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Abstract—In this paper, we propose an interactive decision
making method for random fuzzy multiobjective linear pro-
gramming problems (RFMOLP) through a probability maxi-
mization model. In the proposed method, it is assumed that
the decision maker has fuzzy goals for not only permissible
objective levels of a probability maximization model but also the
corresponding distribution function values. Using the fuzzy de-
cision, such two kinds of membership functions are integrated.
In the integrated membership space, a satisfactory solution is
obtained from among a Pareto optimal solution set through the
interaction with the decision maker.

Index Terms—random fuzzy variable, a probability maxi-
mization model, satisfactory solution, interactive decision mak-
ing.

I. I NTRODUCTION

In the real world decision making situations, we often
have to make a decision under uncertainty. In order to
deal with decision problems involving uncertainty, stochastic
programming approaches [1], [2], [3], [7] and fuzzy pro-
gramming approaches [13], [17], [18] have been developed.
Recently, in order to deal with mathematical programming
problems involving the randomness and the fuzziness, ran-
dom fuzzy programming has been developed [8], in which
the coefficients of the objective functions and/or the con-
straints are represented with random fuzzy variables [14],
[15]. As a natural extension, a random fuzzy multiobjective
programming problem (RFMOLP) was formulated and the
interactive decision making methods were proposed to obtain
the satisfactory solution of the decision maker from among
the Pareto optimal solution set [9], [10], [11], [12]. Moreover,
in order to show the efficiency of random fuzzy programming
techniques, real-world decision making problems under ran-
dom fuzzy environments were formulated as random fuzzy
programming problems, and the corresponding algorithms to
obtain the optimal solutions were proposed [5], [6], [16].

Under these circumstances, we focus on the interactive
decision making method [8], [9], [10] for RFMOLP to obtain
a satisfactory solution, in which a probability maximization
model or a fractile optimization model is adopted in or-
der to deal with RFMOLP. In their proposed methods, it
seems to be very difficult for the decision maker to specify
permissible objective levels or permissible probability levels
appropriately. From such a point of view, in this paper, under
the assumption that the decision maker has fuzzy goals for
permissible objective levels of a probability maximization
model, we propose an interactive decision making method
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for RFMOLP to obtain a satisfactory solution of the decision
maker.

II. PROBLEM FORMULATION

In this section, we focus on RFMOLP in which random
variable coefficients are involved in objective functions.
[RFMOLP]

min
x∈X

¯̃Cx = (¯̃c1x, · · · , ¯̃ckx)

wherex = (x1, x2, · · · , xn)
T is ann dimensional decision

variable column vector,̃̄ci = (¯̃ci1, · · · , ¯̃cin), i = 1, · · · , k,
are coefficient vectors of objective functioñ̄cix, whose
elements are random fuzzy variables [14], and the symbols
"-" and "˜" mean randomness and fuzziness respectively.

In this paper, according to Katagiri et al. [8], [9], [10],
we assume that a random fuzzy variable¯̃cij is normally
distributed with the fuzzy number̃Mij as mean andσ2

ij as
variance. As a result, we assume that a probability density
function fij(y) for a random fuzzy variablē̃cij is formally
represented with the following form.

fij(y) =
1√

2πσij

e
−

(y−M̃ij)
2

2σ2
ij , 1 ≤ i ≤ k, 1 ≤ j ≤ n (1)

where M̃ij is an L-R fuzzy number characterized by the
following membership function.

µM̃ij
(t) =

L
(

mij−t
αij

)
if mij ≥ t

R
(

t−mij

βij

)
if mij ≤ t

(2)

L and R are called reference functions,mij is the mean
value, andαij , βij are spread parameters [4].

Then, a random fuzzy variablẽ̄cij can be characterized by
the following membership function [8], [9], [10].

µ¯̃cij (γ̄ij) = sup
sij

{µM̃ij
(sij)|γ̄ij ∼ N(sij , σ

2
ij)} (3)

whereN(sij , σ
2
ij) means a normal distribution with mean

sij and standard deviationσij . Moreover, using Zadeh’s
extension principle [17], [18], the objective functioñ̄cix be-
come a random fuzzy variable characterized by the following
membership function [8], [9], [10].

µ¯̃cix(ūi) = sup
(si1,··· ,sin)∈Rn

{
min

1≤j≤n
µM̃ij

(sij)

∣∣∣∣∣
ūi ∼ N

 n∑
j=1

sijxj ,
n∑

j=1

σ2
ijx

2
j

 (4)

Unfortunately, we can not treat RFMOLP directly because
it is ill-defined. Katagiri et al. [8], [10] formulated RFMOLP
using permissible objective levels of a probability maxi-
mization model and the possibility measure. For permissible
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Fig. 1. An Image of a random fuzzy variablẽ̄cij

objective levelsfi, i = 1, · · · , k specified by the decision
maker, a probability maximization model for RFMOLP can
be formulated as follows.
[MOP1(f )]

max
x∈X

(Pr(ω|¯̃c1(ω)x ≤ f1), · · · ,Pr(ω|¯̃ck(ω)x ≤ fk))

It should be noted here that the each objective function :

P̃i(x, fi)
def
= Pr(ω|¯̃ci(ω)x ≤ fi), (5)

becomes a fuzzy set and the corresponding membership
function is defined as follows[8], [9], [10].

µP̃i(x,fi)
(pi)

def
= sup

ūi

{
µ¯̃cix(ūi)

∣∣∣∣∣pi = Pr(ω|ūi(ω) ≤ fi),

ūi ∼ N

 n∑
j=1

sijxj ,
n∑

j=1

σ2
ijx

2
j

 (6)

Katagiri et al. [8], [9], [10] showed that, from (4), the
membership function (6) can be transformed as follows.

µP̃i(x,fi)
(pi) = sup

(si1,··· ,sin)∈Rn

min
1≤j≤n

{
µM̃ij

(sij)

∣∣∣∣∣
pi = Pr(ω|ūi(ω) ≤ fi),

ūi ∼ N

 n∑
j=1

sijxj ,

n∑
j=1

σ2
ijx

2
j

(7)

Using (5), MOP1(f) can be transformed as follows.
[MOP2(f )]

max
x∈X

(P̃1(x, f1), · · · , P̃k(x, fk))

MOP2(f) is ill-defined yet, because objective functions of
MOP2(f) are fuzzy sets depending on permissible objective
level fi, i = 1, · · · , k. In order to deal with MOP2(f), let us
assume that the decision maker has a fuzzy goalG̃i for each
objective functionP̃i(x, fi), which is expressed in words
such as ”̃Pi(x, fi) should be substantially less thanpi”. For
the corresponding membership functionµG̃i

(pi), we make
the following assumption.
Assumption 1.
µG̃i

(pi), i = 1, · · · , k are strictly increasing and continuous
with respect topi ∈ [pimin, pimax], and µpi(pimin) = 0,

µpi(pimax) = 1, where0.5 < pimin is a maximum value of
an unacceptable levels andpimax < 1 is a minimum value
of a sufficiently satisfactory levels.

Using possibility measure [4],

ΠP̃i(x,fi)
(G̃i)

def
= sup

pi

min{µP̃i(x,fi)
(pi), µG̃i

(pi)}, (8)

Katagiri et al. [8], [9], [10] transformed MOP2(f ) into the
following well-defined multiobjective programming problem.
[MOP3(f )]

max
x∈X

(ΠP̃1(x,f1)
(G̃1), · · · ,ΠP̃k((x,fk))

(G̃k))

Unfortunately, in MOP3(f ), the decision maker must spec-
ify permissible objective levels in advance. However, it seems
very difficult to specify such values becauseΠP̃i(x,fi)

(G̃i)
depends on a permissible objective levelsfi. From such a
point of view, in this paper, instead of MOP3(f), we consider
the following extended problem wherefi, i = 1, · · · , k are
not constants but decision variables.
[MOP4]

max
x∈X,fi∈R1,i=1,··· ,k

(ΠP̃1(x,f1)
(G̃1), · · · ,

ΠP̃k((x,fk))
(G̃k),−f1, · · · ,−fk)

Considering the imprecise nature of the decision maker’s
judgment, we assume that the decision maker has a fuzzy
goal for each permissible objective level. Such a fuzzy goal
can be quantified by eliciting the corresponding membership
function. Let us denote a membership function of a per-
missible objective levelfi asµF̃i

(fi). For the membership
functionµF̃i

(fi), we make the following assumption.
Assumption 2.
µF̃i

(fi), i = 1, · · · , k are strictly decreasing and continuous
with respect tofi ∈ [fimin, fimax], and µfi(fimin) = 1,
µfi(fimax) = 0, where fimin is a maximum value of a
sufficiently satisfactory levels. andfimax is a minimum value
of an unacceptable levels.

Then, MOP4 can be transformed as the following multi-
objective programming problem.
[MOP5]

max
x∈X,fi∈R1,i=1,··· ,k

(ΠP̃1(x,f1)
(G̃1), · · · ,ΠP̃k((x,fk))

(G̃k),

µF̃1
(f1), · · · , µF̃k

(fk))

It should be noted here that,ΠP̃i(x,fi)
(G̃i) is strictly increas-

ing with respect tofi. If the decision maker adopts the fuzzy
decision [17], [18] to integrateΠP̃i(x,fi)

(G̃i) and µF̃i
(fi),

MOP5 can be transformed into the following form.
[MOP6]

max
x∈X,fi∈R1,i=1,··· ,k

(µD1(x, f1), · · · , µDk
(x, fk))

where

µDi(x, fi)
def
= min{ΠP̃i(x,fi)

(G̃i), µF̃i
(fi)}

In order to deal with MOP6, we introduce aD-Pareto optimal
solution concept.
Definition 1.
x∗ ∈ X, f∗

i ∈ R1, i = 1, · · · , k is said to be aD-Pareto
optimal solution to MOP6, if and only if there does not
exist anotherx ∈ X, fi ∈ R1, i = 1, · · · , k such that
µDi(x, fi) ≥ µDi(x

∗, f∗
i ) i = 1, · · · , k with strict inequality

holding for at least onei.
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For generating a candidate of a satisfactory solution which
is also D-Pareto optimal, the decision maker is asked to
specify the reference membership values [17]. Once the ref-
erence membership valueŝµ = (µ̂1, · · · , µ̂k) are specified,
the correspondingD-Pareto optimal solution is obtained by
solving the following minmax problem.
[MINMAX1( µ̂)]

min
x∈X,fi∈R1,i=1,··· ,k,λ∈[0,1]

λ (9)

subject to

µ̂i −ΠP̃i(x,fi)
(G̃i) ≤ λ, i = 1, · · · , k (10)

µ̂i − µF̃i
(fi) ≤ λ, i = 1, · · · , k (11)

From [8], [9], [10], each constraint of (10) can be equiva-
lently transformed into the following form.

µ̂i −ΠP̃i(x,fi)
(G̃i) ≤ λ

⇔
n∑

j=1

{mij − L−1(µ̂i − λ)αij}xj

+Φ−1(µ−1

G̃i
(µ̂i − λ))

√√√√ n∑
j=1

σ2
ijx

2
j ≤ fi (12)

whereΦ(·) is a distribution function of the standard Gaus-
sian random variable,Φ−1(·) is a corresponding inverse
function, andL−1(·), µ−1

G̃l
(·) are pseudo-inverse functions

of L(·), µG̃i
(·) respectively. Moreover, since the inequal-

ities (11) can be transformed intofi ≤ µ−1

F̃i
(µ̂i − λ),

MINMAX1( µ̂) can be reduced to the following problem.
[MINMAX2( µ̂)]

min
x∈X,λ∈Λ

λ (13)

subject to
n∑

j=1

{mij − L−1(µ̂i − λ)αij}xj

+Φ−1(µ−1

G̃i
(µ̂i − λ))

√√√√ n∑
j=1

σ2
ijx

2
j ≤ µ−1

F̃i
(µ̂i − λ),

i = 1, · · · , k (14)

where

Λ
def
= [λmin, λmax]

= [ max
i=1,··· ,k

µ̂i − 1, min
i=1,··· ,k

µ̂i]. (15)

The relationships between the optimal solution(x∗, λ∗)
of MINMAX2( µ̂) and D-Pareto optimal solutions can be
characterized by the following theorem.
Theorem 1.
(1) If x∗ ∈ X,λ∗ ∈ Λ is a unique optimal solution of
MINMAX2( µ̂), then x∗ ∈ X,µ−1

F̃i
(µ̂i − λ∗) ∈ R1, i =

1, · · · , k is aD-Pareto optimal solution.
(2) If x∗ ∈ X, f∗

i ∈ R1, i = 1, · · · , k is a D-Pareto
optimal solution, thenx∗ ∈ X, λ∗ = µ̂i−ΠP̃i(x∗,f∗

i )
(G̃i) =

µ̂i − µF̃i
(f∗

i ), i = 1, · · · , k is an optimal solution of
MINMAX2( µ̂) for some reference membership valuesµ̂ =
(µ̂1, · · · , µ̂k).
(Proof)

(1) Assume thatx∗ ∈ X, f∗
i

def
= µ−1

F̃i
(µ̂i−λ∗), i = 1, · · · , k

is not aD-Pareto optimal solution. Then, from (10), there
existx ∈ X, fi ∈ R1, i = 1, · · · , k such that

µDi(x, fi) = min{ΠP̃i(x,fi)
(G̃i), µF̃i

(fi)}
≥ µDi(x

∗, f∗
i )

= min{ΠP̃i(x∗,f∗
i )
(G̃i), µF̃i

(f∗
i )}

= µ̂i − λ∗, i = 1, · · · , k,

with strict inequality holding for at least onei. Then it holds
that

ΠP̃i(x,fi)
(G̃i) ≥ µ̂i − λ∗, i = 1, · · · , k, (16)

µF̃i
(fi) ≥ µ̂i − λ∗, i = 1, · · · , k. (17)

From (12), (16) can be transformed as follows.

n∑
j=1

{mij − L−1(µ̂i − λ∗)αij}xj

+Φ−1(µ−1

G̃i
(µ̂i − λ∗))

√√√√ n∑
j=1

σ2
ijx

2
j ≤ fi (18)

From(17), it holds thatfi ≤ µ−1

F̃i
(µ̂i−λ∗). As a result, there

existsx ∈ X such that

n∑
j=1

{mij − L−1(µ̂i − λ∗)αij}xj

+Φ−1(µ−1

G̃i
(µ̂i − λ∗))

√√√√ n∑
j=1

σ2
ijx

2
j ≤ µ−1

F̃i
(µ̂i − λ∗)

i = 1, · · · , k (19)

which contradicts the fact thatx∗ ∈ X,λ∗ ∈ Λ is a unique
optimal solution to MINMAX2(̂µ).
(2) Assume thatx∗ ∈ X,λ∗ ∈ Λ is not an optimal solution
to MINMAX2( µ̂) for any reference membership valuesµ̂ =
(µ̂1, · · · , µ̂k), which satisfy the equalities :

µ̂i − λ∗ = ΠP̃i(x∗,f∗
i )
(G̃i) = µF̃i

(f∗
i ), i = 1, · · · , k. (20)

Then, there exists somex ∈ X,λ < λ∗ such that
n∑

j=1

{mij − L−1(µ̂i − λ)αij}xj

+Φ−1(µ−1

G̃i
(µ̂i − λ))

√√√√ n∑
j=1

σ2
ijx

2
j ≤ µ−1

F̃i
(µ̂i − λ),

i = 1, · · · , k. (21)

This means that

ΠP̃i(x,fi)
(G̃i) ≥ µ̂i − λ > µ̂i − λ∗, i = 1, · · · , k

µF̃i
(fi) = µ̂i − λ > µ̂i − λ∗, i = 1, · · · , k,

wherefi
def
= µ−1

F̃i
(µ̂i−λ). From (20), there existsx ∈ X, fi ∈

R1, i = 1, · · · , k such that

µDi(x, fi) > µDi(x
∗, f∗

i ), i = 1, · · · , k.

This contradicts the fact thatx∗ ∈ X, f∗
i ∈ R1, i = 1, · · · , k

is aD-Pareto optimal solution. 2
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Sincethe constraints (14) are nonlinear, it is not easy to
solve MINMAX2(µ̂) directly. Before considering the algo-
rithm to solve MINMAX2(µ̂), we first define the following
functions corresponding to (14).

gi(x, λ)
def
= µ−1

F̃i
(µ̂i − λ)−

n∑
j=1

{mij − L−1(µ̂i − λ)αij}xj

−Φ−1(µ−1

G̃i
(µ̂i − λ))

√√√√ n∑
j=1

σ2
ijx

2
j ,

i = 1, · · · , k (22)

Because ofµ−1

G̃i
(µ̂i − λ) > 0.5 for any λ ∈ Λ, it holds

that Φ−1(µ−1
pi

(µ̂i − λ)) > 0. This means thatgi(x, λ), i =
1, · · · , k are concave with respect tox ∈ X for any fixed
valueλ ∈ Λ. Let us define the following feasible setX(λ)
of MINMAX2( µ̂) for some fixed valueλ ∈ Λ.

X(λ)
def
= {x ∈ X | gi(x, λ) ≥ 0, i = 1, · · · , k} (23)

Then, it is clear thatX(λ) is a convex set.X(λ) satisfies
the following property.
Property 1.
If λmin ≤ λ1 ≤ λ2 ≤ λmax, then it holds thatX(λ1) ⊂
X(λ2).

In the following, it is assumed thatX(λmin) =
ϕ,X(λmax) ̸= ϕ. From Property 1, we can obtain the optimal
solution (x∗, λ∗) of MINMAX2( µ̂) using the following
simple algorithm which is based on the bisection method
and the convex programming technique.
[Algorithm 1. ]
Step 1: Setλ0 = λmin, λ1 = λmax, λ← (λ0 + λ1)/2.
Step 2: Solve the following convex programming problem
for the fixed valueλ, and denote the optimal solution as
x(λ).

max
x∈X

gj(x, λ) (24)

subject to

gi(x, λ) ≥ 0, i = 1, · · · , k, i ̸= j (25)

Step 3: If gℓ(x(λ), λ) ≥ 0, ℓ = 1, · · · , k then setλ1 ←
λ, λ ← (λ0 + λ1)/2. Otherwise, setλ0 ← λ, λ ← (λ0 +
λ1)/2. If | λ1 − λ0 |< ϵ then go to Step 4, whereϵ is a
sufficiently small positive constant. Otherwise, go to Step 2.
Step 4: Setλ∗ ← λ andx∗ ← x(λ). The optimal solution
(x∗, λ∗) of MINMAX2( µ̂) is obtained.

III. A N INTERACTIVE ALGORITHM

In this section, we propose an interactive algorithm to
obtain a satisfactory solution from among aD-Pareto optimal
solution set. From Theorem 1, it is not guaranteed that
the optimal solution(x∗, λ∗) of MINMAX2( µ̂) is D-Pareto
optimal, if it is not unique. In order to guarantee theD-
Pareto optimality, we first assume thatk constraints (14) are
active at the optimal solution(x∗, λ∗), i.e.,

n∑
j=1

{mij − L−1(µ̂i − λ∗)αij}x∗
j

+Φ−1(µ−1

G̃i
(µ̂i − λ∗))

√√√√ n∑
j=1

σ2
ijx

∗
j
2 = µ−1

F̃i
(µ̂i − λ∗),

i = 1, · · · , k. (26)

If the ℓ-th constraint of (14) is inactive,i.e.,
n∑

j=1

{mℓj − L−1(µ̂ℓ − λ∗)αℓj}x∗
j

+Φ−1(µ−1

G̃ℓ
(µ̂ℓ − λ∗))

√√√√ n∑
j=1

σ2
ℓjx

∗
j
2 < µ−1

F̃ℓ
(µ̂ℓ − λ∗),

(27)

we can convert the inactive constraint (27) into the active
one by applying the bisection method for the reference
membership valuêµℓ ∈ [λ∗, λ∗ + 1].

For the optimal solution(x∗, λ∗) of MINMAX2( µ̂), where
the active conditions (26) are satisfied, we solve theD-Pareto
optimality test problem defined as follows.
[D-Pareto optimality test problem]

max
x∈X,ϵi≥0,i=1,··· ,k

w
def
=

k∑
i=1

ϵi (28)

subject to
n∑

j=1

{mij − L−1(µ̂i − λ∗)αij}xj

+Φ−1(µ−1

G̃i
(µ̂i − λ∗))

√√√√ n∑
j=1

σ2
ijx

2
j + ϵi

≤
n∑

j=1

{mij − L−1(µ̂i − λ∗)αij}x∗
j

+Φ−1(µ−1

G̃i
(µ̂i − λ∗))

√√√√ n∑
j=1

σ2
ijx

∗
j
2,

i = 1, · · · , k (29)

For the optimal solution of the above test problem, the
following theorem holds.
Theorem 2.
For the optimal solutioňx, ϵ̌i, i = 1, · · · , k of the test prob-
lem (28)-(29), ifw = 0 (equivalently,ϵ̌i = 0, i = 1, · · · , k),
x∗ ∈ X, f∗

i
def
= µ−1

F̃i
(µ̂i − λ∗) ∈ R1, i = 1, · · · , k is a D-

Pareto optimal solution.
(Proof)
From the active condition (26) at the optimal solution
(x∗, λ∗) of MINMAX2( µ̂), it holds that

µ̂i − λ∗ = ΠP̃i(x∗,f∗
i )
(G̃i), i = 1, · · · , k,

µ̂i − λ∗ = µF̃i
(f∗

i ), i = 1, · · · , k.

Assume thatx∗ ∈ X,µ−1

F̃i
(µ̂i − λ∗), i = 1, · · · , k is not a

D-Pareto optimal solution. Then, there existx ∈ X, fi ∈
R1, i = 1, · · · , k such that

µDi(x, fi) = min{ΠP̃i(x,fi)
(G̃i), µF̃i

(fi)}
≥ µDi(x

∗, f∗
i )

= µ̂i − λ∗, i = 1, · · · , k,

with strict inequality holding for at least onei. This means
that

ΠP̃i(x,fi)
(G̃i) ≥ µ̂i − λ∗, i = 1, · · · , k, (30)
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µF̃i
(fi) ≥ µ̂i − λ∗, i = 1, · · · , k. (31)

From (12), (30) and (31), the following inequalities hold,

n∑
j=1

{mij − L−1(µ̂i − λ∗)αij}xj

+Φ−1(µ−1

G̃i
(µ̂i − λ∗))

√√√√ n∑
j=1

σ2
ijx

2
j ≤ µ−1

F̃i
(µ̂i − λ∗)

i = 1, · · · , k (32)

with strict inequality holding for at least onei. This contra-
dicts the fact thaťϵi = 0, i = 1, · · · , k. 2

Now, following the above discussions, we can present the
interactive algorithm in order to derive a satisfactory solution
from among aD-Pareto optimal solution set.
[Algorithm 2]
Step 1: The decision maker sets each of the membership
functions µF̃i

(fi), i = 1, · · · , k of the fuzzy goalF̃i for
permissible objective levelfi according to Assumption 2.
Step 2: Corresponding to the fuzzy goal̃Gi for the
probability that the objective function̄̃cix is less thanfi,
the decision maker sets each of the membership functions
µG̃i

(pi), i = 1, · · · , k according to Assumption 1.
Step 3: Set the initial reference membership values asµ̂i =
1, i = 1, · · · , k.
Step 4: Solve MINMAX2(µ̂) by applying Algorithm 1,
and obtain the optimal solution(x∗, λ∗). For the optimal
solution (x∗, λ∗), The correspondingD-Pareto optimality
test problem (28)-(29) is formulated and solved.
Step 5: If the decision maker is satisfied with the current
values of theD-Pareto optimal solutionµDi(x

∗, f∗
i ), i =

1, · · · , k wheref∗
i = µ−1

F̃i
(µ̂i−λ∗), then stop. Otherwise, the

decision maker updates his/her reference membership values
µ̂i, i = 1, · · · , k, and return to Step 4.

IV. A N UMERICAL EXAMPLE

We consider the following two-objective random fuzzy
linear programming problem to demonstrate the feasibility of
the proposed method under the hypothetical decision maker.
[RFMOLP]

min
x≥0

¯̃c1x =

5∑
j=1

¯̃c1jxj

min
x≥0

¯̃c2x =

5∑
j=1

¯̃c2jxj

subject to

2x1 + 3x2 + 4x3 + 6x4 + 4x5 ≤ 240

3x1 + 3x2 + 2x3 + 5x4 + 3x5 ≤ 230

4x1 + 2x2 + 3x3 + 7x4 + 6x5 ≤ 250

where random fuzzy variables̃̄cij , i = 1, 2, j = 1, · · · , 5 are
normally distributed with the fuzzy number̃Mij as mean and
σ2
ij as variance, and a probability density functionfij(y) for

a random fuzzy variablẽ̄cij is formally represented with the
following form.

fij(y) =
1√

2πσij

e
−

(y−M̃ij)
2

2σ2
ij , 1 ≤ i ≤ k, 1 ≤ j ≤ n (33)

TABLE I
THE PARAMETERS OF THE FUZZY NUMBERM̃ij AND THE VARIANCE σ2

ij

OF THE RANDOM FUZZY VARIABLE ¯̃cij

¯̃M ij mij αij (=βij ) σ2
ij (the variance of¯̃cij )

¯̃M11 5 0.5 1
¯̃M12 7 0.4 2
¯̃M13 6 0.3 2
¯̃M14 10 0.2 3
¯̃M15 8 0.3 1
¯̃M21 -10 0.3 2
¯̃M22 -5 0.4 3
¯̃M23 -5 0.4 1
¯̃M24 -9 0.2 2
¯̃M25 -5 0.1 1

M̃ij is an L-R fuzzy number characterized by the following
membership function.

µM̃ij
(t) =

L
(

mij−t
αij

,
)

mij ≥ t

R
(

t−mij

βij
,
)

mij ≤ t
(34)

whereL(t) = R(t) = max{0, 1 − t}, andmij ,αij(= βij),
σ2
ij are given in Table I.
In RFMOLP, let us assume that the hypothetical decision

maker sets the membership functionsµF̃i
(·), µG̃i

(·),i = 1, 2
as follows (Step 1, 2).

µF̃1
(f1) =

f1 − 500

100− 500

µF̃2
(f2) =

f2 − (−400)
(−30)− (−400)

µG̃1
(p1) =

p1 − 0.7

0.85− 0.7

µG̃2
(p2) =

p2 − 0.8

0.9− 0.8

Set the initial reference membership values as(µ̂1, µ̂2) =
(1, 1) (Step 3), and solve MINMAX2(̂µ) to obtain the
correspondingD-Pareto optimal solution(x∗, λ∗) (Step 4).

(µD1(x
∗, f∗

1 ), µD2(x
∗, f∗

2 )) = (0.7363, 0.7363)

where f∗
i = µ−1

F̃i
(µ̂i − λ∗), i = 1, 2. The hypothetical

decision maker is not satisfied with the current value of
the D-Pareto optimal solution(x∗, f∗

i ), and, in order to
improve µD1(·) at the expense ofµD2(·), he/she updates
his/her reference membership values as(µ̂1, µ̂2) = (1, 0.7)
(Step 5). Then, the correspondingD-Pareto optimal solution
is obtained by solving MINMAX2(µ̂) (Step 4). The inter-
active processes under the hypothetical decision maker are
summarized in Table II．

In order to compare our proposed approach with the
previous ones, let us consider the following multiobjective
programming problem based on a probability maximization
model for RFMOLP.
[MOP2’(f )]

max
x∈X

(ΠP̃1(x,f1)
(G̃1),ΠP̃2((x,f2))

(G̃2))

where f1 and f2 are permissible objective levels specified
by the decision maker in his/her subjective manner. Once
the reference membership valuesµ̂ = (µ̂1, µ̂2) are specified
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TABLE II
INTERACTIVE PROCESSES

Iteration 1 2 3
µ̂1 1 1 0.86
µ̂2 1 0.7 0.7
f∗
1 205.4521 159.2246 180.7777

f∗
2 -302.457 -234.217 -266.081
p∗1 0.8104 0.8277 0.8197
p∗2 0.8736 0.8551 0.8638

µD1 (x
∗, f∗

1 ) 0.7363 0.8519 0.7980
µD2 (x

∗, f∗
2 ) 0.7363 0.5519 0.6380

TABLE III
COMPARISON BETWEEN THEPROPOSEDMETHOD AND THE

PROBABILITY MAXIMIZATION METHOD

proposedmethod probability max.
f∗
1 205.4521 200

f∗
2 -302.457 -310
p∗1 0.8104 0.7831
p∗2 0.8736 0.8544

µf1 (f
∗
1 ) 0.7363 0.75

µf2 (f
∗
2 ) 0.7363 0.7567

µG̃1
(p∗1) 0.7363 0.5546

µG̃2
(p∗2) 0.7363 0.5546

by the decision maker, the corresponding Pareto optimal
solution is obtained by the following minmax problem.
[MINMAX3( µ̂,f )]

min
x∈X,λ∈Λ

λ (35)

subject to
µ̂i −ΠP̃i(x,fi)

(G̃i) ≤ λ, i = 1, 2

From (12), MINMAX3(µ̂,f ) can be equivalently trans-
formed to the following form.
[MINMAX4( µ̂,f )]

min
x∈X,λ∈Λ

λ

subject to
n∑

j=1

{mij − L−1(µ̂i − λ)αij}xj

+Φ−1(µ−1

G̃i
(µ̂i − λ))

√√√√ n∑
j=1

σ2
ijx

2
j ≤ fi, i = 1, 2(36)

We can easily solve MINMAX4(̂µ,f ) by applying Algo-
rithm 1, because the constraint set (36) are convex for any
fixed λ ∈ Λ. Let us assume that the decision maker sets
his/her reference membership values as(µ̂1, µ̂2) = (1, 1) and
permissible objective levels as(f1, f2) = (200,−310). Then,
the corresponding Pareto optimal solution can be obtained as
shown in Table III, where the left side shows theD-Pareto
optimal solution of the proposed method with reference
membership values(µ̂1, µ̂2) = (1, 1) (see the first iteration in
Table II). In Table III, it is clear that, in the proposed method,
a proper balance between permissible probability levels
and the corresponding objective functions in a probability
maximization model is attained in membership space. On
the other hand, In a probability maximization model based
method, although permissible objective levels are improved
in comparison with the proposed method, the corresponding
probability function values was changed for the worse.

V. CONCLUSION

In this paper, we have proposed an interactive decision
making method for RFMOLP based on a probability maxi-
mization model to obtain a satisfactory solution from among
a Pareto optimal solution set. In the proposed method,
the decision maker is required to specify the membership
functions for the fuzzy goals of not only the permissible
objective levels in a probability maximization model but also
the corresponding distribution function. Such two kinds of
membership functions are integrated and, in the integrated
membership space, aD-Pareto optimal solution concept is
introduced. The satisfactory solution can be obtained by
updating the reference membership values and solving the
corresponding minmax problem by applying the convex
programming technique. At anyD-Pareto optimal solution,
it is guaranteed that a proper balance between permissible
objective levels and the corresponding distribution function
values in a probability maximization model is attained.
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