
 

 
Abstract—Difficulties of the finite difference method occur 

when a boundary does not lie on the mesh points in the 
overlaid meshpoint array but passes between them.  To 
overcome this limitation and at the same time to effect high 
precision solutions to the curvilinear problem a solution is 
described which extends the internal space of the geometry to 
the other side of the enclosing boundary by analytic 
continuation. The boundary potential itself is incorporated into 
the values of mesh points near it by interpolation from the 
boundary. Using this technique precisions of the order of ~10-13 
have been obtained for the concentric sphere geometry. Thus a 
fundamental limitation of the finite difference method has been 
removed. 

Index Terms—Finite Difference Method, curvilinear 
boundaries, analytic continuation, high precision. 

I. INTRODUCTION 

HE finite difference method (FDM) is a simple 
computational tool for finding the solution to boundary 

value problems by an iterative method [1].  The solution is a 
function, having fixed values on the boundary, satisfying a 
differential equation at all interior points. The method 
involves overlaying a set of equally spaced meshpoints over 
the geometry and then relaxing the mesh  

For problems having the boundaries lying on meshpoints, 
a multi region process has been previously described in a 
series of papers [2]-[8] which has demonstrated the high 
precision capabilities of the FDM process when both multi 
regions and high order algorithms are used. 

A serious limitation affecting the precisions obtained by 
the current FDM method occurs when the boundary does 
not lie on the meshpoints themselves but passes between 
meshpoints as will occur for curvilinear boundaries. This 
report is directed to the solution of this problem. 

As the solution is reasonably general the discussion will 
be restricted to cylindrical symmetric electrostatics in which 
both Laplace’s equation and cylindrical symmetry are 
assumed. The solution of this problem will have immediate 
applicability to field of electron and ion optics.  

A.   Background, the FDM process. 
 In order to both standardize our notation and emphasize 
certain features of FDM, a quick overview of the FDM 
process is useful [2]. Consider figure 1 in which an array of 
mesh points is overlaid on a geometry represented by three 
connected line segments all lying on either rows or columns 
of meshpoints. This geometry represents a closed cylinder in             
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three dimensions.  It is noted that potentials of meshpoints 
falling on the boundary are constant through the relaxation 
process.  Points strictly within the geometry will be 
designated as ingeometry points 

 

Fig.  1.   A cylinder is shown with its boundaries lying on 
meshpoints and the potentials on the various segments are 
indicated. 
 
 In order to relax such a mesh, the points of the mesh are 
stepped through in a sequential manner.  At each point the 
value of the potential is evaluated by means an algorithm 
using the values of the surrounding mesh points as input. 
This process is continued until all values have been 
determined during this iteration. Iterations are continued 
until a suitable end criterion is met for the potentials within 
the net; i.e.  the values at all meshpoints have stopped 
changing.  When the end criterion is met, the mesh is said to 
be relaxed and the potentials within the mesh determined.    
B.   Boundaries lying between meshpoints, low order 
estimates 
 If figure 1 is slightly modified (not shown) by having the 
outer boundary pass between meshpoints rather than lie on 
meshpoints, a problem for the relaxation process is 
immediately created, i.e. no mesh point has the boundary 
potential. If we consider the boundary points as outermost 
points of the mesh, the values of these points must somehow 
be estimated in order that the above process is defined. A 
zeroth order estimate would be to set the value of these 
outermost points to the potential of the nearest boundary 
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and would allow the mesh to be relaxed as described above.  
This estimate has the benefit of simplicity in implementation 
while providing a process solution converging to the 
problem solution in the limit of high mesh densities.  The 
downside is of course its inherent lack of precision, since 
the geometry itself has been modified and no longer 
corresponds to the model geometry.   

A slightly improved estimate [9] of the potential of the 
outermost points is to place non integral mesh points on the 
boundary.  Using these points algorithms for points near the 
boundary can be found but include two additional 
parameters describing the vertical and horizontal distances 
from the boundary. These additional parameters make the 
algorithms for near boundary points considerably more 
complex and although it can provide a better estimate for 
the potential near a boundary than the zeroth order estimate, 
this complexity has and likely will preclude its application 
to any but the lowest order algorithms.  

C.   The algorithm development process 

The algorithm development process has been described 
previously [2]-[8] and only a brief summary of its essential 
features is presented here in order to familiar the reader with 
the origin of and the need for a required set of mesh points 
as input to any algorithm used in the relaxation process. As 
a result of this description the class of possible algorithms is 
systematized and its precision ranked by an algorithm 
parameter called “order”.   

About any mesh point in the mesh overlay of the 
geometry there is assumed to be a power series expansion of 
the potential v(r, z) as a function of the relative coordinates 
r, z with respect to the center of the particular mesh point. 
(In this notation the potential at the position of the mesh 
point itself is v (0, 0).)   

The power series expansion of v (r, z) is written: 
(1)  v(r,z)=c0+c1*z+c2*r+c3*z^2+…+c64*z*r^8       

      +c65*r^8  + … + O (j) 
where O (j) (read order j) means terms of order rk zl are 

neglected when k+l> j.  j is called the order of the particular 
class of algorithms generated by this power series. For 
example for an order 8 algorithm, there are 45 cj’s in the 
above expansion. Requiring that v(r, z) satisfy Laplace’s 
equation in a neighborhood of the point produces one 
equation involving the coefficients cj’s and powers of r and 
z.  Further requiring that this equation be true at any point in 
the neighborhood of the central mesh point implies that the 
coefficient of terms rkzl must be zero and results in a set of 
28 equations which are linear in cj in which only the 
coefficients cj appear (along with any parameters from 
Laplace’s equation). Thus an additional 17(45-28) 
additional equations are required for a solution to the entire 
set of cjs.  

In order to find these additional equations it is noticed 
that if equation (1) is evaluated at a neighbor bj of the 
central mesh point its value-v (rj, zj)- may be found using 
(1), whose value is the value of the meshpoint bj and 
assumed known. In this way by forming an equation from 
each of 17 neighboring meshpoints, the 17 additional 
equations may be found and the complete set of 45 
equations determined. As this set is linear all cjs can be 

determined by using the techniques of linear algebra. (It 
should be noted that the set of selected neighboring 
meshpoints must provide a consistent set of linear equations 
which is established during the solution of the equation set. 
Further the resulting algorithm must give a stable solution 
when used in the relaxation process as will be discussed 
below. This set of selected meshpoints is in fact highly 
degenerate since there are many such sets that will satisfy 
the above requirements.)  
 One such set of selected meshpoints used in the 8th order 
algorithm is shown in figure 2.  Seen is that meshpoints in 
the second surrounding ring of the central meshpoint are 
used in the algorithm and must be available, the implication 
of this observation will be discussed in below. As the actual 
solution for any cj involves several hundred terms, the 
visualization of the solution itself is not instructive and is 
not reported. 

  
Fig.  2. The set of 17 mesh points around the central mesh 
point o for a general 8th order mesh point algorithm. 
 
 As the solution ck depends on both the selection of 
meshpoints {bj} and “a” the distance of the meshpoint from 
the axis (a parameter from Laplace’s equation). It may be 
written: 
 (2)   ck = ck_coeff_b0(a)*b0+ ck_coeff_b1(a)*b1+     ….   
where coeff_bj(a) is a truncated power series in a, the 
highest power of a which depends upon the order of the 
algorithm. 
 There are two situations that will be encountered in the 
following: the first is one in which the potential at a 
meshpoint itself is desired.  In this situation only c0 need be 
determined since c0 = v (0, 0).  The second is one for which 
the potential is desired at a point in the vicinity of a 
boundary for which all cj’s must be found. (A benefit to 
evaluating the complete set of cjs is that the solution set may 
then be shown to satisfy the equation set.) 

II. THE SOLUTION FOR EXTERNAL POINTS 

When the geometry of figure 1 is relaxed, points one unit 
from the boundary need to be relaxed using a general mesh 
point algorithm.  Thus using the 8th order algorithm of 
figure 2 on a point one unit below the upper line segment, 
the two upper points of figure 2 are required but are not 
available.  If the upper boundary were in fact to pass 
between the meshpoints, then the upper 6 points of figure 2 
would not be available. The solution to this dilemma is to 
place meshpoints on the other side of the boundary insuring 
that the points one unit from a boundary will have the 
necessary potentials available.  

Laplace’s boundary value problem is known to have an 
analytic solution interior to the geometry and that an 
analytic function may be analytically continued across a 
boundary by requiring that the function and all of its 
derivatives be continuous at the boundary [10]. In this way 
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the space of meshpoints is extended to the other side of the 
boundary. It is noted that in this extended space the 
boundary itself is assumed to be continuous with continuous 
derivatives and that Laplace’s equation is also applicable to 
any point in the continued space. The analytically continued 
meshpoints are designated as external points and since the 
differential equation itself is applicable in this region, the 
algorithms for these points may be found as described above 
with the exception of points closest to the boundary.  These 
points are interpolated from the boundary itself by using 
equation (1). In this manner the potential of the boundary is 
incorporated into net by folding it into the potentials of the 
points near the boundary.   

The set of external points are explicitly constructed from 
the ingeometry points near the boundary by requiring every 
such point have a complete set of four surrounding rings 
available. This will ensuring that an algorithm applied to 
any such point will have the necessary neighboring 
potentials available. 

In order to be able to create separate algorithms for select 
types of external points, the external points themselves are 
classified in the following manner: Near points are defined 
as points of the extended space (external pts + ingeometry 
pts) within a distance delta of the boundary (typically taken 
to be ½). Middle points are those external points that have 
near points as neighbors, far having middle points as 
neighbors, etc.  This will allow algorithms at an external 
point to be created based on the point’s near_far 
classification and hence on the near_far types in its 
immediate neighborhood. 

Figure 3 shows a geometry consisting of 3 line segments 
illustrating the external points and their classifications. 

 

 
Fig. 3 A geometry illustrating the definitions of the near, 

middle, far classifications.  
 
In addition each near_far classification is further divided 

into subtypes depending on the configuration of its 
surrounding neighbors that have a similar or lower near far 
classification as the point itself. In this way a point being in 
a similar neighborhood as other points with the same sub 
classification will use the same algorithm and will allow 
algorithms to be generated depending upon the meshpoint’s 
local neighborhood.   

III. THE ALGORITHMS FOR EXTERNAL POINTS 

A. Algorithms For Middle, Far, …, Pts 

The potential at a middle, far and veryfar pt is found from 
the expansion coefficient c0, described in section 1.3 and 
depends only upon the potential at its neighboring 
meshpoints and the distance “a” of the meshpoint from the 
axis,   It turns out that the stability of an algorithm is 
considerably less sensitive to the selection of its neighboring 
mesh points if feedback from points further from the 
boundary is reduced or eliminated.  This can be done by 
considering points in the selection having a nearfartype less 
than or equal to that of the meshpoint itself.  Thus for 
example the selection of neighboring of points for a middle 
point should not include far, or veryfar points. This rule has 
markedly simplified the search for stable algorithms.  
  Using (2) expression for c0 may be rewritten: 
(3)   c0 =  Σj ( c0_coeff_bj(a)* bj ) 
where bj is the potential of the jth neighbor. 
 It is noted that for any given meshpoint ck_coeff_bj(a) is 
a calculated numerical constant dependent on “a” and is 
constant throughout the relaxation process while bj is the 
potential of the jth neighbor which changes during the 
relaxation process.  Use of this decomposition considerably 
facilitates the relaxation process time since the coefficient of 
each bj, namely, c0_coeff_bj(a), need be calculated only 
once. 

B. Near Point Algorithms 

As mentioned previously the algorithms for near points are 
fundamentally different than the other external points in that 
they involve interpolating the potential from the boundary to 
the point itself. To do this the difference in the potentials 
between the meshpoint and the boundary is found and 
simply added to the boundary potential.  The process is 
given below for a mesh point whose relative distance to the 
boundary is rb, zb. 
 v (r, z) from equation (1) can be written: 
v (r, z)  =  c0 + Σk ck*fk(r, z)  , k = 1 to kmax 
where fk(r, z) can be found from the kth term in the 
following sequence: 
 f1(r,z) = z,  f2(r,z) = r,  f3(r,z) = z^2,  f4(r,z) = z*r,     
 f5(r,z) = r^2, .... 
and kmax is the index of the last term in the sequence rjzl, 
l+j = algorithm order. 
 After evaluating v(r, z) at a point on the boundary (v (rb, 
zb) = vb) the potential at the near meshpoint v(0, 0) can be 
written: 
   v(0,0)   =  vb - Σk ck*fk(rb, zb)   sum k = 1 to kmax, 
kmax  
Inserting (3) for ck it is found after rearranging the 
summations that: 
v(0,0)   =  vb – Σj (Σk { ck_coeff_bj(a) *fk(rb, zb)}  * 
value_bj ) 
 Defining: 
    coeff_bj (a)= Σk {  ck_coeff_bj(a) *fk(rb, zb) }  
which is independent of k, depending only on “a”. 
Finally: 
(4)  v(0,0)   =  vb – Σj coeff_bj (a)*bj. 
 The distinct advantage of this formulation is that the 
calculation involves only one coefficient, coeff_bj (a), 
which as described above may be calculated for the 
meshpoint once prior to the start of the iteration process and 
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greatly reduces the time required to relax the net. In fact 
during the relaxation itself there is no time penalty for the 
interpolation required by the near points as compared with 
the calculation for c0 for any other point in the net.   

IV. STABILITY TESTS 

 Order 2, 4, 6, and 8 algorithms were created for the 
various classifications of meshpoints described above and 
subsequently used in the relaxation of various test meshes.  
Although the algorithms themselves could be readily found, 
when applied to certain geometries stability problems were 
frequently encountered.  The general feature of an 
instability was an observation of unbounded growth of the 
mesh values during successive iterations of process. In view 
of this an algorithm is considered stable if the end criterion 
is met for the relaxation process using this algorithm for all 
geometries in the collection of test meshes.  
 The collection of meshes created for stability tests 
consisted of two types. The first was one constructed of line 
segments while the second constructed using concentric 
spheres.  These test nets provided a variety of different 
neighboring configurations for each point classification. 

A. Linear segmented geometries 

 Linear segmented geometries were constructed with one 
segment being above, below, to the right of, and to the left 
of the ingeometry points. The other segments were either 
horizontal or vertical. This type of construction was made so 
that within any particular geometry only one type of 
meshpoint classification would be tested.  The potential on 
all segments was set at 10 so that the after relaxed potential 
at any point in the net would also be 10. This selection of 
the boundary potentials provided a zeroth order check on 
the algorithm itself and on the availability of its required 
neighbors. 
 Figure 3 gives an example of a scaled version of one of 
geometries for having external points above ingeometry 
points.  For each non horizontal or vertical segment the 
segment started and ended on meshpoints and its angle was 
varied in 1 degree increments.  A spawned set of geometries 
with the segment at the same angle was formed by slightly 
incrementing the position of the starting and ending points.  
Further sets of geometries were formed by subdividing the 
angle itself by fractions of a degree.  In each of these 
geometries a given type of meshpoint would have a 
different surrounding neighborhood and hence be tested 
under a variation of the configuration of the meshpoints in 
its neighborhood. This construction generated over 3000 
distinct geometries and was the stability test set for line 
segmented geometries. 
 Stable algorithm sets were found for order 2, 4, 6, and 8. 
It should be noted that while for orders 2 and 4 the stable 
algorithms were easily determined, finding stable algorithms 
for the higher order algorithms became progressively more 
difficult. The procedure was one of trial and error and 
involves selecting a set of neighboring meshpoints, finding 
the algorithm, and determining its stability. If unstable 
another set of mesh points was selected and the process 
continued until a stable algorithm was found.  As mentioned 
above the search was simplified by minimizing the feedback 
from meshpoints with a higher nearfartype when possible 
for all except near types for which a reasonably symmetric 
set of neighboring points could be used.  It should be noted 

that even for the high order algorithms the stable algorithm 
was in fact highly considerably degenerate meaning an 
algorithm created using many different neighbor sets would 
also be stable.   
 It is clear that the connection point between any two 
segments shown in figure 3 is a singular point in the 
potential space.  This is true as the potential is not 
differentiable at this point.  The best one can do for points in 
the vicinity of the singular points is to estimate the potential. 
This is done here using a low order algorithm, a procedure 
introduced and successfully applied previously [8].  

B. Geometries With Curved Boundaries 

To simulate a geometry with general curved boundaries, 
concentric circular arcs were selected (representing 
concentric spherical shells in 3 dimensions) an example of 
which is shown in figure 4. 

 
Fig. 4. A geometry consisting of 2 concentric spheres along 
with a horizontal line at r=20 intersecting the outer 
boundary at rb, zb. 
 
 The collection of test sets for concentric spheres consisted 
of several hundred geometries of the configuration type 
shown in figure 4. Tests were done over this set using the 
stable algorithms found for the segmented geometries and, 
with few exceptions, were found to be stable for the 
concentric sphere geometries. For these exceptions, slight 
modifications to the algorithms were made and the modified 
algorithms retested for stability. 
 In this manner stable algorithms were found orders 2 to 8 
for both the line segmented and concentric sphere test sets.  
Being stable is of course a necessary condition for a useful 
solution, but gives little indication as to the precision of the 
process itself. Precision tests will be discussed in the next 
section. 

V. PRECISION TESTS 

 Three types of precision tests have been made. The first, a 
zeroth order test, already mentioned and completed during 
the stability trials, was to set all boundary potentials to the 
same value and to verify that all relaxed potentials attained 
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that value. The second was to estimate the potential on the 
boundary from the potentials in the relaxed mesh at 
meshpoints near the boundary. The third and the one most 
indicative of the actual precision was to find the absolute 
error for the relaxed mesh using the concentric sphere 
geometry since the errors can be determined for this 
geometry as theoretical values for the potential at all points 
are known. 

A. Low Order Precision Tests -- Boundary Position 
Estimation From The Relaxed Mesh 

 This first low precision test is to see whether an estimate 
for the boundary position from the relaxed mesh potential 
data is reasonably close to the actual position of the 
boundary in the model geometry.  As an example a simple 
segmented geometry similar to that shown in figure 1 is 
created in which all segments except the left fall on 
meshpoints. The left vertical boundary being at z = .6 falls 
in between the overlaid mesh point array and is shown in 
figure 5.  
 

 
Fig. 5 The geometry used for testing the position of the left 
boundary from a fit to the potentials along a horizontal line 
at r=4. The left vertical boundary falls in between 
meshpoints.  
 
 In figure 6 the potential values along the line r=4 are 
shown near the left boundary along with a fourth order fit to 
the data points. From the location of the point z(r=4, v=10) 
on the fitted curve the z coordinate of the left boundary line 
can be inferred.  It was found to be .598 which is within 
.002 of the position of the actual boundary, .600. The 
residual error in locating the position of the boundary from 
the relaxed data is likely due to two causes; first, the 
coarseness of the mesh overlay and second, the presence of 
singular points at the upper two corners of the geometry.  
Within these limitations however, the above test shows that 
relaxed potential distribution reasonably infers the position 
of the model boundary.  
 Also seen in figure 6 is the linear nature of the solution 
near the boundary which results from the requirement that 
the analytically continued solution have continuous 
derivatives at the boundary. 

 
Fig. 6 A plot of the potential at meshpoints near the left 
vertical boundary along the line r=4.(see Fig. 5). For a 
discussion see text. 
 
 A similar test was made from the relaxed solution of the 
concentric sphere geometry of figure 4.  The potential at 
meshpoints along the line r = 20 and near the upper sphere 
(the short line shown in figure 4) is plotted in figure 7 
together with a 5th order fit to the data and as described 
above an estimate of the position of the boundary can be 
inferred from the location of the point zb(r=20,v=10) on the 
fitted curve. 

 
Fig.  7: The solid points are a plot of the after relax 
potentials at meshpoints along a horizontal line in sphere 0 
at r = 20 and near z=7 (see figure 4).  A 5th order fit to the 
data is given by the solid curve. 
 
 From this figure it is seen that zb (rb=20, v=10) = 
7.63932 whereas the theoretical value of the intersection of 
the line r=20 with the outer sphere is 7.639320. Thus the 
position of the actual boundary is again close to that inferred 
from the after relax potentials indicating that the inferred 
boundary is in approximately the right place in the relaxed 
net. 
 That the estimate in the latter example the boundary 
position is much closer to that of the geometric model than 
in the former is likely due to the absence of singular points 
in concentric sphere geometries. 
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B. Higher Order Precision Tests Using Spheres 

  In order to do more meaningful precision tests the error 
in the potential at a selection of points within a soluble 
geometry must be found. The fact that the segmented 
geometries both contain singular points and in general do 
not have soluble solutions makes them not useful for these 
tests. Suitable however are the concentric sphere geometries 
as they both have a known theoretical solution and contain 
no singular points. A collection of concentric sphere 
geometries were made consisting of the geometry of figure 
4 the remaining elements of the collection scaled from this 
geometry using a scale factor of 2.  Thus con_sphere 0 has 
Rin = 20, Rout = 30, con_sphere 1 (40, 60), etc.  Each 
geometry has been relaxed with the order 8 algorithm and 
the errors measured for points within .5 of the median plane 
((Rin +Rout)/2).  From the point error data an average error 
may easily be found for a particular concentric and is 
plotted in figure 7 vs the density points at measured that 
point, the density of the points given by 1/(Dout*Rout),  
where Dout = 2*Rout.  

   Seen is the super linear increase of precision with density; 
namely for the density increase of one order of magnitude 
the error decreases by over 3 orders of magnitude. 
 Although figure 7 was taken from data for the 
measurement sphere in the median plane of the geometry, 
varying the radius of this plane from the inner to outer shell 
had little effect on the error as shown in figure 8 evaluated 
for the geometry with the highest density seen in figure 7. 
(Similar results pertained to the other test spheres as well, 
i.e. the error at the median sphere represented to within a 
factor of 2 or 3 the errors over the entire space, with the 
error distribution becoming flatter for higher densities.)  
 As a line drawn from any point to the center of the 
concentric sphere makes an angle alpha with respect to the z 
axis the distribution of errors vs angle along points in the 
test sphere may be made and is shown in figure 9, again for 
the highest density geometry of figure 7.  
   Seen is that an average error is found to be ~4.4*10-14 and 
is essentially independent of the point’s position on the test 
sphere. 
 

 
 
Fig. 7 The average error vs density for points near the 
median radius of the concentric spheres in the test set. 
 
 

 
Fig. 8 The results of errors for various measurement spheres 
going from the inner shell of the geometry to the outer shell.  
 
 

 
Fig. 9 The error vs theta for our highest density geometry.   
 
 

VI. NOTES OF CAUTION 

1) The first comment refers to the possibility of creating an 
order 10 algorithm set.  Although this was done it was 
observed that finding a stable set of algorithms was 
considerably more difficult than the order 8 algorithm.  The 
difficulty was due in part to the large number of meshpoints 
required (21) for the order 10 algorithm but also to the fact 
that the set of available meshpoints was constrained by 
software to the 3 surrounding rings of the central meshpoint. 
Thus any order 10 algorithm required ~1/2 of the available 
meshpoints contained in these rings.  In a number of 
situations it was not possible to construct a stable algorithm 
without using meshpoints having a nearfarflag strictly less 
than that of the central meshpoint resulting in the value of 
the algorithm at that meshpoint being dependent on 
neighbors further from the boundary hence providing feed 
back from these mesh points.  In addition relaxing the 
concentric sphere geometries in many instances was very 
sluggish and in practice the order 10 algorithm was 
considered unusable is not considered viable at this time.  
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2) The second comment refers to the brittleness of the 
solution. Although the number of test geometries was over 
several thousand and by design had a large and varied 
selection of neighbor configurations, the set was finite.  
Being finite means that there is no assurance of stability 
when a geometry representing a departure from those of the 
test set is considered.  If such a situation is in fact 
encountered in practice, a successful algorithm would need 
to be determined and tested over the now expanded test set.  
This will both expand the stable test set and enhance the 
robustness of the algorithm. As it is likely that for most of 
the actual problems which will be encountered stability will 
not be an issue, further enlarging the test sets does not seem 
particularly useful. 
 

VII. SUMMARY AND CONCLUSION 

 Extending FDM to curvilinear geometries has been 
enabled by expanding the meshpoints overlaid on the 
geometry to points on the other side of the boundary. This 
was done by extending the potential space by analytic 
continuation to points across the boundary.  The process of 
creating the required algorithms for the expanded set of 
meshpoints has been detailed and the algorithm itself 
classified as to the order of the power series used to 
represent the potential near a meshpoint.  Stable algorithms 
have been created for orders 2, 4, 6, and 8 and tested using a 
large selection of test geometries. 
 The precision of the solution and hence the method has 
been determined for concentric spheres for which there is a 
known solution.  It was found for the higher mesh density 
overlays that the precision for the order 8 algorithm was ~ 
<10-13  within the region between the spheres and in fact for 
the maximum density studied the average error for points 
near the median plane was found to be 4.24x10-14.  
 The implication of this study is that the technique 
described in this report is capable of precisions of the order 
of 10-13 thus solving the FDM curvilinear boundary value 
problem. 
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