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RandomFuzzy Multiobjective Linear
Programming Through Probability Maximization

Hitoshi Yano and Kota Matsui

Abstract—In this paper, we propose an interactive decision for RFMOLP to obtain a satisfactory solution of the decision
making method for random fuzzy multiobjective linear pro- maker.
gramming problems (RFMOLP) through a probability maxi-
mization model. In the proposed method, it is assumed that
the decision maker has fuzzy goals for not only permissible Il. PROBLEM FORMULATION

objective levels of a probability maximization model but also the In this section, we focus on RFMOLP in which random

corresponding distribution function values. Using the fuzzy de- g rjaple coefficients are involved in objective functions.
cision, such two kinds of membership functions are integrated. [RFMOLP]

In the integrated membership space, a satisfactory solution is
obtained from among a Pareto optimal solution set through the
interaction with the decision maker.

min Cz = (é1, - - , &px)
Tex
Index Terms—random fuzzy variable, a probability maxi- Wh(_area: = (w1, 29, 7%’")T is ann dimensional decision
mization model, satisfactory solution, interactive decision mak- Vvariable column vectore; = (Gi1,- -« ,Cin), i = 1, , k,
ing. are coefficient vectors of objective functiotyx, whose
elements are random fuzzy variables [14], and the symbols
""" and"™ mean randomness and fuzziness respectively.
In this paper, according to Katagiri et al. [8], [9], [10],
In the real world decision making situations, we oftef/e¢ assume that a random fuzzy varialsle is normally
have to make a decision under uncertainty. In order gistributed with the fuzzy numbed/;; as mean and7;; as
deal with decision problems involving uncertainty, stochasti@riance. As a result, we assume that a probability density
programming approaches [1], [2], [3], [7] and fuzzy profunction fi;(y) for a random fuzzy variableé;; is formally
gramming approaches [13], [17], [18] have been developdgpresented with the following form.
Recently, in order to deal with mathematical programming
problems involving the randomness and the fuzziness, ran-f;;(y) = e
dom fuzzy programming has been developed [8], in which \/ﬂ%
the _coefficients of the obje_ctive functions and/qr the coyhere Mij is an L-R fuzzy number characterized by the
straints are represented.wnh random fuzzy vanqblgs [_1%”0ng membership function.
[15]. As a natural extension, a random fuzzy multiobjective

I. INTRODUCTION

1 _(y*NTij)2
G 1<i<k,1<j<n (1)

programming problem (RFMOLP) was formulated and the L (%ﬁ) if my; >t
interactive decision making methods were proposed to obtain Far,; (t)= t—my; . (2)
the satisfactory solution of the decision maker from among ij

the Pareto optimal solution set [9], [10], [11], [12]. Moreover], and R are called reference functionsp;; is the mean

in order to show the efficiency of random fuzzy programmingalue, andw;;, 5;; are spread parameters [4].

techniques, real-world decision making problems under ran-Then, a random fuzzy variablg; can be characterized by

dom fuzzy environments were formulated as random fuzzije following membership function [8], [9], [10].

programming problems, and the corresponding algorithms to ~ ~ )

obtain the optimal solutions were proposed [5], [6], [16]. pz, (vig) = S;}P{szfij(sij)|Wij ~ N(sij,055)t  (3)
Under these circumstances, we focus on the interactive v

decision making method [8], [9], [10] for RFMOLP to obtainwhere N(s;;,o7;) means a normal distribution with mean

a satisfactory solution, in which a probability maximizatiorsi; and standard deviatiom;;. Moreover, using Zadeh’s

model or a fractile optimization model is adopted in oréxtension principle [17], [18], the objective functianz be-

der to deal with RFMOLP. In their proposed methods, gome a random fuzzy variable characterized by the following

seems to be very difficult for the decision maker to specifjiembership function [8], [9], [10].

permissible objective levels or permissible probability levels

appropriately. From such a point of view, in this paper, under gz . (4;) = sup { min fy (8i5)

the assumption that the decision maker has fuzzy goals for ' (i1, sin)ER? (17500 T

permissible objective levels of a probability maximization n n

model, we propose an interactive decision making method u; ~ N Zsijzj,Zo—fjx? (4)
j=1 j=1
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Fig. 1. An Image of a random fuzzy variab&;

objective levelsf;,i = 1,--- ,k specified by the decision

maker, a probability maximization model for RFMOLP can

be formulated as follows.
[MOP1(f)] B
max(Pr(wlei(w)e < f1), -+ Pr(wler(w)e < fi))

It should be noted here that the each objective function

®)

Py, f;) < Pr(w|e(w)e < fi),

tp; (Pimax) = 1, where0.5 < pimin is @ maximum value of
an unacceptable levels angl,.x < 1 is a minimum value
of a sufficiently satisfactory levels.

Using possibility measure [4],

=~y def .
Hﬁ;;(:c,fi)(Gi) = SUPmln{Nﬁi(m,fi)(Pi)vNéi(pi)L (8)
Dpi

Katagiri et al. [8], [9], [10] transformed MOPZ] into the
following well-defined multiobjective programming problem.
[MOP3(f)]

wax(Ilp, g5, (G1)s - Mp (@51 (Gr))

Unfortunately, in MOP3f), the decision maker must spec-
ify permissible objective levels in advance. However, it seems
very difficult to specify such values becauﬁ%(m’m(éi)
depends on a permissible objective levgls From such a
point of view, in this paper, instead of MOP 3 five consider
the following extended problem wherg,i = 1,--- ,k are
not constants but decision variables.

[MOP4]

max

reX,fieRli=1,- .k (Hﬁ’l(if,fl)(Gl)f" ,

U (@ (Gr)s—f1, - =)

Considering the imprecise nature of the decision maker’s
judgment, we assume that the decision maker has a fuzzy
goal for each permissible objective level. Such a fuzzy goal
can be quantified by eliciting the corresponding membership
function. Let us denote a membership function of a per-

becomes a fuzzy set and the corresponding membershiRsible objective levelf; as iz (f;). For the membership

function is defined as follows[8], [9], [10].

pi = Pr(wl|u;(w) < fi),

def _
Kb, (@) (Pi) = Su_p{um(ui)

n n
2 2
a; ~ N g 85T, E 0T (6)
i=1 =1

Katagiri et al. [8], [9], [10] showed that, from (4), the
membership function (6) can be transformed as follows.
sup

1y, (8i5)
(Sila"' 7Si7L)

pi = Pr(wlu; (w) < fi),

min

Nﬁi(w,fi)(Pi) = cRn 157<n

n n

— 2 : 2 : 2
g ~ N SijLj, Uij
J

j=1 j=1

2
Zj

@)

Using (5), MOP1(j§ can be transformed as follows.
[MOP2(f)] ) )
glea)}é(Pl(xv fl)’ e ,Pk((lf, fk:))

function 11 (f:), we make the following assumption.
Assumption 2.
pg (fi),i=1,--- k are strictly decreasing and continuous
with respect t0f; € [fimin, fimax), and g, (fimin) = 1,
tr, (fimax) = 0, where fiin iS @ maximum value of a
sufficiently satisfactory levels. anfl,,.x is @ minimum value
of an unacceptable levels.

Then, MOP4 can be transformed as the following multi-
objective programming problem.
[MOP5]

(W, @,y (G1) M, (@, ) (G,
wi, (f1)s s up, (fr)

It should be noted here thdl,z, ;. ,,(G) is strictly increas-
ing with respect tof;. If the decision maker adopts the fuzzy
decision [17], [18] to integratﬂﬁi(wﬁm(éi) and pz (fi),
MOP5 can be transformed into the following form.
[MOPE6]

max
TeX,fieRYi=1, k

max

TeX, fretlint, . ,k(ﬂDl (z, f1), -, 1D, (x, fr))

MOP2(f) is ill-defined yet, because objective functions owhere

MOP2(f) are fuzzy sets depending on permissible objective

level f;;i =1,--- k. In order to deal with MOP2() let us
assume that the decision maker has a fuzzy ghdbr each
objective functionP;(x, f;), which is expressed in words
such as Pi(m, /i) should be substantially less tha'. For
the corresponding membership functipp, (p:), we make
the following assumption.

Assumption 1.

pp, (@, fi) E min{lls g o (Gi), pp, (£:)}

In order to deal with MOP6, we introducel/a-Pareto optimal
solution concept.

Definition 1.

x* € X, ff € RL,i = 1,--- ,k is said to be aD-Pareto
optimal solution to MOP®6, if and only if there does not
exist anotherr ¢ X, f; € R',i 1,---,k such that

ba, (pi),i=1,--- , k are strictly increasing and continuousup, (z, fi) > pp,(z*, f7) i = 1,--- , k with strict inequality

Wlth reSpeCt tOPz € [piminapimax]v and Mpi(pimin) = 01
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For generating a candidate of a satisfactory solution whi¢th) Assume thatc* € X, f7* def ‘1( —M)i=1,---k
is also D-Pareto optimal, the decision maker is asked tg not a D-Pareto opt|mal solution. Then, from (10) there
specify the reference membership values [17]. Once the refistx € X, f; e R',i=1,--- , k such that
erence membership valugs= (fi1,--- , i) are specified, B . ~
the correspondind)-Pareto optimal solution is obtained by po (@, fi) = min{llp g (G pg, (fi)}
solving the following minmax problem. > up,(x", f})

[MINMAX1( f2)] , . o = min{llp, g ) (Gi) g, (1))
min « s -
:I:eX,fiERl,izll,---,k,)\e[O,l} = fy—=X,i=1--k,
subject to with strict inequality holding for at least orie Then it holds
. _ that
fii =g g 1) (Gi) < Ni=1,-k (10) 3 ) .
fu—pp(f) < Ni=1.-k  (11) Up @, )(Gi) 2 =X, i=1- .k  (16)
From [8], [9], [10], each constraint of (10) can be equiva-
lently transformed into the following form. From (12), (16) can be transformed as follows.
i = p, g 1) (Gi) <A > Amig — L7 (fu — A )ovg b
n j=1
= Z{m” — Lil [l ”
= +O (g (s = A | D_ohal < fi (18)
=1
+07 (g ! (1 — N)) (12)

From(17), it holds thatf; < u_l( —)\*). As aresult, there

. N , existsz € X such that
where ®(-) is a distribution function of the standard Gaus-

sian random variable@~!() is a corresponding inverse

function, andL‘l(-),uél(-) are pseudo-inverse functions Z{m,, _

ol . . ]
of L(-),ug,(-) respectively. Moreover, since the inequal- =1
ities (11) can be transformed intg; < u;(m - A),
MINMAX1( z) can be reduced to the following problem. oy A%
[IMINMAX2( f2)] :

:ce%lfl,g\leA A (13) t=1,--- (19)
subject to which contradicts the fact that* € X, \* € A is a unique

optimal solution to MINMAX2().

(2) Assume thatc* € X, \* € A is not an optimal solution
to MINMAX2( iz) for any reference membership valygs=
(fi1, - , ), which satisfy the equalities :

(i = A), i = N =Tlp, e oy (Gi) = g ()i =1, k. (20)

(14) Then, there exists some € X, A < A* such that

where D Amiy = L7 (i = Naij}a;
A déf [Aminy /\max] =t
= -1 in  fi;]. 1 1, —1/n
T R AR N,
The relationships between the optimal soluti@e, A*) _1 i 21
of MINMAX2( 1) and D-Pareto optimal solutions can be P=h (21)
characterized by the following theorem. This means that
Theorem 1. - A A .
1) fzre X,\* € Ais a unique optimal solution of Up @ ) (Gi) = fi=A> = Ai=1,--- .k
MlNMAXZ(H,) thenx* € X B Y — N) € RYi = pe (fi) = fi—A>p—Ai=1--k,
,k is a D-Pareto optimal solutlon def 1, )
(2) |f z* e X, ff € RL,i = .k is a D-Pareto Wherefz = Hp (f1;—A). From (20), there exist8 € X, f; €
optimal solution, themc € X A = /,Ll H Pi(xe, f?k)(Gi) = R'Yi=1,---,k such that
fi — pp ()i = Jk is an opt|mal solution of ‘ T
MINMAX2( f2) for some reference membership valyes= Hp (@, fi) > poy (@7, f7) 0 = 150 K
(firs == s ) This contradicts the fact that* € X, ff e Rl,i=1,--- |k
(Proof) is a D-Pareto optimal solution. O
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Sincethe constraints (14) are nonlinear, it is not easy to i=1,--- k. (26)
solve MINMAX2(i1) directly. Before considering the algo-
rithm to solve MINMAX2(i1), we first define the following
functions corresponding to (14).

If the ¢-th constraint of (14) is inactive,e.,

n Y {mej — L (i = N o }a
def —1/~ 1/~ j=
gi@,N) = ppt (= A) = Y {myg = L7 (R — Ny a =

=1

+07 (g, (i — X7))

n
> o5 < ug) (e =X,
j=1

(27)

(22)we can convert the inactive constraint (27) into the active
one by applying the bisection method for the reference
membership valug, € [\*, \* + 1].

For the optimal solutioriz*, \*) of MINMAX2( i), where
the active conditions (26) are satisfied, we solveffhPareto
optimality test problem defined as follows.
[D-Pareto optimality test problem]

Because ofu(f;,l(ﬂi —A) > 0.5 for any A € A, it holds
that &~ (i, (i — A)) > 0. This means tha; (x, \),i =
1,--- ,k are concave with respect toe € X for any fixed
value A € A. Let us define the following feasible s&t(\)
of MINMAX2( fz) for some fixed value\ € A.

X\ € {zeX|g@A)>0i=1--.k (23) - wd:efz":e 28)
Then, it is clear thatX ()\) is a convex setX ()\) satisfies LEXci20i=1,k i=1
the following property. subject to
Property 1.
If Apin < A\ < A2 < Amaxs then it holds thatX(/\l) C
X ().

In the following, it is assumed thatX(Ani,) =
&, X (Amax) # ¢. From Property 1, we can obtain the optimal
solution (z*,\*) of MINMAX2( i) using the following
simple algorithm which is based on the bisection method
and the convex programming technique.
[Algorithm 1.]
Step 1. SetAg = Amin, A1 = Amaxy A < (/\0 + )\1)/2
Step 2: Solve the following convex programming problem
for the fixed value), and denote the optimal solution as
x(N).

IN

max g (z, \) (24) (29)
For the optimal solution of the above test problem, the
following theorem holds.
gi(x,\) >0,i=1,--- k,i#]j (25) Theorem 2.
For the optimal solutiork, ¢;,7 = 1,--- , k of the test prob-
lem (28)-(29), ifw = 0 (equivalently,e; =0,i=1,--- , k),
z* € X, ff € pZM (@ - X) eRLi =1,k is aD-
fution.

subject to

Step 3: If ge(x(N),\) > 0,0 =1,---  k then seth; +
A A« (Ao + A1)/2. Otherwise, set\g < A\ A + (Mg +
A1)/2. If | A1 — Ao |< € then go to Step 4, whereis a ,
sufficiently small positive constant. Otherwise, go to Step 2aréto optimal so
Step 4: Set\* < A andz* + x()\). The optimal solution (Proof)

(z*,\*) of MINMAX2( 2) is obtained. From the active condition (26) at the optimal solution
(z*, \*) of MINMAX2( 1), it holds that
IIl. AN INTERACTIVE ALGORITHM [ — N\ = Hé(w*,f;)(éi)vi =1,--- .k,
In this section, we propose an interactive algorithm to fi =N = e (f)i=1,-- k.
obtain a satisfactory solution from amongdaPareto optimal ’
solution set. From Theorem 1, it is not guaranteed thAssume that* € X, pz' (i — X*),i = 1,--- k is not a
the optimal solution(z*, \*) of MINMAX2( 1) is D-Pareto D-Pareto optimal solution. Then, there existc X, f; €
optimal, if it is not unique. In order to guarantee tie R',i=1,--- k such that

Pareto optimality, we first assume thHatonstraints (14) are

active at the optimal solutiof*, \*), i.e., poi (@, fi) = min{llp, g ;) (Gi) up (fi)}

: = pp, (2", f])
Z{m” —L_l(,&z—)\*)al]}x;‘ = ﬂl_)\*vl: 1) aka
=t with strict inequality holding for at least one This means
I that
+@ (U@i (i - A .
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pg (fi) = i —Ai=
From (12), (30) and (31), the following inequalities hold,

D {mij = L7 (i — A)ais b
j=1

i=1,- .,k

1,

k. (31)

(32)

with strict inequality holding for at least one This contra-

dicts the fact that; = 0,i =1,--- , k.

Now, following the above discussions, we can present the

O

TABLE |
THE PARAMETERS OF THE FUZZY NUMBERMZ']' AND THE VARIANCE O',L-Qj

OF THE RANDOM FUZZY VARIABLE Eij

Mij | mij | 0uj(=Bij) | o2 (the variance ofé;;)
Mii| 5 0.5 1
M| 7 0.4 2
Miz| 6 0.3 2
Mis| 10 0.2 3
Mis| 8 0.3 1
Moy | -10 0.3 2
Moz | -5 0.4 3
Mas | -5 0.4 1
Moy | -9 0.2 2
Moas | -5 0.1 1

interactive algorithm in order to derive a satisfactory solution
from among aD-Pareto optimal solution set.

[Algorithm 2]

M;; is an L-R fuzzy number characterized by the following

Step 1: The decision maker sets each of the membershipembership function.
functions piz (fi),i = 1,--- ,k of the fuzzy goalF; for
permissible objective levef; according to Assumption 2.
Step 2: Corresponding to the fuzzy goal; for the
probability that the objective functio;z is less thanf;,
the decision maker sets each of the membership functiqhfere 1.(t) = R(t) = max{0,1 — ¢}, and Mg (= Bij)s
pa, (pi),i =1,k according to Assumption 1.

Step 3: Set the initial reference membership valuegias-

Li=1,--,k

Step 4: Solve MINMAX2(f) by applying Algorithm 1,
and obtain the optimal solutiof*, \*). For the optimal

solution (z*, A\*), The correspondingD-Pareto optimality

test problem (28)-(29) is formulated and solved.
Step 5: If the decision maker is satisfied with the current pe (f2) = f2 — (—400)
values of theD-Pareto optimal solutionup, (z*, f}),i = Ry 102

1,---,kwheref’ = M}_l(ﬂi—A*), then stop. Otherwise, the
decision maker updates his/her reference membership values

;,i=1,---  k, and return to Step 4.

IV. A NUMERICAL EXAMPLE

miv—t
L(m=t) oy >

t—mg;
R L’) mi; <t

ij

Hag,; () = (34)

o7; are given in Table .

In REMOLP, let us assume that the hypothetical decision
maker sets the membership functigngs (-), ¢, (+),i = 1,2
as follows (Step 1, 2).

f1—500

My (f1) 100 — 500
(—30) — (—400)
pP1— 0.7

He, () = GeETo7
P2 — 0.8

Hé, (p2) 09-08

Set the initial reference membership values @s, ji2) =

We consider the following two-objective random fuzzyj 1) (Step 3), and solve MINMAX2%) to obtain the

linear programming problem to demonstrate the feasibility @brrespondingD-Pareto optimal solutioriz:*, \*) (Step 4).
the proposed method under the hypothetical decision maker.

[RFMOLP] (1o, (2", f1), ko, (27, f3)) = (0.7363,0.7363)
R o where fF = u};_l (a; — A*), i = 1,2. The hypothetical
h R chm decision maker is not satisfied with the current value of
- =t the D-Pareto optimal solutionz*, f;), and, in order to
= °. improve up, () at the expense ofip,(-), he/she updates
O, _ s 1 2\"/)y
220 T Z;CQJ% his/her reference membership values(as, /i) = (1,0.7)
. = (Step 5). Then, the correspondiigPareto optimal solution
subject to is obtained by solving MINMAX21) (Step 4). The inter-
21 + 3y + Axs + 614 + dxs < 240 active processes under the hypothetical decision maker are
321 4 3w + 24 4 5ws 4+ 3 ; 930 summarized in Table
PLTT oL T AL T OTA T O S In order to compare our proposed approach with the
4wy +2xy + 3w3 + Ty + 625 < 250 previous ones, let us consider the following multiobjective
where random fuzzy variables;,i = 1,2,j = 1,--- ,5 are programming problem based on a probability maximization
normally distributed with the fuzzy numb@t;; as mean and Model Tor RFMOLP.
0%, as variance, and a probability density functigp(y) for  [MOP2'(f)] ) )
a random fuzzy variablé;; is formally represented with the max(lp, gz, 1,y (G1): Up, (@, 1) (G2))

following form.

(y—M,;;)?

1 —

fLJ (y) = \/%0_” €

ISBN: 978-988-19252-6-8
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TABLE Il

INTERACTIVE PROCESSES V. CONCLUSION

In this paper, we have proposed an interactive decision

Itez“on 1 i 0%6 making method for RFMOLP based on a probability maxi-
D2 1 0.7 0.7 mization model to obtain a satisfactory solution from among
i 205.4521) 159.2246 180.7777 a Pareto optimal solution set. In the proposed method,
p%f 'g?ézl"(‘)f '%.3512'%7 '%ésel'ggl the decision maker is required to specify the membership
p% 08736 | 0.8551 | 0.8638 functions for the fuzzy goals of not only the permissible
up, (x*, f) | 0.7363 | 0.8519 | 0.7980 objective levels in a probability maximization model but also
D, (2™, f3) | 0.7363 | 0.5519 | 0.6380 the corresponding distribution function. Such two kinds of
membership functions are integrated and, in the integrated
TABLE Il membership space, B-Pareto optimal solution concept is

COMPARISON BETWEEN THEPROPOSEDMETHOD AND THE

introduced. The satisfactory solution can be obtained by
PROBABILITY MAXIMIZATION METHOD

updating the reference membership values and solving the

proposedmethod| probability max. corresponding minmax problem by applying the convex
i 205.4521 200 programming technique. At an-Pareto optimal solution,

pé: _3(;0821'37 0‘%21 it is guaranteed that a proper balance between permissible

pi 0.8736 0.8544 objective levels and the corresponding distribution function
b () 0.7363 0.75 values in a probability maximization model is attained.
fi, (f3) 0.7363 0.7567

-~ (ot 0.7363 0.5546
ZZ; Ep%; 0.7363 0.5546 REFERENCES
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n

E: 2 .2
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