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Abstract—We study a paper converting process where master
rolls are transformed to paper sheets with the minimal paper
loss, including trim loss, set up loss, and over-production loss.
Two different types of cutters are involved in the converting pro-
cess – one transversal knife and two transversal knife machines.
To solve the problem, various types of paper sheets specified
by material type, size, and required quantity are grouped into
all possible cutting patterns using a heuristic method. Then,
a MILP model is proposed to assign cutting patterns to each
type of cutter while satisfying the machine capacity constraints.
Applying the methodology to industrial problems, we found the
average total loss of 4.6% for single-product group problems
and 3.1% for two-product group problems, which respectively
correspond to 25.8% and 41.9% improvement over a current
method based on worker experiences used by the company.

Index Terms—cutter selection, trim loss reduction, paper
converting, heuristics, MILP

I. INTRODUCTION

IN a paper converting process, master rolls are transformed
to product paper rolls or paper sheets. Generally, when

there are multiple cutters in a mill, products are preassigned
to cutters based on machine condition or capacity. Then, in
each cutter, products are grouped into cutting patterns and
the number of cuts of each cutting pattern is determined to
satisfy customer demands.

A significant amount of paper wastes result from the trim
loss, which occurs when cutting patterns or combinations of
cuts do not fit the size of master rolls. A problem to reduce
the trim loss is referred to as a cutting stock problem, which
can be classified into 2 groups – one-dimensional and two-
dimensional cutting stock problems. The one-dimensional
problem considers only the cutting width as a decision vari-
able whereas the two-dimensional problem considers both
cutting width and cutting length as decision variables.

One-dimensional cutting stock problems are traditionally
formulated by using Mixed Integer Non-Linear Programming
(MINLP). The nonlinearity is normally resolved by treating a
complete list of cutting pattern vectors as known, leading to
a MILP model. However, this approach can be computation-
ally inefficient due to a large solution space. Many papers
proposed different MIP models without pre-specified cutting
patterns. For example, Johnston et al. [1] proposed an exact
integer model. Kasimbeyli et al. [2] proposed a two-objective
integer linear model related to the minimization of the total
trim loss and the total number of different lengths of stock
rolls in inventory. Schilling and Georgiadis [3] applied a MIP
model to industrial cases with the objective of maximizing
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the total profit, where the profit comes from an income less
cost of cutting rolls, cost of changing knife positions, and
cost of disposing any trim.

Many heuristics were also proposed to minimize trim
loss, e.g., a genetic algorithm based on bin-packing by
Vahrenkamp [4] and weight annealing heuristics by Loh et
al. [5]. Correria et al. [6] used three-step heuristics including
generating all feasible cutting pattern, determining cutting
lengths, and adjusting the solutions to fit an environment of
real settings.

Similar to the one-dimensional problem, a non-convex
MINLP can be used to formulate the two-dimensional cutting
stock problem. Since no straightforward method for finding
an optimal solution of this model exists, Westerlund et al. [7],
[8] proposed a 2-step procedure, whereby all feasible cutting
patterns are included and the global optimal cutting patterns
are obtained from a MILP model. Westerlund et al. [7]
assumed equal lengths of product rolls, while Westerlund
et al. [8] assumed that the lengths may vary within a
given range. Harjunkoski et al. [9] proposed and compared
different ways to transform a non-convex MINLP model to a
convex MINLP model while Harjunkoski et al. [10] proposed
methods to transform a non-convex INLP model to a MILP
model or a convex MINLP model. Harjunkoski et al. [11]
proposed linear transformation methods to transform a non-
convex MINLP model to ILP or MILP models, and convex
transformation methods to transform a non-convex MINLP
model to convex INLP or MINLP models. Most of two-
dimensional cutting stock problems assume that products
in each cutting pattern must have equal length. Puemsin et
al. [12] allowed to have more than one product length in
each cutting pattern and proposed a MILP model to solve
the problem.

Most of the previous papers in trim loss reduction con-
siders selecting cutting patterns to transform all products
on a single machine. However, a paper mill in a real
settings has one or more machines of different types. The
overall loss may not be minimized if the products are not
properly assigned to the machines. In this paper, we consider
minimizing the total paper loss across multiple machines by
jointly determining what cutting patterns to assign to which
machine.

II. PROBLEM STATEMENT

We consider the process where different types of master
rolls specified by their grades and grammages are converted
to different types of paper sheets according to customer spec-
ifications via multiple cutters. The paper sheet specification
includes paper grammage, the sheet width and length, and the
total product weight, which is converted to the total required
cutting length within its allowance. Table I shows examples
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TABLE I
PRODUCT SPECIFICATIONS

Product Size (inches) Order quantity
No. Group Grammage width length Demand (tons) Lower demand (inches) Upper demand (inches)
1 A 90 31 43 2.75 1680559 1781392
2 A 90 28 36 2.88 1945192 2061904
3 A 90 22 27 4.75 4090286 4335703
4 A 90 29 22.5 1.25 816573 865567
5 A 90 27 20 1.38 964765 1022651
6 A 90 37.5 40 1.00 505186 535497
7 B 85 24 35 10.18 7750000 8215000
8 B 85 35 24 1.93 1002943 1063120
9 B 85 24 34.5 4.35 3301355 3499436

of the product specification. Paper sheets in the same product
group can be cut via the same cutting patterns since they use
the same type of master rolls. In this example, paper sheets
1-6 can be in the same cutting patterns while paper sheets
7-9 must be in another set of cutting patterns. Normally,
customers place orders in a unit of ton requirements. To
order the production, demands in tons must be computed
into the required product lengths. For example, 2.75 tons
of paper sheet 1 is equivalent to 1,680,559 inches. However,
customers are willing to accept a small amount of production
over this requirement, which can be justified as the upper
demand.

Generally, to convert master rolls to paper sheets, cutting
patterns must be determined. Cutting patterns are possible
combinations of products with the same grammage dimin-
ished by the width of a master roll. Since trim loss occurs if
the cutting pattern width is less than the master roll width, the
company specifies the minimum width of a cutting pattern
that is allowed to be cut.

Two non-identical cutting machines are considered in this
settings – the cutter with one transversal knife and the cutter
with two transversal knives. Each machine has three ad-
justable longitudinal knives (excluding two longitudinal trim
knives) as shown in Figure 1. The number of longitudinal
knives limits the number of product types in each cutting
pattern. For the machine with one transversal knife, the
lengths of all products assigned to each cutting pattern must
be equal, whereas two different lengths are also feasible for
cutting patterns of the two-transversal knife machine. In other
words, cutting patterns of a one-transversal knife cutter are
a subset of those of a two-transversal knife cutter.

This paper proposes a methodology to allocate demands
to different cutters considering machine capacity constraints
while minimizing the total paper loss. The paper loss is
of three types, including trim loss, set up loss, and over-
production loss. First, the trim loss in the longitudinal
direction occurs if the width of a cutting pattern is less than
the width of a master roll, and the trim loss in the transversal
direction occurs if the required lengths of products in each
cutting patterns are different. Second, the set up loss arises
when we start a new master roll or a new cutting patterns.
The over-production loss occurs if we produce more than the
acceptable demand levels.

III. SOLUTION METHODOLOGY

Pre-assigning products to cutters and optimizing cutting
patterns of each cutter may lead to a suboptimal solution. We

Fig. 1. 1-transversal and 2-transversal knife cutters

thus propose a methodology to minimize the total paper loss
across all the machines as the following. First, an MINLP
model of this problem is formulated. The nonlinearity con-
straints are relaxed by pre-determining a set of all possible
cutting patterns for each cutter. Details of the heuristics to
generate cutting patterns is included in Section III-A. Once
the cutting patterns become model parameters, the MINLP
model is transformed to a MILP model as discussed in
Section III-B.

A. Cutting Pattern Heuristics

Since products may use various grades and grammages of
master rolls. We classify them into product groups so that
each group can be cut via the same cutting pattern using
the same type of master roll. Then, the heuristics is used to
generate all feasible cutting patterns of each product group.

Due to machine specification, the feasible cutting patterns
of the one-transversal knife cutter must have equal product
length, and the feasible cutting patterns of the two-transversal
knife cutter may have at most two different product lengths.
Therefore, the feasible cutting patterns of the one-transversal
knife cutter are a subset of those of the two-transversal knife
cutter.

Before illustrating the heuristics, let us first define the
following notations:
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Wmax : Maximum width of cutting patterns (inches)
Wmin : Minimum width of cutting patterns (inches)
Nmax : Maximum number of longitudinal cuts in each

cutting pattern
li : Length of product i (inches)
wi : Width of product i (inches)
nij : Number of units of product i in pattern j,

with nj = {n1j , n2j , . . . , npj}

Each feasible cutting pattern j is a set of number of units
of product i in a pattern j or nij whose combined width
wi is less than the width of a master roll, Wmax, but greater
than the minimum width of a cutting pattern, Wmin. Different
cutting patterns correspond to different placement positions
of the longitudinal and the transversal knives are generated.
The total number of units of product in the cutting pattern is
limited by the number of longitudinal cuts Nmax. Obviously,
each cutting pattern generates a trim loss if the total paper
width in the cutting pattern is less than Wmax or the total
length of each product in the cutting pattern are not equal.

In the first step, all cutting patterns are generated with the
constraints on the minimum and maximum of the cutting
pattern width (Wmin and Wmax), the maximum number of
longitudinal cuts in each cutting pattern (Nmax), and the
constraint of the number of transversal knives. We adopt
the algorithm by Westerlund et al. [7] whose concept is
summarized below. Starting from an initial empty cutting
pattern,

• Step 1: Compute the maximum number of each product
i for the given cutting pattern. If the number of units
in all products have already reached their maximum
allowed, this means all feasible cutting patterns have
been generated and we stop here.

• Step 2: For each product i, if the number of units has
reached the maximum allowed, reset the number of units
to zero. Otherwise, add one unit to each product i. If
all products have reached the maximum allowed, stop.

• Step 3: Repeat Step 2 until the total width in the
cutting pattern exceeds Wmin. This step creates a cutting
pattern.

• Step 4: Using the cutting pattern obtained in Step 3, go
to Step 1.

From the set of cutting patterns generated above, the
cutting patterns with different paper lengths are removed
to satisfy the constraint of having one transversal knife as
well as more than two different paper lengths are removed
to satisfy the constraint of having two transversal knives.
These cutting pattern are used as parameters in the MILP
model.

Table II shows the feasible cutting patterns for one-
transversal and two-transversal knife cutters based on the
product specifications in Table I. For example, the first
pattern cuts three units of product no. 1 and none of the
others, and the second pattern cuts two units of product no.4
and one unit of product 6, and so on. In this example, the
maximum width of cutting pattern is 96 inches, the minimum
width of cutting pattern is 89 inches, and the maximum
number of longitudinal cuts equals 4.

TABLE II
FEASIBLE CUTTING PATTERNS

No. Pattern Total width Cutting length
1 [3, 0, 0, 0, 0, 0, 0, 0, 0] 93 1
2 [0, 0, 0, 2, 0, 1, 0, 0, 0] 95.5 2
3 [0, 0, 3, 1, 0, 0, 0, 0, 0] 95 2
4 [0, 1, 3, 0, 0, 0, 0, 0, 0] 94 2
5 [0, 2, 0, 0, 0, 1, 0, 0, 0] 93.5 2
6 [0, 0, 3, 0, 1, 0, 0, 0, 0] 93 2
7 [0, 0, 0, 0, 2, 1, 0, 0, 0] 91.5 2
8 [2, 0, 0, 1, 0, 0, 0, 0, 0] 91 2
9 [2, 1, 0, 0, 0, 0, 0, 0, 0] 90 2
10 [2, 0, 0, 0, 1, 0, 0, 0, 0] 89 2
11 [1, 0, 0, 2, 0, 0, 0, 0, 0] 89 2
12 [0, 0, 0, 0, 0, 0, 4, 0, 0] 96 1
13 [0, 0, 0, 0, 0, 0, 0, 0, 4] 96 1
14 [0, 0, 0, 0, 0, 0, 3, 0, 1] 96 2
15 [0, 0, 0, 0, 0, 0, 2, 0, 2] 96 2
16 [0, 0, 0, 0, 0, 0, 1, 0, 3] 96 2
17 [0, 0, 0, 0, 0, 0, 1, 2, 0] 94 2
18 [0, 0, 0, 0, 0, 0, 0, 2, 1] 94 2

B. MILP Model

Basically, models to minimize trim loss are formulated
as MINLP models. In this paper, since cutting patterns are
specified using the heuristics in the previous section, the
non-linearity constraints are relaxed. Thus the MINLP model
becomes a MILP model. Unlike previous models that focus
on minimizing trim loss in a given machine, we propose
a mathematical model to select proper cutters and cutting
patterns as follows.

Index:
I : A set of products {1, 2, . . . , p}
J : A set of cutting patterns {1, 2, . . . , t, t+ 1, . . . , q}

{1, 2, . . . , t} are equal length patterns
{t+ 1, t+ 2, . . . , q} are 2-length patterns

K : A set of master rolls {1, 2, . . . , r}
C : A set of cutters {1, 2}

{1} is a one-transversal knife cutter
{2} is a two-transversal knife cutter

Parameters:
L : Length of master roll

lmin,i : Minimum required length for product i
lmax,i : Maximum required length for product i
Pmin : Minimum pattern length

S : Setup loss
M : a huge number

Capc : Capacity of cutter c

Decision variables:
pjkc : Cutting length of pattern j in master roll k at

cutter c
xijkc : Number of cuts of product i in pattern j, master

roll k at cutter c
ai : Total cutting length of product i

yjkc =

{
1 if pattern j is used in master roll k at cutter c
0 Otherwise
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Ykc =

{
1 if master roll k is used at cutter c
0 Otherwise

s+i : Amount of product i exceeding the maximum
required length

s−i : Amount of product i under the minimum required
length

U+
c : Number of rolls exceeding the capacity of cutter c

U−
c : Number of rolls under the capacity of cutter c

Umax : Maximum number of rolls exceeding the cutter
capacity

min z =
∑
k∈K

∑
c∈C

YkcWmaxL−
∑
i∈I

aiwi +
∑
i∈I

s+i wi

+M Umax (1)

subject to∑
k∈K

Ykc + U−
c − U+

c = Capc ∀c ∈ C (2)

U+
c ≤ Umax ∀c ∈ C (3)∑

j∈J

(pjkc + S yjkc) ≤ Ykc L ∀k ∈ K, ∀c ∈ C (4)

q∑
j=t+1

yjk1 = 0 ∀k ∈ K (5)

pjkc ≤ Lyjkc ∀j ∈ J, ∀k ∈ K, ∀c ∈ C
(6)

pjkc ≥ Pmin yjkc ∀j ∈ J, ∀k ∈ K, ∀c ∈ C
(7)

xijkcli ≤ pjkc ∀i ∈ I, ∀j ∈ J, ∀k ∈ K,

∀c ∈ C (8)∑
j∈J

∑
k∈K

∑
c∈C

nij lixijkc = ai ∀i ∈ I (9)

ai ≥ lmin,i ∀i ∈ I (10)

ai − s+i + s−i = lmax,i ∀i ∈ I (11)
Ykc ≥ Yk+1c ∀k ∈ K \ r, ∀c ∈ C

(12)

where

xijkc ∈ Int ∀i ∈ I, ∀j ∈ J, ∀k ∈ K, ∀c ∈ C

Ykc ∈ {0, 1} ∀k ∈ K, ∀c ∈ C

yjkc ∈ {0, 1} ∀j ∈ J, ∀k ∈ K, ∀c ∈ C

pjkc ≥ 0 ∀j ∈ J, ∀k ∈ K, ∀c ∈ C

ai, s
+
i , s

−
i ≥ 0 ∀i ∈ I

U+
c , U−

c ∈ Int ∀c ∈ C

Umax ∈ Int

A MILP model with multiple objectives is formulated.
First, cutters are selected to minimize the maximum over ca-
pacities among cutters and then cutting patterns are selected
to minimize paper loss as shown in (1). Paper loss include
trim loss, set up loss, and over-production loss. Since we
assume that the demand must be satisfied within machine
capacities, constraints (2) and (3) determine if we need to
produce over machine capacities and the maximum over
capacity. Constraints (4) force that the length of all cutting
patterns assigned to each master roll plus the set up loss
must be less than or equal to the length of a master roll.

Constraints (5) force that cutting patterns with 2 lengths
cannot be assigned to the single transversal knife machine.
Constraints (6) establish that if pattern j exists in master roll
k cutter c, then yjkc = 1. Then, yjkc is used to calculate
set up loss. Constraints (7) specify that the cutting length of
every used cutting pattern must exceed the minimum length.
Constraints (8) force that product length in each cutting
pattern cannot exceed the cutting length. Constraints (9) are
used to calculate the total cutting length of each product.
Constraints (10) are the demand constraints representing
that the total cutting length must satisfy the demand. In a
paper sheet production, customers accept excess amount of
production over the demand as long as it is not over the
maximum acceptable level. Amount of production beyonds
the maximum acceptable level is considered loss. Constraints
(11) are used to determine if this loss is occurred. Constraints
(12) force to sequentially used master rolls. These constraints
are developed to reduce alternative solutions with an attempt
to find the optimal solution faster. They do not affect the
optimal solution.

IV. EXPERIMENTAL RESULTS

The MILP model in Section III-B is used to solved
industrial cases whose specifications of master rolls shown
in Table III. The width of master roll is 96 inches and the
length is 525,000 inches. Due to longitudinal trim loss, the
company does not allow to use any patterns with the width
lower than 89 inches. All cutting patterns generated from the
heuristics already consider this requirement. Due to set up
loss, the company does not allow to cut any patterns that are
shorter than 10,000 inches in length. Additionally, the set
up loss of 3,500 inches occurs once we start a new cutting
pattern.

In terms of product demands, the product specifications
including paper grammages, sheet widths and sheet lengths
are already arranged into feasible cutting patterns. Therefore,
the minimum and maximum required cutting lengths of
each product along with cutting patterns are used as model
parameters. Then, the MILP model selects proper cutters and
cutting patterns for each product and determines an optimal
number of cuts for each cutting pattern that minimizes the
machine over capacities and the total loss.

TABLE III
SPECIFICATIONS OF MASTER ROLLS FROM REAL SETTINGS

Parameter Value
Roll width (Wmax) 96 inches
Acceptable cutting pattern width (Wmin) 89 inches
Roll length (L) 525,000 inches
Set up length (S) 3,500 inches
Minimum pattern length (Pmin) 10,000 inches

To illustrate the solutions from the MILP model, the
product specifications in Table I as well as the feasible
cutting patterns in Table II are used as the model inputs,
with the results shown in Table IV. Four master rolls are cut
via cutter 1 and eight master rolls are cut via cutter 2. In
this case, we limit the machine capacities to 8 rolls. Since
cutter 1 has a single transversal knife, patterns 12 and 13,
which have one cutting length, are assigned to this machine.
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Pattern 12 is used to cut product 7 and pattern 13 is used
to cut product 9. For cutter 2, any feasible cutting patterns
can be assigned. The optimal solution selects pattern 4 for
products 2 and 3, pattern 15 for products 7 and 9, pattern 11
for products 1 and 4, pattern 5 for products 2 and 6, pattern
10 for products 1 and 5, pattern 17 for products 7 and 8,
pattern 1 for product 1, and pattern 6 for products 3 and 5.
The number of cuts for each product in each pattern is in
column ”Cuts” in Table IV.

TABLE IV
AN EXAMPLE OF SOLUTIONS

Cutter Roll Product no. Pattern Cuts
1 1 9 13 15115
1 2 7 12 14900
1 3 7 12 14900
1 4 7 12 14900
2 1 2 4 14486
2 1 3 4 19314
2 2 9 15 5343
2 2 7 15 5267
2 2 4 11 14829
2 2 1 11 7759
2 3 2 5 14486
2 3 6 5 13037
2 4 1 10 10309
2 4 5 10 22165
2 4 1 11 1737
2 4 4 11 3320
2 5 7 17 14900
2 5 8 17 21729
2 6 7 15 14900
2 6 9 15 15115
2 7 1 1 2992
2 7 2 4 10815
2 7 3 4 14420
2 8 3 6 19314
2 8 5 6 26075

We also apply the MILP model to other industrial cases.
Table V shows the experimental results of problems with
single-product groups. We found that the total loss from
the MILP model is 4.6% on average, which corresponds
to 25.8% improvement compared to the total loss due to
a current method used by the company, where the cutting
patterns are assigned based on worker experiences.

Table VI shows the experimental results of problems with
two-product groups. The optimal solutions cannot be found
in 9 out of 10 problem sets since the MIP solver runs out of
memory. In those cases, only the best found solutions and
their percent gaps are shown in the table. Even though the
MILP model cannot find optimal solutions, we found that
the average total loss from the MILP model is 3.1%, which
corresponds to 41.9% improvement over the current method
used by the company.

V. CONCLUSION

Most of the previous works to minimize paper trim loss
assume that products are preassigned to machines. Therefore

they focused on selecting proper cutting patterns for each
machine, which may provide sub-optimal solutions. This
paper proposes an MILP model to select cutters and cutting
patterns with the objectives to balance the machine capacities
and minimize the total loss. We consider two types of
cutters – one-transveral and two-transveral knife machines,
and three types of losses – trim loss, set up loss, and over-
production loss. Generally, the models to minimize trim loss
are formulated as MINLP. In this paper, we transform the
non-linearity constraints by pre-specifying cutting patterns
with a heuristics. Once cutting patterns are model parameters,
the MINLP model becomes a MILP model.

From the experiments of 20 industrial cases having a single
product group, we found that the MILP model provides on
average 4.6% loss, which corresponds to 25.8% improve-
ment over the company current method based on worker
experiences. Also, the computational time of the proposed
method is less than a minute. However, for the cases of
two product groups, the optimal solutions of many problem
sets cannot be found due to memory exhaustion. However,
compared to the company current method, the MILP model
provides on average 3.1% total loss, corresponding to 41.9%
improvement over the current method.

Due to the issue of computational time, the proposed MILP
model may not be proper for large problems having multiple
product groups. Other models or heuristics are needed to find
(near) optimal solutions within an acceptable search time.
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TABLE V
TEST RESULTS OF A SINGLE PRODUCT GROUP UNDER REAL SETTINGS

Problem Problem size Computational % Loss
Products Cutting patterns time (sec) MILP Current method % Difference

1 2 2 0.05 3.72 3.98 6.53
2 3 9 1.81 1.61 2.3 30.00
3 3 12 53.35 2.36 3.4 30.59
4 3 15 1.06 3.23 5.67 43.03
5 4 9 96.6 5.46 6.81 19.82
6 4 10 1.57 5.98 7.33 18.42
7 4 10 7.19 4.55 6.14 25.90
8 4 10 0.05 3.93 5.89 33.28
9 4 15 1.09 3.5 4.16 15.87
10 4 16 9.67 5.72 7.4 22.70
11 4 16 18.03 3.81 4 4.75
12 5 19 45.03 2.41 3.46 30.35
13 6 23 3.35 3.26 4.58 28.82
14 6 47 4.29 7.89 8.5 7.18
15 6 48 127.06 4.97 7.66 35.12
16 7 19 6.72 2.22 3.54 37.29
17 8 31 3.59 8.54 10.34 17.41
18 9 50 41.71 4.15 4.69 11.51
19 10 40 189.08 7.11 13.2 46.14
20 13 67 108.89 6.927 14 50.57

TABLE VI
TEST RESULTS OF TWO PRODUCT GROUPS UNDER REAL SETTINGS

Problem Problem size Computational %Gap % Loss
Products Cutting patterns time (sec) MILP Current method % Difference

1 6 21 13,666 10.93 1.66 2.74 39.5
2 7 25 12,710 6.24 2.19 2.98 26.6
3 7 28 13,708 3.38 3.09 3.70 16.6
4 7 28 14,692 5.35 2.57 4.79 46.4
5 8 25 2,433 2.66 3.84 6.91 44.5
6 8 26 10.28 optimum 4.39 7.35 40.3
7 9 18 110,000 5.46 2.83 7.73 63.4
8 10 57 5,972 7.52 2.80 7.47 62.5
9 12 40 8,256 4.69 5.23 8.08 35.3
10 13 66 9,177 7.15 2.82 5.07 44.3
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