
 

  
Abstract—A finite volume, cell-centered, density-based flow 

solver on unstructured grids is developed. The Weiss & Smith 
precondition matrix is implemented for solving flows of 
incompressible and variable density fluids at all speeds. The 
AUSMDV (Advection Upstream Splitting Method) scheme with 
a second order reconstruction is given for the explicit 
Runge-Kutta and implicit Lower-Upper Symmetric 
Gauss-Seidel (LU-SGS) time integration methods. Results are 
presented for inviscid flows through a channel with a bump at 
various Mach numbers, driven flows in a square cavity and 
inviscid/viscous flows in a planar supersonic nozzle. The 
performance of the flow solver with and without 
preconditioning is illustrated. General solution enhancement 
and convergence acceleration for steady-state Navier-Stokes 
solutions are attained via the use of inviscid/viscous 
preconditioning. The ability of the solver in providing accurate 
steady-state solutions for transonic and low-speed flow of 
variable density fluids is demonstrated. 
 

Index Terms—Low speed preconditioning, flow solver, 
unstructured grids 
 

I. INTRODUCTION 
OMPUTATIONAL fluid dynamics (CFD) technologies 
are widely used in design and analysis process by 

industry, academia, and research community. The numerical 
flow solvers are challenged with demand to provide answers 
to more complex and wide ranging problems from 
incompressible to high-speed compressible flows. The 
incompressible flows were first addressed by pressure-based 
solution algorithms which are solved in an uncoupled manner. 
At the same time, density-based schemes were developed in 
the context of transonic and supersonic aerodynamic 
applications. These methods employ time-marching 
procedures that use the physical time derivatives, both 
implicit and explicit, to solve the hyperbolic system of 
governing equations. 

A density-based flow solver is developed based on 
unstructured grids. The algorithms employed here are 
designed to compute steady-state flows of incompressible 
and variable density fluids at all speeds over a wide range of 
Mach numbers. The unstructured meshes are used to meet the 
demand of discretizing geometrically complex domains. 
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Traditional time-marching, density-based algorithms have 
been very successful in the computation of high-speed flows. 
However, at low Mach numbers, most of these solvers 
encounter degraded convergence speeds as the ratio of 
acoustic speeds to convective particle speeds increasing. 
Local preconditioning techniques have been first introduced 
to enable the simulation of an incompressible flow in a 
density-based flow solver. They remedy the ill-conditioned 
matrix equations by rescaling the eigenvalues of the 
governing equations. The goal of preconditioning methods is 
to reduce the disparity between the particle and acoustic wave 
speeds so that good convergence properties may be obtained 
at all speeds.  

Three main development groups have appeared in the CFD 
literature for the preconditioning methods. The first group is 
Chorin [1] and Turkel [2], [3] who built a preconditioning 
method based on the artificial compressibility. The Turkel 
system is derived using entropy as the dependent variable. 
The second group including Choi, Merkle [4], Weiss, Smith 
[5], Venkateswaran, and Merkle [6] developed a family of 
preconditioners whose derivation is based on the temperature 
as the dependent variable. Lastly, the third group led by van 
Leer [7], developed a symmetric preconditioner which is 
referred as optimal since it equalizes the eigenvalues of the 
system for all Mach numbers. 

In this paper we describe a finite volume, Navier-Stokes 
flow solver based on an unstructured grid topology that 
employs time-marching algorithm with Weiss-Smith 
preconditioning method. We will present the governing 
equations and the derivation of the preconditioning matrix for 
variable density flows, followed by a description of the 
spatial and temporal discretization. Finally, we present 
several results to demonstrate this methodology, including 
inviscid flows through a channel with a bump; driven flows 
in a square cavity and inviscid/viscous flows in a planar 
supersonic nozzle. These examples will provide a measure of 
the accuracy and performance of the present algorithm. 

II. GOVERNING EQUATIONS 
The fluid motion is governed by the time-dependent 

Navier-Stokes equations [5]. This system of equations, 
written to describe the mean flow properties, is cast in 
integral, Cartesian form for an arbitrary control volume V 
with differential surface area dA as follows:    ∭   +∬[ −  ] ∙   = 0                         (1) 
Where  
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and  ,  ,  , and   are the density, velocity, total energy per 
unit mass, and pressure of the fluid, respectively. The term   
is the viscous stress tensor,   is the heat flux vector, and  =   +   +    is the position vector. For an idea gas, an 
equation of state, typically of the form  =  ( , ) where   
is the fluid temperature, must be specified along with (1) to 
describe the compressibility of the fluids.   

III. PRECONDITIONING 

A. Choice of Preconditioning Methods 
In this section, comparisons have been made between the 

three low speed preconditioning methods introduced by 
Weiss-Smith, van Leer-Lee-Roe (VLR) and Turkle, 
respectively. The VLR preconditioner is better in 
convergence due to yielding the most optimal condition 
number (Fig. 1). In accuracy issues, all these preconditioners 
have the same impact. Although they are different in formula 
structure, they have a common point linked to the coefficient 
as the Mach number approach to zero. The most robust was 
found to be that proposed by Weiss and Smith which suffers 
only from the stagnation point singularity. Thus the Weiss–
Smith preconditioning method is implemented in our solver. 

 
B. Weiss-Smith Precondition Matrix 

According to [5], we transform the original system of 
equations from the conservative variables   to the primitive 
variables  = [ ,   ,   ,   , ]  as follows:        ∭   +∬[ −  ] ∙   = 0                          (2) 

The original non preconditioned Jacobian     ⁄  matrix 
can be replaced to a preconditioning matrix  :     ∭   +∬[ −  ] ∙   = 0                          (3) 

Γ = ⎝⎜
⎛ Θ 0 0 0   Θ   0 0     Θ  0  0     Θ  0 0      Θ − 1             +    ⎠⎟

⎞
 

Where Θ is given by  Θ =  1   −        

Here    is a reference velocity.   =    ,    | | <    | |,      < | | <    ,    | | >    

For the viscous low Reynolds number flows the reference 
velocity should not be smaller than the local diffusion 
velocity  Δ ⁄ . Thus,   = max (  ,  Δ ) 

The resultant eigenvalues of the preconditioned system are 
given by λ  Γ       =  , , ,  +   ,  −  ′ 
where   =  (1 −  )   =      +     α = (1 −     ) 2⁄  β =  ρ +        

we can see that all eigenvalues remain of the order of u as 
long as the reference velocity is of the same order as the local 
velocity. 

IV. SOLUTION PRECEDURE 

A. Data Structure and Grid Entry 
Contrary to structured solvers, the unstructured flow solver 

is much complex in data structure and grid entry due to its 
indirect data addressing. The procedure here is written in 
C++ with a set of classes to describe vertex, face, cell and 
their link. The solver can input the mesh generated by Gambit 
which is easier in partitioning grid over geometrically 
complex domains. 

B. Spatial Discretization 
The preconditioned governing equations are discretized 

spatially using a finite volume scheme wherein the physical 
domain is subdivided into small (nondeforming) hexahedron 
volumes and integral equations are applied to each cell. The 
discrete, inviscid flux vectors appearing in (1) are evaluated 
by AUSMDV (Advection Upstream Splitting Method) 
scheme with a modification to operate effectively at low 
Mach numbers. The schemes introduced by Liou have been 
discussed more thoroughly in [8] and [9]. 

C. Reconstruction 
The solution vector Q used to evaluate the fluxes at cell 

faces is computed using a multidimensional linear 
reconstruction approach. In this approach, higher order 
accuracy is achieved at cell faces through a Taylor series 
expansion of the cell-averaged solution vector about the cell 
centroid:   =   +    ∙                                 (4) 
where   is the displacement vector from the cell centroid to 
the face centroid. This formulation requires determining the 
solution gradient    in each cell. This gradient is computed 
using the Green-Gauss theorem, which in discrete form is 
written as:  

 
Fig. 1 Condition number variation with Mach number 
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  =   ∑                                       (5) 
where   is the volume of the cell,    is the area of the face. 
The average solution vector     is computed by adjacent cell, 
written as:    =   (  +   )                               (6) 

Finally, the gradients    are limited by the coefficient   
so that they do not introduce new maxima or minima into the 
reconstructed data. The Venkatakrishnan limiter [10] is 
implemented on this code. 

D. Temporal Discretization 
An explicit multistage time-stepping scheme and an 

implicit scheme are implemented on the preconditioned 
system using the conservative variables of unknowns.  
1) Explicit Scheme 

The explicit m-stage Runge-Kutta (R-K) scheme which 
solves the equation from time   to time  + ∆  is given by   =                                       (7)   =   −   ∆     (   )                           (8)    ∆ =  ( )                                 (9) 
where  = 1,2,3, …   is the stage counter for the m-stage 
scheme and    is the multistage coefficient for the  th stage. 
2) Implicit Scheme 

The implicit Lower-Upper Symmetric Gauss-Seidel 
(LU-SGS) scheme for (1), see [11], can be described as: 
Forward sweep: ΓΔ  ∗ =         − 0.5 ∑     ∙ ∆  ∗ − : ∈ ( )        ΓΔ  ∗             (10) 
Backward sweep: ΓΔ  = ΓΔ  ∗ − 0.5   ∑     ∙ ∆  − : ∈ ( )        ΓΔ               (11) Res = −     ( ) ∙     
Where D is the diagonal matrix D =      ∆t + 0.5          ( )    

V. RESULT 
In this section, the preconditioning implementation for the 

unstructured flow solver has been assessed using some 
representative cases. The test cases chosen for this purpose 
include inviscid flow past a bump in a channel, laminar 
driven flow in square cavity and planar supersonic nozzle. 
The two dimensional test cases have been geometrically 
represented as three-dimensional cases by simply extending 
the geometry in the spanwise direction. The first result will 
show the performance of the present method for computing 
inviscid flows at various speeds. The second case will 
demonstrate the importance of preconditioning for solving 
low speed flows of variable density fluids. And in the final 
case we demonstrate the performance of the solver in 
transonic flows. 

A. Inviscid Flow Past a Bump in a Channel 
This test case validates the implementation of 

preconditioning for the inviscid flow over a 10% circular arc 
bump at various speeds. The symmetrical computation 

domain is 3×1 with a 129×65 grid partition. Fig. 2 shows the 
results in different methods at 0.01 Mach number over 4000 
iteration cycles. Without preconditioning, the LU-SGS result 
is completely unphysical (Fig. 2a). The solution provided by 
R-K method with preconditioning (Fig. 2b) shows marked 
improvement but not well enough because of the limitation of 
CFL number. This drawback is corrected by using the 
LU-SGS implicit scheme (Fig. 2c). Fig. 3 provides an 
indication of the behavior of implementations of LU-SGS 
with preconditioning method for a range of Mach number. 
Fig. 4 and 5 highlights the convergence history in various 
conditions. Good efficiency across the Mach number range is 
obtained with the preconditioning method. 

 

 

 
(a) LU-SGS, CFL=40, without preconditioning 

 
(b) R-K, CFL=40, with preconditioning 

 
(c) LU-SGS, CFL=40, with preconditioning 

Fig. 2 Density contour at Ma=0.01 

 
(a) Ma=0.1                                           (b) Ma=0.2 

 
(c) Ma=0.7                                          (d) Ma=2.0 
Fig. 3 Mach number contour at various speeds 
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B. Driven Flows in Square Cavity 

This test case, representing a 2-dimensional laminar 
incompressible flow in a square cavity, has been numerical 
investigated in detail by Ghia [12] et al. The computation has 
been made with a uniform velocity at the top wall of the 
cavity. A set of Re numbers (100, 400, and 1000) are 
considered in this case. Fig. 6 and 7 shows the distribution of 
velocity through geometric center of the cavity. Fig. 8 gives 
the streamline pattern at 100 and 1000 Re number. The 
results show great agreement with the numerical simulations 
of Ghia. The convergence history is highlighted in Fig. 9. The 
ability in computation of laminar incompressible flow is 
demonstrated. 

 

 

 

 
Fig. 4 Convergence histories for LU-SGS at various speeds 

 
Fig. 5 Convergence histories with different time integration method 

 
Fig. 6  -velocity along horizontal line through geometric center of cavity 

 
Fig. 7  -velocity along vertical line through geometric center of cavity 

 
(a) Re=100                                         (b) Re=1000 

Fig. 8 Streamline pattern 
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C. Planar Supersonic Nozzle 
In this section, results are presented for a planar nozzle 

which is experimentally investigated by Mason et al [13]. 
This test case serves to validate the implementation of 
preconditioning at transonic flows. Both the (laminar) 
Navier- Stokes and Euler equations have been solved in the 
computation. No-slip condition was used at the wall for the 
Navier-Stokes equations. The inlet Mach number was taken 
as 0.232 and the ratio of the exit static pressure to the 
upstream stagnation pressure was fixed at 0.1135, 
corresponding to the design condition. The results solved by 
different equations are represented by Mach number in Fig. 
10 and 11. Fig. 12 indicates the pressure distribution at wall 
and the axis. Comparisons with the experimental data and 
results in [14] show good agreement. 

 

 

 

VI. CONCLUSION 
In this paper, time-derivative low-speed preconditioning of 

the Navier-Stokes equations, suitable for both incompressible 
and compressible fluids has been successfully implemented 
on an unstructured flow solver. The AUSMDV scheme with 
a second order upwind-biased reconstruction is presented to 
accommodate the preconditioned eigenvalues and 
eigenvectors. Both explicit and implicit schemes are 
developed to march the solution of the preconditioned system 
to steady-state. To demonstrate the accuracy and efficiency 
of the present algorithm three test cases were presented. 
Substantial convergence enhancement and acceleration is 
shown at low Mach numbers when preconditioning is used 
with the inviscid solution. Convergence of the implicit 
scheme remains by far faster than the explicit scheme. 
General convergence enhancement is also demonstrated with 
the use of preconditioning on the Navier-Stokes equations at 
various speeds.  
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Fig. 9 Convergence histories at different Re number 

 
Fig. 10 Mach number contour in the inviscid case 

 
Fig. 11 Mach number contour in the viscous case 

 
(a) axis                                           (b) wall 

Fig. 12 Pressure distribution 
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