
 

  
Abstract— This study proposes an idea of another way of 

using utility functions with multi-choice goal programming 
(MCGP) models. By examining the way the previous study is 
using utility function with MCGP, some drawbacks of such a 
way are examined. These drawbacks can mistakenly result in 
an incomplete representativeness of the original MCGP with 
utility functions model and thus lead to the inability of the 
model to appropriately assess and express the real preference 
structure of a decision maker. This study corrects the way 
utility functions are used with MCGP. Such a new way is 
validated by using it to express a decision maker preference 
structure pertaining to a goal, which underlies his/her real oral 
statements during decision making.  
 

Index Terms— Multi-choice goal programming, Utility 
function, Decision maker, Preference structure, Goal 
programming 
 

I. INTRODUCTION 

ECISION-MAKING (DM) via goal programming (GP) 
is not  news. As a good tool for solving multi-criteria 

decision making or multi-objective programming, GP has 
gained its wide popularity [1], since proposed [2].  
    As a special extension of linear programming, GP was first 
introduced by Charnes and Cooper, taking into account 
multiple criteria and achieving multiple objectives. Since 
then, important extensions and numerous applications have 
been proposed [3]. 

The literature is abundant with GP variants (i.e., the GP 
extension models or specific-purposed formulations for GP). 
The extension models include, for example, weighted GP 
(WGP) [4], interactive GP [5], integer GP instead of 
continuous GP, interval GP (IGP), fuzzy GP (FGP) [6], 
multi-choice GP (MCGP) [7], multi-segment GP (MSGP) [8], 
percentage GP (%GP) [9], etc. In addition to these, there are 
reformulations of either the objective measurement or the 
goal constraints that can serve as the value-added 
components of GP to enhance the solving range of GP and to 
widen the use of GP in different application scenarios. These 
includes, but not limited to (for space reasons we just list 
some recent works), dealing arbitrary penalty function for 
interval programming [10], dealing with the S-shaped 
penalty function for IGP [11], dealing with procurement risk 

using a possibility formulation for fuzzy multi-objective 
programming [12], weighted max-min model for FGP [13], 
and so on.  

The literature is abundant with applications of GP, too. 
Over the decades, it has been used to support real-world 
decision-making processes in many fields such as 
communication, energy, manufacturing, medical healthcare, 
vendor selection, pricing, and so on ([14]-[20]). 

GP is still popular now and continues to be irrigated by 
researchers and practitioners [22]. However, the 
abovementioned GP variants are, in fact, categorized 
methodologically. When they are categorized through their 
original ideas, perhaps the article by Tamiz et al. published in 
1998 [23], which is an overview of GP modeling techniques 
that has categorized the considerations, can help.  

In the field of GP, as [23] have pointed out, the issues in 
making the GP variants include Pareto optimality 
considerations, normalization techniques, the selection of 
preferential weights and the utility interpretation of GP 
through utility functions. As can be identified, the last two 
issues in GP are strongly associated with any DM’s 
preference structure, so that the works in GP to deal with the 
DM’s preferences mainly fall in the last two categories.  

Studies about modeling the preference structure in GP 
have also become a subset of GP researches. In 1978, 
Zimmermann proposed the concept of fuzzy programming 
(FP) [24], in which the right-hand-side (RHS) of a constraint 
can be fuzzified with utility functions, and then Narasimhan 
(1980) applied the “fuzzy subsets” concepts to GP in a fuzzy 
environment [6]. Martel and Aouni (1990) utilized the 
Promethee method to build the preference structure of DM 
for GP and avoided incommensurability problems between 
criteria that can have various different measurement units 
[26]. Later, Yang et al. (1991) proposed the fuzzy 
programming model with non-linear membership functions, 
using piecewise line segments to approximate the non-linear 
functions [25]. Mohamed (1997) discussed the relationships 
(how one can lead to another) between GP and FP [27]. 
Romero (2004) summarized the general structure of the 
lexicographic and weighted achievement functions for GP, to 
deal with the different philosophies of DM preference [4]. 
Chang (2010) proposed an approximation approach for 
representing the S-shaped membership functions [28], while 
Chang (2011) later integrated the concept of utility function 
into MCGP [29].  

To represent the preference structure of DMs, the last 
model, which is the MCGP with utility function model 
(hereafter, briefed as the “MCGP+U” model) proposed by 
Chang [29], involves using multi-choice of RHS values for 
each goal constraint to represent the multiple goal aspiration 
levels of a DM. Then the study used utility functions to 
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“glue-up” these RHS values and proposed a model that 
integrates the ideas of both MCGP and the utility function to 
solve the decision problem.  

Within the MCGP+U model, for a “the-less-the-better” 
criterion, either the utility function is a purely linear one or a 
piecewise-linear one (or comes in any other shape else), the 
utility function always begins with 1 when the achieved goal 
value is at the minimum bound and it always ends with 0 
when the achieved goal value is at the maximum bound. The 
situation is vice versa for a “the-less-the-better” criterion. 
The “maximum and minimum bounds” are defined by the 
maximal possible aspiration level of a goal and the minimal 
possible level, among all the multiple choices of aspiration 
levels.  

However, using the utility function in this way can be 
inappropriate for real-word applications. Take, for example, 
the slope of the utility function of any specific “the-less-the- 
better” goal constraint is not necessary to end (to become 0) 
at the maximum bound of the aspiration levels of a DM. 
Rather, the location at which the slope of the utility function 
falls to 0 should depend on a DM’s statement which reveals 
his/her real preference structure far buried in mind.  

Thus, there is a need to change, or revise at least, the way 
of using utility function with MCGP, so as to reflect the real 
preference structure of a DM and to correct the possible 
misleading caused by the previous MCGP+U study.  

To have a better understanding about the above core claim 
mentioned by this study, the way of using the utility function 
by the original MCGP+U model is examined in Section 2, 
while the main shortcomings of using a utility function with 
MCGP in this manner is identified. By observation of some 
statements of the DMs during decision making, Section 3 
proposes a new way of using the utility function with MCGP 
and examines if such a new way can perfectly express the 
DM’s preference structure. Section 4 concludes this study.  

II. THE WAY UTILITY FUNCTION WAS USED WITH MCGP 

For simplicity of illustration, the multi-objective numerical 
decision problem case in Chang’s (2011) study is adopted 
here, as follow: 

(MODM Problem P1) 
(Goal 1) 505.698 321  xxx  

(Goal 2) 321 5.02.0 xxx   5,  

with utility function shown in Figure 1.  
(Goal 3) 321 4.232 xxx  10,  

with utility function shown in Figure 2. 
(Constraints) 405.575 321  xxx  

where x1, x2, x3 are the market share of each product, in 
units and should be no less than 2 units; for details please 
check the original article. 

Regardless of what the approach was taken to formulate 
these utility functions mathematically and to solve the 
abovementioned decision problem in Chang’s original study 
[29], there are some facts one can read from these figures.  

Firstly, the left- and right- triangles depicted in Figure 1 
and 2 represent the two usual types of utility functions (i.e., 
the-less-the-better and the usual the-more-the-better) that are 
widely accepted by researchers or practitioners when they are 

incorporating utility function for solving problems.  
 

 
Fig 1  The linear and left-triangular utility function 

 

 
Fig 2  The linear and right-triangular utility function 

 
Secondly, if the real shape of a utility function is not purely 

linear such as the shapes shown in Figure 1 or 2, they can use 
the piecewise linear approach to approximate and represent it. 
In fact, once any utility function is approximated by, or in 
itself, piecewise line segments, the work left is to find a 
proper method to model these pieces. For example, Yang et al. 
[25] proposed a smart approach that uses only 1 binary 
variable to formulate an S-shaped utility function that is 
composed of 3 linear pieces. Chang [28] proposed another 
approach that can deal with an S-shaped utility function 
which are not purely increasing (concave) or purely 
decreasing (convex).  

Thirdly, as mentioned previously, it may be questionable 
that such utility functions can fully represent all the facts 
about a DM’s requirement pertaining to his/her real 
preference structure, for the reason that it simply bounds the 
feasible achievement levels of a goal, such as the number of 
employees goal (i.e., achievement levels are bounded by an 
interval [5,8]) and the improvement capital (i.e., achievement 
levels are bounded by [20,100]), with hard constraints.  

In real decision cases, the situation for a goal to be 
achieved outside the sloping range (e.g. the # of employees 
<5 cases) is very possible and reasonable, if it is more 
beneficial. That is, allowing the goal achievement to fall in 
some place outside the defined sloping range is necessary. 
For example, it can be easily seen that in Figure 1, [0,5] and 
[8,unlimited) can both be listed as the feasible intervals for 
Goal 2 to achieve. These two intervals should continuously 
produce utility levels of 1 and 0, respectively.  

Fourthly, as mentioned previously, it is not necessary for 
the slope of a “the-less-the-better” utility function to fall to 0 
rightly at the place where the maximum bound is. The 
situation for a “the-more-the-better” utility function is 
analogous. That is, with the original MCGP+U model, each 
goal constraint has multiple choices of the RHS values to 
serve as the aspiration levels of the goal. When a DM has 
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multiple possible aspiration levels pertaining to a goal, the 
range of a utility function to rise up or to slope down (i.e., the 
“sloping range”) is defined by the maximal and minimal 
values of these seen levels.  

This is not always true, particularly in practice. The 
“maximum bound” of a utility function defined by Chang in 
[29] also denotes the maximal seen aspiration level of a goal. 
However, the maximal seen aspiration level is not equivalent 
to the point the DM becomes fully unsatisfied (i.e., the end of 
the sloping range). As can be imagined, the point where the 
DM becomes fully unsatisfied usually comes earlier than the 
maximal seen aspiration level.  

III. A NEW WAY OF USING UTILITY FUNCTION WITH MCGP 

By observation of the abovementioned facts, this study 
suggests another way to use utility function for MCGP. To 
distinguish this new way from the original way, a thorough 
dissection is required. 

A. The drawbacks of the original way  

As can be seen from the fourth observed point, in the 
original way, when a DM has multiple possible aspiration 
levels pertaining to a goal, the sloping range of the utility 
function is usually defined and bounded by the maximum and 
minimal values of these seen levels.   

As discussed previously, under circumstances in practice, 
the way the MCGP+U model is using utility functions might 
be ineffective for the sake of the inability to represent a DM’s 
preference properly. Such a using way might have missed a 
critical fact that the sloping range should not be defined and 
bounded by the maximum and minimal values among the 
multiple, possible aspiration levels of a goal. Instead, it 
involves the perception of a DM in regard to the durable 
ranges of that goal.  

For example, take the number-of-employees goal in Figure 
1 (Goal 2 in the above problem case), if the possible 
aspiration levels (multiple choices of the RHS) of this goal 
are 5, 6, 7 and 8, is 8 always the end (downward to exactly 0) 
of the slope range of the utility function? What if the DM 
expressed a statement like the following S1?    

Statement S1: “A total number of 5, 6, 7, 8 employees are 
all possible and a total number less than or equal to 5 is 
strongly acceptable, but for some reasons a total number 
greater than 7 is very unacceptable.” 

The statement “a total number of 5, 6, 7, 8 employees are 
all possible” in S1 means that 5, 6, 7, 8 are all possible 
choices of the RHS aspiration levels of the goal constraint. 
But the statement “for some reasons a total number greater 
than 7 is very unacceptable” means that the end of the sloping 
range of the utility function to reach 0 is not 8, but 7 instead. 
With such a consideration, the original way of use of utility 
function by Chang [29] may distort a DM’s real preference 
structure and can be infeasible to produce in practice.  

Moreover, as can be seen from the third observed point, 
the sloping range of Goal 2 is closed. That is, only the 
interval [5, 8] is allowed for Goal 2 to achieve, which is in 
fact, the sloping range of the utility function exactly. 
However, inside S1, there is a statement which states that “a 
total number less than or equal to 5 is strongly acceptable”. 
This means that a total number of employees under 5 (e.g., 1, 

2, 3, or 4, while 0 is quite impossible) also makes the DM 
perfectly happy. Unfortunately, if a DM had taken the 
version of utility function in Figure 1, the model could not 
solve out any answer that leads to 1, 2, 3 and 4 employees just 
because the utility function is, in itself, bounded by at least 5. 
This can again distort a DM’s real preference and can be 
another flaw that deters any practitioner from applying the 
MCGP+U model. 

B. The new way to use utility functions with MCGP 

Therefore, this study disseminates the idea of making an 
adjustment to the use of utility function for MCGP. For 
example, the utility function in Figure 1 can be adjusted as 
the one shown in Figure 3.  

 
Fig 3  The revised utility function for MCGP 

 
In Figure 3, the single thin solid line, which conforms to 

Figure 1, is the original version of the utility function u(x) 
that described the RHS of Goal 2. As discussed, the feasible 
range of this goal is bounded by [5,8], which is, exactly, also 
the sloping range of its utility function.  

On the contrary, the bold solid line is the proposed version 
of the utility function, u1’(x). In compare with u1(x) that 
contains solely one sloping line segment, u1’(x) has three line 
segments including one flat segment, one sloping segment 
and one flat segment that follows, each of which is 
respectively delimited by x=[0,5), [5,7] and (7,8]. This 
relaxes the limitation of the feasible range of Goal 2 that had 
to be [5,8]. The feasible range of Goal 2 becomes [0,8] 
instead, to include the possibly forgotten feasible numbers of 
{0,1,2,3,4} employees, and to include the possible levels of 
{5,6,7,8} employees, which is the original feasible range of 
u1(x).  

In addition, as can be seen in Figure 3, within the original 
feasible range of u1(x), which is [5,8], there are two piecewise 
line segments delimited by x=[5,7] and x=(7,8] respectively. 

The former part, delimited by x=[5,7], is the interval that 
u1’(x) really slopes down. To conform to the statement S1, 
the sloping range changes from [5,8] (of u1(x)) to [5,7] (of 
u1’(x)). So the slope should shrink proportionally, no matter 
what the shape of the slope is (e.g., the linearly-shaped one 
like this case, or an S-shaped or concave-shaped one for some 
other cases). The arrow in Figure 3 displays this shrinking 
process. After shrinking, the slope of the utility function 
becomes abrupt because the slope range is lessened but the 
maximal height of the function remains the same (i.e., 1). 

The latter tail line segment delimited by x=(7,8] is a flat 
segment that produces a satisfaction level of 0. This meets the 
DM’s claim “but a total number greater than 7 is very 
unacceptable” in S1. Beware that this formulation, although 
seems trivial, is necessary till the uppermost possible 
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aspiration level among the multiple choices of the goal values, 
so as to faithfully and completely represent the full feasible 
range in a DM’s mind.  

Neglecting this tail part can result in serious consequence. 
For example, if one excluded this part (i.e., the interval (7,8]) 
from modeling, the model would have never got an answer 
that achieves a goal value of 8 for Goal 2, whatever the other 
constraints are. Consider the case in which a DM is applying 
MCGP with utility function and there is a must to list 8 as a 
possible aspiration level of Goal 2 (which implies the 
achievement of this criterion can be sacrificed when 
leveraging with other criteria). If the merely the first flat 
range [0,5) and the slope range [5,7) were taken into account, 
the model could miss the possible aspiration level of 8, and 
more critically, would distort the optimal solution because 
those feasible solutions that achieves Goal 2 with a level of 8 
are totally ignored.  

In summary, such a new form of u1’(x) can fully describe a 
DM statement such as S1, and it can be used to denote the real 
satisfactory level of a DM more precisely.  

At last, let us take a look back to Figure 3 and note a little 
revision here. In fact, we intentionally let the tail line segment 
of u1’(x) to penetrate through x=8. This implies that the tail 
segment can span from 7 to a certain bound or the unlimited 
(i.e., x=[7, B1] or x=[7, ∞) where B1 is the DM-perceived 
upper bound of the x-axis of u1’(x)).  

This can be also an important improvement for the original 
way of use of utility function with MCGP. Such 
improvement is from the fact that if Goal 2 is not an 
important goal (e.g., its deviation is not with priority or is 
assigned a extra low weight in the objective function), a DM 
can allow it to be “further sacrificed” by extending the tail 
segment to be ended with 9, 10, 11 and so on, solving the 
model again and seeing how the optimal solution is changing.  

For example, a DM’s statement can be S1’ as follows, 
rather than S1: 

Statement S1’: “For our company, any total number of 
employees over 8 is able to be exercised and a total number 
less than or equal to 5 is strongly preferable. But for some 
internal reasons, a total number greater than 7 is very 
unacceptable”.  

Shall this be the case, the proposed way of use of utility 
function in this study, such as u1’(x), can perfectly serve the 
purpose, while the original way of use, e.g. u1(x), may not.  

C. Another example for a “the-more-the-better” criterion 

Subsection B demonstrated a new way of using the utility 
function with MCGP and reshaped the utility function of 
Goal 2 for its “the-less-the-better”-typed criterion. For a 
more concrete illustration and a full coverage of the idea of 
the new using way proposed in this study, an additional case 
about a goal with a “the-more-the-better”-typed criterion is 
given. 

Consider the capital improvement goal (Goal 3) in P1. The 
original claim that the DM has made is as follows, which 
reflects no more than a greedy DM’s prospect:  

Statement S2: “A capital improvement between 20M to 
100M NT$ is preferred. But for some reasons, an 
improvement under 35M is quite unacceptable.  In fact, any 
capital improvement level more than 100M is, of course, very 

welcomed and I will be fully satisfied with it.” 
In this case, the sloping range of the utility function in 

Figure 2 should also shrink, with a front bottom field that 
produces the altitude (satisfaction level) of 0, followed by an 
endless Qinghai-Tibet plateau that produces the altitude of 1 
consistently. This leads to another new utility function whose 
shape is quite similar to the topography around Lhasa, as 
Figure 4 has shown. 

 
Fig 4  The revised utility function for MCGP: the more the better case 

IV. CONCLUSION 

This study proposes another way of using utility functions 
when such functions are to incorporate with existing MCGP 
models.  

Some crucial shortcomings when the MCGP+U model is 
to be applied in practice are examined: the missed ranges of 
the aspiration levels that the original MCGP+U model might 
fail to formulate. These missed ranges includes the additional 
“plain field” range which represents the possible choices of 
aspiration levels that are acceptable by a DM but can lead to 0 
satisfaction of the DM, the “plateau” range which represents 
the other possible choices of goal levels that makes the DM 
perfectly happy and the possible extended parts of these 
ranges. Ignoring these facts during modeling could impair the 
descriptiveness of the model to represent a DM’s real 
preference structure.  

In consideration of the aforementioned shortcomings, this 
study proposes the idea of changing the way utility functions 
are used with a MCGP model. Such a new way to use utility 
functions with MCGP expresses a DM’s preference structure 
more precisely. This point is evidential from the fact that the 
proposed way of using utility function can faithfully 
formulate the DM statements based on his/her real preference 
structure pertaining to the goals.   

This study also paves ways to future works.  
This study changes the way to use utility functions with an 

MCGP model and studies the topic of “how the using style 
can be changed”. Although the result of this study is quite 
interesting, this study does not discuss the topics of “how 
such a new using style is to be mathematically formulated” as 
well as of “how the formulation can be incorporated with 
MCGP”. These become future topics worthy of note.  

At last, the idea to change the way how utility function is 
used implies that perhaps there is room for other GP variants, 
which also incorporate the utility function concept (i.e., other 
GP extension models with utility functions), to be improved.  

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013



 

REFERENCES 
[1] B. Aouni and O. Kettani, “Goal programming mode: A glorious history 

and a promising future,” European Journal of Operational Research, 
vol. 133, pp. 225-231, 2001. 

[2] A. Charnes and W. W. Cooper, “Goal programming and multiple 
objective optimization,” European Journal of Operational Research, 
vol. 1, pp. 39-51, 1977. 

[3] M. Larbani and B. Aouni, “A new approach for generating efficient 
solutions within the goal programming model,” Journal of Operational 
Research Society, vol. 62, pp. 175-182, 2011. 

[4] C. Romero, “A general structure of achievement function for a goal 
programming model,” European Journal of Operational Research, vol. 
153, no. 3, pp. 675-686, 2004. 

[5] J. S. Dyer, “Interactive goal programming,” Management Science, vol. 
19, no.1, pp. 62-70, 1972. 

[6] R. Narasimhan, “Goal Programming in a fuzzy environment,” Decision 
Science, vol. 11, no. 2, pp. 325-336, 1980. 

[7] C. T. Chang, “Multi-choice goal programming,” Omega 2007, vol. 35, 
pp. 389-396, 2007. 

[8] C. N. Liao, “Formulating the multi-segment goal programming,” 
Computers and Industrial Engineering, vol. 56, pp. 138-141, 2009, 

[9] C. T. Chang, H. M. Chen and Z. Y. Zhuang, “Revised multi-segment 
goal programming: Percentage goal programming”, Computers and 
Industrial Engineering, vol. 63, pp. 1235-1242, 2012. 

[10] H. C. Lu and T. L. Chen, “Efficient model for interval goal 
programming with arbitrary penalty function,” Optimization Letters 
DOI: 10.1007/s11590-011-0422-z, 2011 

[11] C. T. Chang and T. C. Lin, “Interval goal programming for S-shaped 
penalty function,” European Journal of Operational Research, vol. 
199, pp. 9-20, 2009. 

[12] D. D. Wu, Y. Zhang, D. Wu and D. L. Olson, “Fuzzy multi-objective 
programming for supplier selection and risk modeling: A possibility 
approach,” European Journal of Operational Research, vol. 200, pp. 
774-787, 2010. 

[13] C. C. Lin, “A weighted max-min model for fuzzy goal programming,” 
Fuzzy Sets and Systems, vol. 142, pp. 407-420, 2010. 

[14] J. T. Blake and M. W. Carter, “A goal programming approach to 
strategic resource allocation in acute care hospitals,” European Journal 
of Operational Research, vol. 140, no. 3, pp. 541-561, 2002. 

[15] E. A. Demirtas and O. Ustun, “Analytic network process and 
multi-period goal programming integration in purchasing decisions,” 
Computers and Industrial Engineering, vol. 56, no. 2, pp. 677-690, 
2009. 

[16] H. W. Lin, S. V. Nagalingam and G. C. I. Lin, “An interactive 
meta-goal-programming-based decision analysis methodology to 
support collaborative manufacturing,” Robotics and Computer- 
Integrated Manufacturing, vol. 25, no. 1, pp. 135-154, 2009. 

[17] J. E. Samouilidis and I.A. Pappas, “A goal programming approach to 
energy forecasting,” European Journal of Operational Research, vol. 5, 
no. 5, pp. 321-331, 1980. 

[18] P. Korhonen and M. Soismaa, “A multiple criteria model for pricing 
alcoholic beverages,” European Journal of Operational Research, vol. 
37, no. 2, pp. 165-175, 1988. 

[19] J. A. Gómez-Limón and L. Riesgo, “Irrigation water pricing: 
differential impacts on irrigated farms,” Agricultural Economics, vol. 
31, no. 1, pp. 47-66, 2004. 

[20] K. Senthilkumar, M. T. M. H. Lubbers, N. De Ridder, P. S. Bindraban, 
T. M. Thiyagarajan and K.E. Giller, “Policies to support economic and 
environmental goals at farm and regional scales: Outcomes for rice 
farmers in Southern India depend on their resource endowment,” 
Agricultural Systems, vol. 104, no. 1, pp. 82-93, 2011. 

[21] M. Tamiz, D. F. Jones and C. Romero, “Goal programming for decision 
making: an overview of the current state-of-the-art,” European Journal 
of Operational Research, vol. 111, no. 3, pp. 569-581, 1998. 

[22] B. Aouni and D. La Torre, “A generalized stochastic goal programming 
model,” Applied Mathematics and Computation, vol. 215, no. 12, pp. 
4347-4357, 2010. 

[23] M. Tamiz, D. Jones and C. Romero, “Goal programming for decision 
making: An overview of the current state-of-the-art,” European 
Journal of Operational Research, vol. 111, pp. 569-581, 1998. 

[24] H. J. Zimmermann, “Fuzzy programming and linear programming with 
several objective functions,” Fuzzy Sets and Systems, vol. 1, pp. 45-55, 
1978. 

[25] T Yang, J. P. Ignizio and H. J. Kim, “Fuzzy programming with 
nonlinear membership function: Piecewise linear approximation,” 
Fuzzy Sets and Systems, vol 41, pp. 39-53, 1991. 

[26] J. M Martel and B. Aouni, “Incorporating the decision-maker’s 
preference in the goal-programming model,” The Journal of the 
Operational Research Society, vol. 41, no. 12, pp. 1121-1132, 1990. 

[27] R. H. Mohamed, “The relationship between goal programming and 
fuzzy programming,” Fuzzy sets and systems vol. 89, pp. 215-222, 
1997. 

[28] C. T. Chang, “An approximation approach for representing S-shaped 
membership functions,” IEEE Transaction of Fuzzy Systems, vol. 18, 
no. 2, pp. 412-424, 2010. 

[29] C. T. Chang, “Multi-choice goal programming with utility function,” 
European Journal of Operational Research, vol. 215, pp. 439-445, 
2011. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013




