the differential equations for this machine 
repair model numerically. Machine availability is developed in 
terms of transient probabilities. Finally, a sensitivity analysis is 
conducted to investigate the effects of system parameters on the 
machine availability with respect to time. 
 

Keywords—Machine repair problem, Runge–Kutta method, 
server vacation, threshold recovery policy 
  

I. INTRODUCTION 

Over the years, a number of attempts have been made to 
study the machine repair problems due to applications in a 
variety of fields, such as computer systems, industrial systems, 
inventory systems, and so on. For a complete survey of the 
machine repair problems, we refer to Stecke and Aronson [16] 
and Haque and Armstrong [8]. Gupta and Srinivasa Rao [7] 
applied a recursive method to analyze the M/G/1 machine 
repair problem with spares. Jain et al. [10] gave the reliability 
characteristics of a machine repairable system with spares 
under N-policy. Using a mathematical programming approach, 
Chen [2] constructed the membership function of the 
performance measure of the machine repair model, where the 
machine breakdown rate and the service rate are fuzzy 
numbers.  

 
The machine repair models mentioned above are all 

assumed that the server (repairman) is reliable, but in many  
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practical situations, the server is unreliable. That is the server 
is subject to breakdowns and repairs. Wang [19] studied the 
M/M/1 machine repair problem with two types of server 
breakdowns. The M/Ek/1 machine repair problem with an 
unreliable server was considered by Wang and Kuo [21]. 
Later, Wang et al. [22] investigated reliability characteristics 
of a repairable system with warm standbys and server 
breakdowns. Further recent results on the machine repair 
problems with server breakdowns can be found in Ke and Lin 
[12] and Lv et al. [15].  
 

Server vacation models are useful for a wide variety of 
applications including computer networks and manufacturing 
systems, as well as many others. In a machine repair system 
with server vacations, the repairman can spend his/her idle 
time on other tasks. Various excellent surveys on the server 
vacation models in queueing literature can be found in Doshi 
[3], Takagi [17], Tian and Zhang [18] and the references 
therein. Gupta [6] presented an efficient algorithm to 
calculate the steady-state probability distribution of number 
of failed machines in the machine interference problem with 
warm spares, server vacations and exhaustive service. Ke and 
Wang [13] obtained the steady-state solutions for M/M/R 
machine repair problems with two types of spares, where the 
servers operate two vacation policies (multiple vacations vs. 
single vacation). Recently, the model of Ke and Wang [13] 
was generalized by Jain and Upadhyaya [11] to include 
multiple types of spares, heterogeneous servers, common 
cause failure, degraded failure and threshold N-policy. For 
more related works, see Wang et al. [20] and Ke and Wu [14]. 

 
Efrosini and Semenova [4] was the first to introduced the 

concept of threshold recovery policy, in which the server may 
break down only if operating, and the repair can only be 
performed when there are 1q ≥  or more customers in the 

system. An M/M/1 retrial queueing system with constant 
retrial rate, an un-reliable server and a threshold recovery 
policy was discussed by Efrosini and Winkler [5]. Recently, 
Jain and Bhagat [9] focused on the transient state solution of 
the finite population retrial queueing model with geometric 
arrivals, second optional service, threshold recovery policy 
and impatient customers. To the best of our knowledge, there 
are only a few works dealing with threshold recovery policy 
for the machining system. This motivates us to investigate an 
unreliable machine repair model by considering the threshold 
recovery policy. To makes the system more practical, we 
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further incorporate the concept of the server vacations into 
our model. 

 
The rest of this paper is organized as follows: in Section 2, 

it is described the mathematical model of the machining 
system. Section 3 formulates the Kolmogorov equations for 
the transient distribution of the number of failed machines in 
the system. In Section 4, we present the machine availability 
in terms of transient probabilities as well as numerical 
examples. A sensitivity analysis for the transient machine 
availability is also performed. Finally, we conclude the paper 
in Section 5. 

 

II.  THE MODEL DESCRIPTION  

The system we consider here consists of M identical 
operating machines which are maintained by an unreliable 
server (repairman). The following assumptions and notations 
are used: 
� The lifetime distributions of operating machines are 

assumed to be exponentially distributed with parameter λ . 
As soon as an operating machine fails, it is immediately 
sent to repair facility and repaired based on the order of 
their breakdowns, i.e., the first-in, first-out (FIFO) 
discipline. 

� The server can repair only one failed machine at a time, and 
the service times follow an exponential distribution with 
mean 1/ µ . 

� As soon as the system becomes empty, the server leaves for 
a vocation. If the server returns from a vacation to find no 
failed machines waiting in the queue, he/she immediately 
takes another vacation. Otherwise, if there is at least one 
failed machine in the repair facility, the server starts to 
repair the failed machines waiting in the queue upon 
returning from a vacation. The duration of the server 
vacation is an exponential distribution with rate ν . 

� The server breaks down at any time with breakdown rate 
α . If the server breaks down, the server can not be 
repaired until that the number of the failed machines in the 
system reaches a specified threshold q  ( 1 q M≤ ≤ ). 

Repair times of the server are assumed to be exponentially 
distributed with mean 1/ β . 

� Various stochastic processes involved in the system are 
mutually independent of each other.  
 

III.  THE MATHEMATICAL MODEL 

For the machine repair problem with an unreliable server, 
threshold recovery policy and server vacations, we define 
some notations in the following: 

( )N t ≡  the number of failed machines in the system at time 

t , 
( )Y t ≡  the server state at time t , 

 
where  

0,   if the server is on vacation,

( ) 1,   if the server is working,

2,   if the server is broken down.

Y t


= 



 

 
Then { ( ), ( ); 0}Y t N t t ≥  is a continuous time Markov process 

associated with the state space 

{ } { }
{ }

(0, ) 0,1,2,..., (1, ) 1,2,...,

(2, ) 1,2,..., .

S n n M n n M

n n M

= = ∪ =
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Let 

{ }0, ( ) Pr ( ) 0, ( ) ,nP t Y t N t n= = =  0 n M≤ ≤  

and 

{ }, ( ) Pr ( ) , ( ) ,i nP t Y t i N t n= = =  1,2i = , 1 n M≤ ≤ , 

The differential equations governing the system are as 
follows: 
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IV.  TRANSIENT MACHINE AVAILABILITY ANALYSIS 

This section aims to develop the machine availability in 
terms of transient probabilities. Following Benson and Cox 
[1], the machine availability is defined as the ratio of the 
average number of machines running to the total number of 
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machines. Let ( )MA t  be the machine availability at time t , 

we obtain 
2

,
1 0

( )
[ ( )]

( ) 1 1 ,

M

i n
n i

nP t
E N t

MA t
M M

= == − = −
∑∑

                          

(12) 

 
where [ ( )]E N t  is the expected number of failed machines in 

the system at time t . 
 

Numerical results 

Since analytical results are not available, we employ a 
numerical technique based on the fourth order Runge–Kutta 
method to solve the differential equations (1)-(11) with the 
initial condition 0,0(0) 1P = . Once the ( )MA t  can be obtained 

through the transient solutions. In our computations, the 
Runge–Kutta method was implemented using Matlab 
software. We fix 16M =  and consider various values of the 
parameters ,λ  ,µ  ,α  ,β  ,ν  q . The effect of different 

parameters on the machine availability is shown in Tables 
I-VI. In the numerical results, one can also describe the 
variation of the machine availability with respect to time. The 
default parameters for Tables I-VI are set as 1.0λ = , 3.0µ = , 

0.05α = , 6.0β = , 2.0ν =  and 8q = . From Tables I-II, it 

can be found that the ( )MA t  decreases as λ  increases or µ  
decreases. We observe from Tables III-IV that ( )MA t  

decreases with increasing values of α  or decreasing values 
of β . Tables V-VI show that ( )MA t  increases when ν  

increases or q  decreases. One can easily from Tables I-VI 

that ( )MA t  decreases with the increasing value of t . 

Moreover, it reveals that ,β  ν  and q  have slight effects on 

the ( )MA t . This means that the effect of ,λ  µ  and α  on the 

( )MA t  is larger than that of ,β  ν  and q . 

 
Table I. 

Effect of λ  on the machine availability under different values of t .  
( 3.0µ = , 0.05α = , 6.0β = , 2.0ν = , 8q = ) 

λ  
t  

0.8 1.0 1.2 

0 1.00000  1.00000  1.00000  

0.2 0.85515  0.82210  0.79028  

0.4 0.74007  0.68512  0.63408  

0.6 0.64899  0.57980  0.51784  

0.8 0.57633  0.49830  0.43095  

1 0.51784  0.43482  0.36569  

2 0.35132  0.27024  0.21237  

4 0.25560  0.19686  0.15981  

6 0.23706  0.18741  0.15539  

8 0.23334  0.18614  0.15500  

10 0.23259  0.18597  0.15496  

 
 
 
 
 
 

Table II. 
Effect of µ  on the machine availability under different values of t . 

 ( 1.0λ = , 0.05α = , 6.0β = , 2.0ν = , 8q = ) 

µ  
t  

3.0 4.0 5.0 

0 1.00000  1.00000  1.00000  

0.2 0.82210  0.82314  0.82414  

0.4 0.68512  0.68968  0.69406  

0.6 0.57980  0.58948  0.59877  

0.8 0.49830  0.51377  0.52868  

1 0.43482  0.45616  0.47682  

2 0.27024  0.31439  0.35777  

4 0.19686  0.25617  0.31512  

6 0.18741  0.24899  0.31035  

8 0.18614  0.24803  0.30974  

10 0.18597  0.24791  0.30966  

 
Table III. 

Effect of α  on the machine availability under different values of t .  
( 1.0λ = , 3.0µ = , 6.0β = , 2.0ν = , 8q = ) 

α  
t  

0.01 0.05 0.1 

0 1.00000  1.00000  1.00000  

0.2 0.82211  0.82210  0.82209  

0.4 0.68519  0.68512  0.68503  

0.6 0.58003  0.57980  0.57951  

0.8 0.49875  0.49830  0.49774  

1 0.43549  0.43482  0.43399  

2 0.27137  0.27024  0.26886  

4 0.19809  0.19686  0.19534  

6 0.18865  0.18741  0.18589  

8 0.18739  0.18614  0.18462  

10 0.18721  0.18597  0.18444  

 
Table VI. 

Effect of β  on the machine availability under different values of t .  

 ( 1.0λ = , 3.0µ = , 0.05α = , 2.0ν = , 8q = ) 

β  
t  

3.0 6.0 9.0 

0 1.00000 1.00000 1.00000 

0.2 0.82210 0.82210 0.82210 

0.4 0.68511 0.68511 0.68511 

0.6 0.57978 0.57979 0.57980 

0.8 0.49824 0.49829 0.49832 

1 0.43466 0.43481 0.43490 

2 0.26935 0.27023 0.27058 

4 0.19542 0.19685 0.19734 

6 0.18590 0.18741 0.18792 

8 0.18462 0.18614 0.18665 

10 0.18444 0.18597 0.18648 
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Table V. 
Effect of ν  on the machine availability under different values of t .  

( 1.0λ = , 3.0µ = , 0.05α = , 6.0β = , 8q = ) 

v  
t  

2.0 4.0 6.0 

0 1.00000  1.00000  1.00000  

0.2 0.82210  0.82481  0.82699  

0.4 0.68512  0.69450  0.70066  

0.6 0.57980  0.59530  0.60368  

0.8 0.49830  0.51766  0.52649  

1 0.43482  0.45581  0.46406  

2 0.27024  0.28428  0.28781  

4 0.19686  0.19923  0.19971  

6 0.18741  0.18774  0.18781  

8 0.18614  0.18619  0.18620  

10 0.18597  0.18598  0.18598  

 
Table VI. 

Effect of q  on the machine availability under different values of t .  

( 1.0λ = , 3.0µ = , 0.05α = , 6.0β = , 2.0ν = ) 

q  
t  

4 8 12 

0 1.00000  1.00000  1.00000  

0.2 0.82210  0.82210  0.82210  

0.4 0.68514  0.68512  0.68511  

0.6 0.57990  0.57980  0.57977  

0.8 0.49854  0.49830  0.49816  

1 0.43519  0.43482  0.43441  

2 0.27059  0.27024  0.26808  

4 0.19692  0.19686  0.19567  

6 0.18743  0.18741  0.18677  

8 0.18615  0.18614  0.18561  

10 0.18598  0.18597  0.18546  

 

V. CONCLUSIONS  

In this paper, we analyzed a machine interference model 
with an unreliable server, threshold recovery policy and 
server vacations. The differential equations governing the 
system were established and solved by the Runge-Kutta 
method. Using the transient solutions, we obtained the 
machine availability with respect to time. Numerical results 
were given to illustrate the effects of the system parameters on 
the transient machine availability. It would be useful to extend 
the analysis to the steady-state solutions, which deserves 
further investigation. 
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