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Abstract—Let C be a nonempty closed and convex subset
of a real Hilbert space H. Let Am, Bm : C → H be relaxed
cocoercive mappings for each 1 ≤ m ≤ r, where r ≥ 1 is integer.
Let f : C → C be a contraction with coefficient k ∈ (0, 1). Let
G : C → C be ξ-strongly monotone and L-Lipschitz continuous
mappings. Under the assumption ∩rm=1GV I(C,Bm, Am) 6= ∅,
where GV I(C,Bm, Am) is the solution set of a generalized vari-
ational inequality. Consequently, we prove a strong convergence
theorem for finding a point x̃ ∈ ∩rm=1GV I(C,Bm, Am) which
is a unique solution of the hierarchical generalized variational
inequality 〈(γf−µG)x̃, x− x̃〉 ≤ 0, ∀x ∈ ∩rm=1GV I(C,Bm, Am).

Index Terms—Relaxed cocoercive mapping, convex feasibility
problem, generalized variational inequality problem, hierarchi-
cal generalized variational inequality problem.

I. INTRODUCTION

ACONVEX feasibility problem, CFP, is the problem
of finding a point in the intersection of finitely many

closed convex sets in a real Hilbert spaces H. That is,
finding an x ∈ ∩rm=1Cm, where r ≥ 1 is an integer and
each Cm is a nonempty closed and convex subset of H.
Many problems in mathematics, for example in physical
sciences, in engineering and in real-world applications
of various technological innovations can be modeled as
CFP. There is a considerable investigation on CFP in the
setting of Hilbert spaces which captures applications in
various disciplines such as image restoration [1] computer
tomography [2] and radiation therapy treatment planning [3].

Let H be a real Hilbert space with inner product and norm
are denoted by 〈., .〉 and ‖.‖, respectively and let C be a
nonempty closed convex subset of H.
A mapping T : C → C is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

We use F (T ) to denote the set of fixed points of T , that
is, F (T ) = {x ∈ C : Tx = x}. It is well known that F (T ) is a
closed convex set, if T is nonexpansive.

Consider the set of solutions of the following generalized
variational inequality: given nonlinear mappings A,B : C →
H find a x ∈ C such that

〈x− λ̂Bx+ λAx, x− y〉 ≥ 0, ∀y ∈ C, (1)

where λ̂ and λ are two positive constants. We use
GV I(C,B,A) to denote the set of solutions of the generalized
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variational inequality (1). It is easy to see that an element
x ∈ C is a solution to the variational inequality (1) if and
only if x is a fixed point of the mapping PC(λ̂B−λA), where
PC denotes the metric projection from H onto C. That is

x = F (PC(λ̂B − λA))x⇔ x ∈ GV I(C,B,A). (2)

Therefore, fixed point algorithms can be applied to solve
GV I(C,B,A). Next, we consider a special case of (1). If
B = I, the identity mapping and λ̂ = 1, then the generalized
variational inequality (1.1) is reduced to the variational
inequality as follow: find x ∈ C such that

〈Ax, x− y〉 ≥ 0, ∀y ∈ C. (3)

We use V I(C,A) to denote the set of solutions of
the variational inequality (3). It is well known that the
variational inequality theory has emerged as an important
tool in studying a wide class of obstacle, unilateral, and
equilibrium problems; which arise in several branches
of pure and applied sciences in a unified and general
framework. Several numerical methods have been developed
for solving variational inequalities and related optimization
problems, see [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14] and the references therein.

A lot of times, we may need to find a point x ∈ GV I(C,B,
A) with the property that 〈Fx, x − x〉 ≤ 0, ∀x ∈ GV I(C,B,A)

where GV I(C,B,A) is the solution set of the generalized
variational inequality. We will describe this situation by the
term hierachical generalized variational inequality problems
(HGVIP). If the set GV I(C,B,A) is replaced by the set
V I(C,A), the solution set of the variational inequality, then
the HGVIP is called a hierarchical variational inequality
problems (HVIP). Many problems in mathematics, for
example the signal recovery[16], the power control
problem[17] and the beamforming problem[18] can be
modeled as HGVIP.

In 2011, Yu and Liang [15] proved the following theorem
for finding solutions to the HGVIP for a cocoercive mapping.

Theorem I.1. Let C be a nonempty closed and convex
subset of a real Hilbert space H , Am : C → Hbe a relaxed
(ηm, ρm)-cocoercive and νm-Lipschitz continuous mapping,
Bm : C → H be a relaxed (η̂m, ρ̂m)-cocoercive and ν̂m-
Lipschitz continuous mapping for each 1 ≤ m ≤ r. Assume
that ∩rm=1GV I(C,Bm, Am) 6= ∅. Given {xn} is a sequence
generated by

xn+1 = αnu+ βnxn + γnΣrm=1δ(m,n)PC(Tmxn), ∀n ≥ 1,

where Tm = λ̂mBm − λmAm, u is fixed element in C and
{αn}, {βn}, {γn}, {δ(1,n)}, {δ(2,n)}, ..., {δ(r,n)} are sequences in
(0, 1), satisfying the following conditions:

(C1) αn + βn + γn = 1 = Σrm=1δ(m,n),∀n ≥ 1;
(C2) limn→∞ αn = 0,Σ∞n=1αn =∞;
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(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(C4) limn→∞ δ(m,n) = δm ∈ (0, 1), ∀1 ≤ m ≤ r,

and {λm}rm=1, {λ̂m}rm=1 are two positive sequences such
that for each 1 ≤ m ≤ r

1 ≤
√

1− 2λmρm + λ2mν
2
m + 2λmηmν2m

+

√
1− 2λ̂mρ̂m + λ̂2mν̂

2
m + 2λ̂mη̂mν̂2m.

Then the sequence {xn} converges strongly to a common
element x̃ ∈ ∩rm=1GV I(C,Bm, Am), which is the unique
solution of the following:

〈u− x̃, x− x̃〉 ≤ 0, ∀x ∈ ∩rm=1GV I(C,Bm, Am). (4)

On the other hand, the hierarchical fixed point problems,
i.e, find x∗ ∈ F (T ) such that 〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ F (T ),

have attracted many authors attention due to their link with
some convex programming problems. See [19], [20], [21],
[22], [23], [24], [25], [26]. In 2010, Tian [27] introduced
a general iterative method for nonexpansive mappings and
proved the following theorem.
Theorem I.2. Let C be a nonempty closed and convex subset
of a real Hilbert space H, f : C → C be a contraction with
coefficient k ∈ (0, 1), G : C → C be ξ-strongly monotone
and L-Lipschitz continuous mapping, Let S : C → C be
a nonexpansive mapping with F (S) 6= ∅, ξ > 0, L > 0,
0 < µ < 2ξ/L2 and 0 < γ < µ(ξ − µL2/2)/k = π/k. Given
the initial guess x1 ∈ C and {xn} is a sequence generated by

xn+1 = αnγf(xn) + (I − αnµG)Sxn, ∀n ≥ 1, (5)

where {αn} is a sequence in (0, 1), satisfying the following
conditions:

(C1) limn→∞ αn = 0;
(C2) Σ∞n=1αn =∞;
(C3) Σ∞n=1|αn+1 − αn| <∞.

Then the sequence {xn} converges strongly to a common
element x̃ ∈ F (S), which is the unique solution of the
hierarchical fixed point problem:

〈(γf − µG)x̃, x− x̃〉 ≤ 0, ∀x ∈ F (S). (6)

Motivated and inspired by Yu and Liang’s results and
Tian’s results, we consider and study the CFP in the case that
each Cm is a solution set of generalized variational inequality
GV I(C,Bm, Am) and are devoted to solve the following the
HGVIP: find x̃ ∈ ∩rm=1GV I(C,Bm, Am) such that

〈(γf − µG)x̃, x− x̃〉 ≤ 0, ∀x ∈ ∩rm=1GV I(C,Bm, Am). (7)

Which is the problem (7) is general than the problem (4) and
(6). Consequently, we prove a strong convergence theorem
for finding a point x̃ which is a unique solution of the HGVIP
(7).

II. PRELIMINARIES

This section collects some definitions and lemma which
be use in the proofs for the main results in the next section.
Some of them are known; others are not hard to derive.
Let A : C → H and G : C → C be a nonlinear mappings.
Recall the following definitions: for all x, y ∈ C
(a) A is said to be monotone if

〈Ax−Ay, x− y〉 ≥ 0.

(b) A is said to be ρ-strongly monotone if there exists a
positive real number ρ > 0 such that

〈Ax−Ay, x− y〉 ≥ ρ‖x− y‖2.

(c) A is said to be η-cocoercive if there exists a positive
real number η > 0 such that

〈Ax−Ay, x− y〉 ≥ η‖Ax−Ay‖2.

(d) A is said to be relaxed η-cocoercive if there exists a
positive real number η > 0 such that

〈Ax−Ay, x− y〉 ≥ (−η)‖Ax−Ay‖2.

(e) A is said to be relaxed (η, ρ)-cocoercive if there exists a
positive real number η, ρ > 0 such that

〈Ax−Ay, x− y〉 ≥ (−η)‖Ax−Ay‖2 + ρ‖x− y‖2.

(f) G is said to be L-Lipschitzian on C if there exists a
positive real number L > 0 such that

‖G(x)−G(y)‖ ≤ L‖x− y‖.

(g) G is said to be k-contraction if there exists a positive
real number k ∈ (0, 1) such that

‖G(x)−G(y)‖ ≤ k‖x− y‖.

Lemma II.1. [30] Let H be a Hilbert space, C a closed
convex subset of H and T : C → C be a nonexpansive
mapping with F (T ) 6= ∅. If {xn} is a sequence in C weakly
converging to x and if {(I − T )xn} converges strongly to y,
then (I − T )x = y; in particular, if y = 0 then x ∈ F (T ).

Lemma II.2. [28] Let C be a nonempty closed and convex
subset of a real Hilbert space H. Let S1 : C → C and S2 :
C → C be nonexpansive mappings on C. Suppose that F (S1)∩
F (S2) is nonempty. Define a mapping S : C → C by

Sx = aS1 + (1− a)S2, ∀x ∈ C,

where a is a constant in (0, 1). Then S is nonexpansive with
F (S) = F (S1) ∩ F (S2).

Lemma II.3. [27]) Let F : C → C be a η-strongly monotone
and L-Lipschitzian operator with L > 0, η > 0. Assume that
0 < µ < 2η/L2, τ = µ(η − µL2/2) and 0 < t < 1. Then ‖(I −
µtF )x− (I − µtF )y‖ ≤ (1− tτ)‖x− y‖.

Lemma II.4. In a real Hilbert space H, we have the
equations hold:

(1) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H;
(2) ‖x+ y‖2 ≥ ‖x‖2 + 2〈y, x〉, ∀x, y ∈ H.

Lemma II.5. [29] Assume that {an} is a sequence of
nonnegative numbers such that

an+1 ≤ (1− γn)an + δn, ∀n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in
R such that

1)
∑∞
n=1 γn =∞,

2) lim supn→∞
δn
γn
≤ 0 or

∑∞
n=1 |δn| <∞.

Then limn→∞ an = 0.

Lemma II.6. [27] Let H be a real Hilbert space, f : H → H
be a contraction with coefficient 0 < k < 1, and G : H →
H be a L-Lipschitzian continuous operator and ξ-strongly
monotone operator with L > 0, ξ > 0. Then for 0 < γ < µξ/k
and for all x, y ∈ H,

〈x− y, (µG− γf)x− (µG− γf)y〉 ≥ (µξ − γk)‖x− y‖2.

That is, µG− γf is (µξ − γk) - strongly monotone.

Lemma II.7. [31] Let C be a closed convex subset of H. Let
{xn} be a bounded sequence in H. Assume that
(1) The weak ω-limit set ωw(xn) ⊂ C,
(2) For each z ∈ C, limn→∞ ‖xn − z‖ exists.
Then {xn} is weakly convergent to a point in C.

Notation. We use → for strong convergence and ⇀ for weak
convergence.
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III. MAIN RESULT

Theorem III.1. Let C be a nonempty closed and convex
subset of a real Hilbert space H such that C ± C ⊂
C. Let f : C → C be a contraction with coefficient
k ∈ (0, 1). Let G : C → C be a ξ-strongly monotone
and L-Lipschitz continuous mapping. let Am : C → H
be a relaxed (ηm, ρm)-cocoercive and νm-Lipschitz contin-
uous mapping and Bm : C → H be a relaxed (η̂m, ρ̂m)-
cocoercive and ν̂m-Lipschitz continuous mapping for each
1 ≤ m ≤ r. Let pm =

√
1− 2λmρm + λ2mν

2
m + 2λmηmν2m

and qm =

√
1− 2λ̂mρ̂m + λ̂2mν̂

2
m + 2λ̂mη̂mν̂2m, where {λm} and

{λ̂m} are two positive sequences for each 1 ≤ m ≤ r. Assume
that ∩rm=1GV I(C,Bm, Am) 6= ∅, ξ > 0, L > 0, 0 < µ < 2ξ/L2,
0 < γ < µ(ξ − µL2/2)/k = π/k and pm, qm ∈ [0, 1

2
), for each

1 ≤ m ≤ r. Given the initial guess x1 ∈ C and {xn} is a
sequence generated by

xn+1 = αnγf(xn) + (I − αnµG)Σrm=1β(m,n)PC(Tmxn), (8)

where Tm = PC(λ̂mBm − λmAm), ∀1 ≤ m ≤ r and
{αn}, {β(1,n)}, {β(2,n)}, ..., {β(r,n)} are sequences in (0, 1), sat-
isfying the following conditions:

(C1) limn→∞ αn = 0,Σ∞n=1αn =∞, Σ∞n=1|αn+1 − αn| <∞;
(C2) Σrm=1β(m,n) = 1,∀n ≥ 1, Σ∞n=1|β(m,n+1) − β(m,n)| <∞,

limn→∞ β(m,n) = βm ∈ (0, 1),∀1 ≤ m ≤ r.

Then the sequence {xn} converges strongly to a common
element x̃ ∈ ∩rm=1GV I(C,Bm, Am), which is the unique
solution of the HGVIP:

〈(γf − µG)x̃, x− x̃〉 ≤ 0, ∀x ∈ ∩rm=1GV I(C,Bm, Am). (9)

Proof: For each x, y ∈ C and for each m ≥ 1, we have

‖Tmx− Tmy‖ ≤ ‖(λ̂mBm − λmAm)x− (λ̂mBm − λmAm)y‖
≤ ‖(x− y)− λm(Amx−Amy)‖

+‖(x− y)− λ̂m(Bmx−Bmy)‖. (10)

It follows from the assumption that each Am is relaxed
(ηm, ρm)-cocoercive and νm-Lipschitz continuous that

‖(x− y)− λm(Amx−Amy)‖2

= ‖x− y‖2 + λ2m‖Amx−Amy‖2

−2λm〈Amx−Amy, x− y〉
≤ ‖x− y‖2 − 2λm

[
(−ηm)‖Amx−Amy‖2

+ρm‖x− y‖2
]

+ λ2mν
2
m‖x− y‖2

≤ (1− 2λmρm + λ2mν
2
m)‖x− y‖2

+2λmηmν
2
m‖x− y‖2

= p2m‖x− y‖2.

This shows that

‖(x− y)− λm(Amx−Amy)‖ ≤ pm‖x− y‖. (11)

In a similar way, we can obtain that

‖(x− y)− λ̂m(Bmx−Bmy)‖ ≤ qm‖x− y‖. (12)

Substituting (3.4) and (3.5) into (3.3), we have

‖Tmx− Tmy‖ ≤ (pm + qm)‖x− y‖
≤ ‖x− y‖.

Hence Tm is a nonexpansive mapping and F (Tm) =
F (PC(λ̂mBm−λmAm)) = GV I(C,Bm, Am) for each 1 ≤ m ≤ r.
Put Sn = Σrm=1β(m,n)Tm. By Lemma II.2, we con-
clude that Sn is a nonexpansive mapping and F (Sn) =
∩rm=1GV I(C,Bm, Am), ∀n ≥ 1. We can rewrite the algorithm
(8) as

xn+1 = αnγf(xn) + (I − αnµG)Snxn. (13)

Step 1: We will show that {xn} is bounded.
Take v ∈ F (Sn) = ∩rm=1GV I(C,Bm, Am), from (13) and

lemma II.3, we have

‖xn+1 − v‖ = ‖αnγf(xn) + (I − αnµG)Snxn − v‖
= ‖αn(γf(xn)− µGv) + (I − αnµG)Snxn

−(I − αnµG)v‖
≤ αn‖γ(f(xn)− f(v)) + γf(v)− µGv‖

+(1− αnπ)‖xn − v‖
≤ αnγk‖xn − v‖+ αn‖γf(v)− µGv‖

+(1− αnπ)‖xn − v‖
= (1− αn(π − γk))‖xn − v‖+ αn‖γf(v)− µGv‖

≤ max

{
‖xn − v‖,

‖γf(v)− µGv‖
π − γk

}
.

By induction, we obtain

‖xn − v‖ ≤ max

{
‖x1 − v‖,

‖γf(v)− µGv‖
π − γk

}
.

Hence {xn} is bounded.
Since Sn is nonexpansive mappings for n ≥ 1, we see that

‖Snxn − v‖ = ‖Snxn − Snv‖
≤ ‖xn − v‖

≤ max

{
‖x1 − v‖,

‖γf(v)− µGv‖
π − γk

}
.

Therefore, {Snxn} is bounded. SinceG is a L-Lipschitz
continuous mapping, we have

‖GSnxn −Gv‖ = ‖GSnxn −GSnv‖
≤ L‖Snxn − Snv‖
≤ L‖xn − v‖

≤ max

{
L‖x1 − v‖, L

‖γf(v)− µGv‖
π − γk

}
.

Hence {GSnxn} is bounded. Since f is contraction, so f(xn)
is bounded.

Step 2: We will show that limn→∞ ‖xn+1 − xn‖ = 0.
From (13), we consider

xn+1 − xn

= [αnγf(xn) + (I − αnµG)Snxn]

−[αn−1γf(xn−1) + (I − αn−1µG)Sn−1xn−1]

= αnγ(f(xn)− f(xn−1)) + [(I − αnµG)Snxn

−(I − αnµG)Sn−1xn−1] + (αn − αn−1)γf(xn−1)

+(αn−1 − αn)µGSn−1xn−1,

it follows that

‖xn+1 − xn‖

≤ αnγk‖xn − xn−1‖+ (1− αnπ)‖Snxn − Sn−1xn−1‖
+|αn − αn−1|(γ‖f(xn−1)‖+ µ‖GSn−1xn−1‖)

≤ αnγk‖xn − xn−1‖+ (1− αnπ)‖Snxn − Sn−1xn−1‖
+|αn − αn−1|M1, (14)

where M1 = supn≥1{γ‖f(xn)‖ + µ‖GSnxn‖}. On the other
hand, we note that

‖Snxn − Sn−1xn−1‖

≤ ‖Snxn − Snxn−1‖+ ‖Snxn−1 − Sn−1xn−1‖
≤ ‖xn − xn−1‖+ ‖Σrm=1β(m,n)Tmxn−1

−Σrm=1β(m,n−1)Tmxn−1‖
≤ ‖xn − xn−1‖+M2Σrm=1|β(m,n) − β(m,n−1)|, (15)

where M2 is appropriate constant such that
M2 = max{supn≥1 ‖Tmxn‖,∀1 ≤ m ≤ r}.
Substituting (15) into (14) yields
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‖xn+1 − xn‖

≤ αnγk‖xn − xn−1‖+ (1− αnπ)‖xn − xn−1‖
+M1|αn − αn−1|
+M2Σrm=1|β(m,n) − β(m,n−1)|

≤ αnγk‖xn − xn−1‖+ (1− αnπ)‖xn − xn−1‖
+M3(|αn − αn−1|+ Σrm=1|β(m,n) − β(m,n−1)|),

where M3 is an appropriate constant such that M3 ≥
max{M1,M2}.
By conditions (C1) and (C2) and Lemma II.5, we obtain
that

lim
n→∞

‖xn+1 − xn‖ = 0. (16)

Step 3: We will show that limn→∞ ‖Sxn − xn‖ = 0.
Define a mapping S : C → C by

Sx = Σrm=1βmTmx, ∀x ∈ C,

where βm = limn→∞ β(m,n). From Lemma II.2, we see that
S is a nonexpansive mapping and

F (S) = ∩rm=1F (Tm) = ∩rm=1GV I(C,Bm, Am), ∀n ≥ 1.

From (13), we observe that

‖xn+1 − Snxn‖ = αn‖γf(xn) + µGSnxn‖
≤ αn(γ‖f(xn)− f(v)‖+ ‖γf(v) + µGSnv‖

+µ‖GSnxn −GSnv‖).

It follows from the condition (C1) and the boundedness of
{f(xn)} and {GSnxn}, we obtain that

lim
n→∞

‖xn+1 − Snxn‖ = 0. (17)

We observe that

‖xn − Snxn‖ = ‖xn − xn+1 + xn+1 − Snxn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − Snxn‖.

From (16) and (17), we obtain

lim
n→∞

‖xn − Snxn‖ = 0. (18)

Now, we show that Sxn − xn → 0 as n→∞. Note that

‖Sxn − xn‖ = ‖Sxn − Snxn + Snxn − xn‖
≤ ‖Σrm=1βmTmxn − Σrm=1β(m,n)Tmxn‖

+‖Snxn − xn‖
≤ M2(Σrm=1|βm − β(m,n)|) + ‖Snxn − xn‖.

By the condition (C2) and (18), we have

lim
n→∞

‖xn − Sxn‖ = 0. (19)

From the boundedness of xn, we deduced that xn converges
weakly in F (S), say xn ⇀ p, by Lemma II.1 and (19), we
obtain p = Sp. So, we have

ωw(xn) ⊂ F (S). (20)

By Lemma II.6, µG − γf is strongly monotone, so
the variational inequality (9) has a unique solution
x̃ ∈ F (S) = ∩rm=1GV I(C,Bm, Am).

Step 4: We show that lim supn→∞〈(γf − µG)x̃, xn − x̃〉 ≤ 0.
Indeed, since {xn} is bounded, then there exists a
subsequence {xni} ⊂ {xn} such that

lim sup
n→∞

〈(γf − µG)x̃, xn − x̃〉 = lim
i→∞

〈(γf − µG)x̃, xni − x̃〉.

Without loss of generality, we may further assume that xni ⇀
p. It follows from (20) that p ∈ F (S). Since x̃ is the unique
solution of (9), we obtain

lim sup
n→∞

〈(γf − µG)x̃, xn − x̃〉 = lim
i→∞

〈(γf − µG)x̃, xni − x̃〉

= 〈(γf − µG)x̃, p− x̃〉 ≤ 0. (21)

Step 5: Finally, we will show that xn → x̃ as n→∞.
From Lemma II.4, we have

‖xn+1 − x̃‖2 = ‖αn(γf(xn)− µGx̃) + (I − αnµG)Snxn

−µG(I − αnµG)x̃‖2

≤ (1− αnπ)2‖xn − x̃‖2

+2αn〈γf(xn)− µGx̃, xn+1 − x̃〉
≤ (1− αnπ)2‖xn − x̃‖2

+2αnγ〈f(xn)− f(x̃), xn+1 − x̃〉
+2αn〈γf(x̃)− µGx̃, xn+1 − x̃〉

≤ (1− αnπ)2‖xn − x̃‖2

+2αnγk‖xn − x̃‖‖xn+1 − x̃‖
+2αn〈γf(x̃)− µGx̃, xn+1 − x̃〉

≤ (1− αnπ)2‖xn − x̃‖2

+αnγk(‖xn − x̃‖2 + ‖xn+1 − x̃‖2)

+2αn〈γf(x̃)− µGx̃, xn+1 − x̃〉

≤
1− 2αnπ + (αnπ)2 + αnγk

1− αnγk
‖xn − x̃‖2

+
2αn

1− αnγk
〈γf(x̃)− µGx̃, xn+1 − x̃〉

= [1−
2αn(π − γk)

1− αnγk
]‖xn − x̃‖2

+
(αnπ)2

1− αnγk
‖xn − x̃‖2

+
2αn

1− αnγk
〈γf(x̃)− µGx̃, xn+1 − x̃〉

= (1− θn)‖xn − x̃‖2 + δn,

where θn :=
2αn(π−γk)
1−αnγk

and δn := αn
1−αnγk

[αnπ2‖xn − x̃‖2 +

2〈γf(x̃)− µGx̃, xn+1 − x̃〉].
Note that,

θn :=
2αn(π − γk)

1− αnγk
≤

2(π − γk)

1− γk
αn.

By the condition (C1), we obtain that

lim
n→∞

θn = 0. (22)

On the other hand, we have

θn :=
2αn(π − γk)

1− αnγk
≥ 2αn(π − γk).

From the condition (C1), we have
∞∑
n=1

θn =∞. (23)

Put M = supn∈N{‖xn − x̃‖}, we have
δn

θn
=

1

2(π − γk)
[αnπ

2M + 2〈γf(x̃)− µGx̃, xn+1 − x̃〉].

From the condition (C1) and (21), we have

lim sup
n→∞

δn

θn
≤ 0. (24)

Hence, by Lemma II.5, (22), (23) and (24), we conclude
that

lim
n→∞

‖xn − x̃‖ = 0.

This completes the proof.
If Bm = I, the identity mapping and λ̂m = 1, then Theorem

III.1 is reduced to the following result on the classical
variational inequality (3).
Corollary III.2. Let C be a nonempty closed and convex
subset of a real Hilbert space H such that C ± C ⊂ C. Let
f : C → C be a contraction with coefficient k ∈ (0, 1). Let G :
C → C be a ξ-strongly monotone and L-Lipschitz continuous
mapping. Let Am : C → H be a relaxed (ηm, ρm)-cocoercive
and νm-Lipschitz continuous mapping, for each 1 ≤ m ≤
r. Let pm =

√
1− 2λmρm + λ2mν

2
m + 2λmηmν2m, where {λm}
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is a positive sequence, for each 1 ≤ m ≤ r. Assume that
∩rm=1V I(C,Am) 6= ∅, ξ > 0, L > 0, 0 < µ < 2ξ/L2, 0 < γ < µ(ξ−
µL2/2)/k = π/k and pm ∈ [0, 1)], for each 1 ≤ m ≤ r. Given
the initial guess x1 ∈ C and {xn} is a sequence generated by

xn+1 = αnγf(xn) + (I − αnµG)Σrm=1β(m,n)PC(xn − λmAmxn),

where {αn}, {β(1,n)}, {β(2,n)}, ..., {β(r,n)} are sequences in
(0, 1), satisfying the following conditions:

(C1) limn→∞ αn = 0,Σ∞n=1αn =∞, Σ∞n=1|αn+1 − αn| <∞;
(C2) Σrm=1β(m,n) = 1,∀n ≥ 1, Σ∞n=1|β(m,n+1) − β(m,n)| <∞,

limn→∞ β(m,n) = βm ∈ (0, 1),∀1 ≤ m ≤ r,

Then the sequence {xn} converges strongly to a common
element x̃ ∈ ∩rm=1V I(C,Am), which is the unique solution of
the HVIP:

〈(γf − µG)x̃, x− x̃〉 ≤ 0, ∀x ∈ ∩rm=1V I(C,Am).

If r = 1, then Theorem III.1 is reduced to the following
Corollary.

Corollary III.3. Let C be a nonempty closed and convex
subset of a real Hilbert space H such that C ± C ⊂ C.
Let f : C → C be a contraction with coefficient k ∈
(0, 1). Let G : C → C be a ξ-strongly monotone and L-
Lipschitz continuous mapping. Let A : C → H be a relaxed
(η, ρ)-cocoercive and ν-Lipschitz continuous mapping. Let
B : C → H be a relaxed (η̂, ρ̂)-cocoercive and ν̂-Lipschitz
continuous mapping. Let p =

√
1− 2λρ+ λ2ν2 + 2λην2 and

q =

√
1− 2λ̂ρ̂+ λ̂2ν̂2 + 2λ̂η̂ν̂2, where λ and λ̂ are two positive

real numbers. Assume that GV I(C,B,A) 6= ∅, ξ > 0, L > 0,
0 < µ < 2ξ/L2, 0 < γ < µ(ξ − µL2/2)/k = π/k and p, q ∈ [0, 1

2
).

Given the initial guess x1 ∈ C and {xn} is a sequence
generated by

xn+1 = αnγf(xn) + (I − αnµG)PC(λ̂Bxn − λAxn),

where {αn} is a sequences in (0, 1), satisfying the following
conditions:

lim
n→∞

αn = 0, Σ∞n=1αn =∞ and Σ∞n=1|αn+1 − αn| <∞.

Then the sequence {xn} converges strongly to a common
element x̃ ∈ GV I(C,B,A), which is the unique solution of the
HGVIP:

〈(γf − µG)x̃, x− x̃〉 ≤ 0, ∀x ∈ GV I(C,B,A).

For the variational inequality (3), we can obtain from
Corollary III.3 the following immediately.

Corollary III.4. Let C be a nonempty closed and convex
subset of a real Hilbert space H such that C ± C ⊂ C.
Let f : C → C be a contraction with coefficient k ∈ (0, 1).
Let G : C → C be a ξ-strongly monotone and L-Lipschitz
continuous mapping. Let A : C → H be a relaxed (η, ρ)-
cocoercive and ν-Lipschitz continuous mapping. Let p =√

1− 2λρ+ λ2ν2 + 2λην2, where λ is a positive real number.
Assume that V I(C,A) 6= ∅, ξ > 0, L > 0, 0 < µ < 2ξ/L2,
0 < γ < µ(ξ − µL2/2)/k = π/k and p ∈ [0, 1). Given the initial
guess x1 ∈ C and {xn} is a sequence generated by

xn+1 = αnγf(xn) + (I − αnµG)PC(xn − λAxn),

where {αn} is a sequences in (0, 1), satisfying the following
conditions:

lim
n→∞

αn = 0, Σ∞n=1αn =∞ and Σ∞n=1|αn+1 − αn| <∞.

Then the sequence {xn} converges strongly to a common
element x̃ ∈ V I(C,A), which is the unique solution of the
HVIP:

〈(γf − µG)x̃, x− x̃〉 ≤ 0, ∀x ∈ V I(C,A).

Remark III.5. (1) If we take G = A and µ = 1, where
A is a strongly positive linear bounded operator on
C in Theorem III.1, then our iterative algorithm de-
fine by (8) converges strongly to a common element
x̃ ∈ ∩rm=1GV I(C,Bm, Am), such that 〈(γf −A)x̃, x− x̃〉 ≤

0, ∀x ∈ ∩rm=1GV I(C,Bm, Am), Equivalently, x̃ is the
unique solution to the minimization problem:

min
x∈∩r

m=1GV I(C,Bm,Am)

1

2
〈Ax, x〉 − h(x),

where h is a potential function for γf (i.e., h′(x) = γf(x)

for x ∈ H).

(2) If we taking G = I and γ = µ = 1, where I is a identity
mapping in Theorem III.1, then our iterative algorithm
define by (8) converges strongly to a common element
x̃ ∈ ∩rm=1GV I(C,Bm, Am), such that 〈(f − I)x̃, x − x̃〉 ≤
0, ∀x ∈ ∩rm=1GV I(C,Bm, Am).
In case, f = 0, our iterative algorithm define by (8)
converges strongly to x̃ which is the unique solution to
the quadratic minimiztion problem:

z = arg min
x∈∩r

m=1GV I(C,Bm,Am)
‖x‖2. (25)

In case, f = u, where u is fixed element in C, our
iterative algorithm define by (8) converges strongly to
a common element x̃ ∈ ∩rm=1GV I(C,Bm, Am), such that
〈u− x̃, x− x̃〉 ≤ 0, ∀x ∈ ∩rm=1GV I(C,Bm, Am).

(3) Note that, our iterative algorithm define by (8) are more
flexible in solving the HGVIP than the one introduced
by Yu and Liang.

IV. CONCLUSION

We studied the convex feasibility problem (CFP) in the
case that each closed convex set is a solution set of gen-
eralized variational inequality and exhibits an algorithm for
finding solution of the hierarchical generalized variational
inequality problem (HGVIP). The result of this paper extends
and generalizes the corresponding results given by Yu and
Liang [15] and some authors in the literature.
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