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Abstract—In this study, we would like to propose the iterative
algorithm for solving the equilibrium problem and fixed point
problem for the class T mappings which contain various kind
of operators that are found in many problems in applied
mathematics and other fields. We prove that the sequence
xn which is generated by the proposed iterative algorithm
converges strongly to a common element of these two sets.
Furthermore, we give a numerical example which supports our
main theorem in the last part. Our result extended and improve
the existing result of Qiao-Li Dong and Songnian He and many
others.

Index Terms—Class T- mapping, Equilibrium problem, Fixed
Point Problems.

I. INTRODUCTION

THROUGHOUT this paper, we focus on the framework
of a real Hilbert space H with inner product ⟨·, ·⟩ and

norm ∥ ·∥. Let C be a nonempty closed convex subset of H .
First, we recall the basic concept of mappings as shown in
the following:

• T : H → H is said to be nonexpansive if ∥Tx−Ty∥ ≤
∥x − y∥ for all x, y ∈ H . We denote the set of fixed
point of T by F (T ).

• T : H → H is said to be quasi-nonexpansive if F (T )
is nonempty and ∥Tx − p∥ ≤ ∥x − p∥ for all x ∈ H
and p ∈ F (T ).

• T : H → H is said to be the class T if T ∈ T = {T :
H → H|dom(T ) = H and F (T ) ⊂ H(x, Tx)} for all
x ∈ H and H(x, y) := {z ∈ H : ⟨z−y, x−y⟩ ≤ 0} for
all x, y ∈ H . We called H(x, y) a half-space generated
by (x, y).

• f : H → H is said to be an α-contraction if there
exists a constant α ∈ [0, 1) which satisfy the following
statement:

∥f(x)− f(y)∥ ≤ α∥x− y∥, ∀x, y ∈ H.

Since 1967, Halpern introduced an explicit iterative
scheme as shown in the following:

xn+1 = αnu+ (1− αn)Txn, ∀n ≥ 0,

where {αn} ⊂ [0, 1]. He proposed the convergence theorem
which states that the sequence {xn} converges weakly to a
fixed point of T .

In 2004, Xu studied the iteration process {xn} called
viscosity approximation method as shown in the following:

xn+1 = αnf(xn) + (1− αn)Txn, for n ≥ 1,

This work was supported by the Office of Higher Education Commission,
Thailand under the Higher Education Research Promotion

U.Witthayarat and P. Kumam are with the Department of Mathematics,
Faculty of Science, King Mongkut’s University of Technology Thonburi
(KMUTT), Bang Mod, Thrung Kru, Bangkok 10140, Thailand e-mails:
u.witthayarat@hotmail.com(U. Witthayarat) and poom.kum@kmutt.ac.th (P.
Kumam)

where {αn} ⊂ (0, 1) and f : C → C is a contraction.
He also proved the strong convergence theorem of the
sequence {xn} which generated by the above scheme under
the appropriate conditions.

In 2010, Maingè, proposed the viscosity approximation
scheme for quasi-nonexpansive mappings as shown in the
following:

xn+1 = αnf(xn) + (1− αn)Twxn,

where {αn} ⊂ (0, 1) and Tw was generated by Tw =
(1−w)I+wT, w ∈ (0, 1). He also proved the convergence
theorem under the suitable conditions.

Bauschke and Combettes proposed the research about the
properties of a class T mappings. Their method was shown
in the following: for x0 ∈ H

xn+1 = PH(x0,xn)∩H(xn,Tnxn)x0.

Recently, Dong and He studied the shrinking projection
method for the class of T mappings and proved a strong
convergence theorem.

Motivated and inspired by the previous mentioned re-
searches, we combined all the ideas and then proposed
the iterative scheme for finding the common solution of
fixed point problems for class T mappings and equilibrium
problem as shown in the following:

x0 = x ∈ C,
F (un, y) +

1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

xn+1 = αnPH(xn,Snun)f(xn) + (1− αn)Snun,
(1)

for all n ∈ N, where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞)
satisfy the appropriate conditions.

II. PRELIMINARIES

Definition II.1. A sequence of mappings {Tn} having a
common fixed point is said to satisfy the condition (Z)
if every bounded sequence {xn} with ∥xn − Tnxn∥ → 0
satisfies ωw(xn) ⊂

∩∞
n=1 F (Tn).

Definition II.2. A mapping T is called demiclosed at y ∈ H
if Tx = y whenever {xn} ⊂ H, xn ⇀ x and Txn → y.

Lemma II.3. Let C be a closed convex subset of a real
Hilbert space H and let T : C → C be a nonexpansive
mapping such that F (T ) ̸= ∅. If a sequence {xn} in C is
such that xn ⇀ z and xn − Txn → 0, then z = Tz.

For solving the equilibrium problem for a bifunction F :
C × C → R, let us assume that F satisfies the following
conditions:

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0

for all x, y ∈ C;
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(A3) for each x, y, z ∈ C,

lim
t↓0

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower
semicontinuous.

Lemma II.4. Let C be a nonempty closed convex subset of
H and let F be a bifunction of C × C into R satisfying
(A1)-(A4). Let r > 0 and x ∈ H . Then, there exists z ∈ C
such that

F (z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0 for all y ∈ C.

Lemma II.5. Let C be a nonempty closed convex subset of
H and let F be a bifunction of C×C into R satisfying (A1)-
(A4). For r > 0 and x ∈ H , defined a mapping Tr : H → C
as follows:

Tr(x) =
{
z ∈ C : F (z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
(2)

for all z ∈ H . Then, the following conclusions hold:
(1) Tr is single-valued;
(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

∥Tr(x)− Tr(y)∥2 ≤ ⟨Tr(x)− Tr(y), x− y⟩;

(3) F (Tr) = EP (F );
(4) EP (F ) is closed and convex.

Lemma II.6. Let {an} ⊂ [0,∞), {bn} ⊂ [0,∞) and
{cn} ⊂ [0, 1) be sequences of real numbers such that

an+1 ≤ (1− cn)an + bn, for all n ∈ N,
∞∑

n=1

cn = ∞ and
∞∑

n=1

bn < ∞.

Then, limn→∞ an = 0.

Lemma II.7. Let C = {z ∈ H : ⟨x−u, z−u⟩ ≤ 0}. Assume
x ̸= u and x0 /∈ C. Then

PCx0 = x0 −
⟨x− u, x0 − u⟩

∥x− u∥2
(x− u).

III. MAIN RESULT

Lemma III.1. Assume a sequence of mappings Sn ∈ T :
H → H satisfies condition (Z). If x∗ is a solution of F
where F :=

∩∞
n=1 F (Sn) ∩ EP (F ) ̸= ∅ and {xn} is a

bounded sequence such that ∥Snxn − xn∥ → 0, then

lim
n→∞

sup⟨PH(xn,Snun)f(x
∗)− x∗, xn − x∗⟩ ≤ 0. (3)

Proof: Since {xn} is a bounded sequence and {Sn}
satisfies condition (Z) which means that every bounded
sequence {xn} satisfies ωw(xn) ⊂ F . Hence, there exists x̄
and a subsequence {xnk

} of {xn} such that xnk
⇀ x̄ as

k → ∞ and such that

lim sup
n→∞

⟨f(x∗)−x∗, xn−x∗⟩ = lim
n→∞

⟨f(x∗)−x∗, xnk
−x∗⟩.

Since ∀v ∈
∩∞

n=1 F (Sn), then ⟨f(x∗) − x∗, v − x∗⟩ ≤ 0
obviously leads to

lim sup
n→∞

⟨f(x∗)− x∗, xn − x∗⟩ = lim
n→∞

⟨f(x∗)− x∗, xnk
− x∗⟩

= lim
n→∞

⟨f(x∗)− x∗, x̄− x∗⟩

= ⟨f(x∗)− x∗, x̄− x∗⟩ ≤ 0.

Next, we consider in two cases, first if f(x∗) ∈
H(xn, Snun), then PH(xn,Snun)f(x

∗) = f(x∗) and it is
obvious that lim supn→∞⟨f(x∗) − x∗, xn − x∗⟩ ≤ 0 can
imply lim supn→∞⟨PH(xn,Snun)f(x

∗)− x∗, xn − x∗⟩ ≤ 0.
The second case is f(x∗) /∈ H(xn, Snun). Then by the
definition of H(xn, Snun), we have

⟨xn − Snun, f(x
∗)− Snun⟩ > 0. (4)

From x∗ ∈ F ⊂ H(xn, Snun), we get

⟨xn − Snun, xn − x∗⟩ = ∥xn − Snun∥2

+⟨xn − Snun, Snun − x∗⟩
> 0. (5)

From Lemma (II.7), it follows

PH(xn,Snun)f(x
∗) = f(x∗)

−
⟨xn − Snun, f(x

∗)− Snun⟩
∥xn − Snun∥2

×(xn − Snun).

(6)

Combining (4), (5) and (6) together, we obtain

⟨PH(xn,Snun)f(x
∗)− x∗, xn − x∗⟩

= ⟨f(x∗)− x∗, xn − x∗⟩

−
⟨xn − Snun, f(x

∗)− Snun⟩
∥xn − Snun∥2

⟨xn − Snun, xn − x∗⟩

< ⟨f(x∗)− x∗, xn − x∗⟩. (7)

We can conclude that

lim
n→∞

sup⟨PH(xn,Snun)f(x
∗)− x∗, xn − x∗⟩ ≤ 0.

Theorem III.2. Let H be a real Hilbert space and F be a
bifunction from C × C to R satisfying (A1)-(A4). Let Sn :
H → H be a mapping in class T and satisfies the condition
(Z) such that F :=

∩∞
n=1 F (Sn) ∩ EP (F ) ̸= ∅. Let f be

an α-contraction mapping of H into itself and {xn} be a
sequence generated by the following:

x0 = x ∈ C,
F (un, y) +

1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

xn+1 = αnPH(xn,Snun)f(xn) + (1− αn)Snun,
(8)

for all n ∈ N, where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞)
satisfy the following conditions:

(1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
(2)

∑∞
n=1 |αn+1 − αn| < ∞,

(3) lim infn→∞ rn > 0.

Then, {xn} converges strongly to z ∈ F :=
∩∞

n=1 F (Sn) ∩
EP (F ), where z = PFf(z).

Proof: Step 1. From Sn ∈ T and F (Sn) ⊂
H(xn, Snun) for all x ∈ H . Therefore, we have
PH(xn,Snun)p = p for all p ∈ F.
Since un = Trnxn, we consider

∥un − p∥ = ∥Trnxn − Trnp∥ ≤ ∥xn − p∥
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and

∥xn+1 − p∥
= ∥αnPH(xn,Snun)f(xn)

+(1− αn)Snun − p∥
≤ αn∥PH(xn,Snun)f(xn)− PH(xn,Snun)p∥

+(1− αn)∥Snun − p∥
≤ αn∥f(xn)− f(p)∥+ αn∥f(p)− p∥

+(1− αn)∥Snun − p∥
≤ ααn∥xn − p∥+ αn∥f(p)− p∥

+(1− αn)∥xn − p∥

= α(1− α)
∥f(p)− p∥

1− α
+[1− αn(1− α)]∥xn − p∥.

By the induction, we have

∥xn − p∥ ≤ max{
∥f(p)− p∥

1− α
, ∥x0 − p∥}.

Hence, {xn} is bounded and {PH(xn,Snun)f(xn)} is also
bounded.
Step 2. We will show that limn→∞∥xn+1 − xn∥ = 0.
Consider,

∥xn+1 − xn∥ (9)
= ∥αnPH(xn,Snun)f(xn) + (1− αn)Snun (10)

−αn−1PH(xn−1,Sn−1xn−1)f(xn−1)

−(1− αn−1)Sn−1un−1∥
≤ αn∥PH(xn,Snun)f(xn)

−PH(xn,Snun)f(xn−1)∥
+αn∥PH(xn,Snun)f(xn−1)

−PH(xn−1,Sn−1xn−1)f(xn−1)∥
+|αn − αn−1|∥PH(xn−1,Sn−1xn−1)f(xn−1)∥
+(1− αn)Snun − (1− αn−1)Sn−1un−1

≤ αn∥PH(xn,Snun)f(xn)− PH(xn,Snun)f(xn−1)∥
+αn∥PH(xn,Snun)f(xn−1)

−PH(xn−1,Sn−1xn−1)f(xn−1)∥
+|αn − αn−1|∥PH(xn−1,Sn−1xn−1)f(xn−1)∥
+(1− α− n)∥un − un−1∥
+(1− αn)∥Snun−1 − Sn−1un−1∥
+|αn−1 − αn|∥Sn−1un−1∥. (11)

From un = Trnxn and un−1 = Trnxn−1, we have

F (un, y) +
1

rn
⟨y − un, un − xn⟩ ≥ 0 (12)

and

F (un−1, y) +
1

rn−1
⟨y − un−1, un−1 − xn−1⟩ ≥ 0. (13)

Let y = un−1 in (12) and y = un in (13), we have

F (un, un−1) +
1

rn
⟨un−1 − un, un − xn⟩ ≥ 0, and

F (un−1, un) +
1

rn−1
⟨un − un−1, un−1 − xn−1⟩ ≥ 0.

Since F is monotone, i.e., F (x, y) + F (y, x) ≤ 0, we have

⟨un − un−1,
un−1 − xn−1

rn−1
−

un − xn

rn
⟩ ≥ 0.

Hence,

⟨un − un−1, un−1 − un + un − xn −
rn−1

rn
(un − xn)⟩ ≥ 0.

Without loss of generality, we can assume that there exists
a real number b such that rn > b > 0 for all n ∈ N. Then
we have

∥un − un−1∥2 ≤ ⟨un − un−1, xn − xn−1

+(1−
rn−1

rn
)(un − xn)⟩

≤ ∥un − un−1∥{∥xn − xn−1∥

+|1−
rn−1

rn
|∥un − xn∥}.

Therefore,

∥un − un−1∥ ≤ ∥xn − xn−1∥+ |1−
rn−1

rn
|∥un − xn∥

= ∥xn − xn−1∥+ |
rn − rn−1

rn
|∥un − xn∥

≤ ∥xn − xn−1∥+
1

b
|rn − rn−1|L (14)

where L = sup{∥un − xn∥}, n ∈ N.
By substituting (14) into (9), we have

∥xn+1 − xn∥ (15)
≤ αn∥PH(xn,Snun)f(xn)− PH(xn,Snun)f(xn−1)∥
+αn∥PH(xn,Snun)f(xn−1)

−PH(x−n−1,Sn−1xn−1)f(xn−1)∥
+|αn − αn−1|∥PH(xn−1,Sn−1xn−1)f(xn−1)∥

+(1− α− n)[∥xn − xn−1∥+
1

b
|rn − rn−1|L]

+(1− αn)∥Snun−1 − Sn−1un−1∥
+|αn−1 − αn|∥Sn−1un−1∥

≤ (1− αn(1− α))∥xn − xn−1∥+ bn. (16)

From Lemma (II.6), we can conclude that

lim
n→∞

∥xn+1 − xn∥ = 0.

From (14) and |rn − rn−1| → 0, we have

lim
n→∞

∥un − un−1∥ = 0

which also implies that limn→∞ ∥un+1 − un∥ = 0.
Next, we consider

∥xn − Snun∥ = ∥xn − xn+1 + xn+1 − Snun∥
≤ ∥xn − xn+1∥

+αn∥PH(xn,Snun)f(xn)− Snun∥.

Since ∥xn+1 − xn∥ → 0 and limn→∞ αn = 0, then

lim
n→∞

∥xn − Snun∥ = 0.
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For p ∈ F , we have

∥un − p∥2 = ∥Trnxn − Trnp∥2

≤ ⟨Trnxn − Trnp, xn − p⟩
= ⟨un − p, xn − p⟩

=
1

2
(∥un − p∥2 + ∥xn − p∥2 − ∥xn − un∥2),

therefore,

∥un − p∥2 ≤ ∥xn − p∥2 − ∥xn − un∥2.

Consider the following from the convexity of ∥ · ∥, we have

∥xn1 − p∥2 = ∥αnPH(xn,Snun)f(xn)

+(1− αn)Snun − p∥2

≤ αn∥PH(xn,Snun)f(xn)∥2

+(1− αn)∥Snun − p∥2

≤ αn∥f(xn)− p∥2 + (1− αn)∥un − p∥2

≤ αn∥f(xn)− p∥2 + ∥xn − p∥2

−(1− αn)∥xn − un∥2,

then

(1− αn)∥xn − un∥2 ≤ αn∥f(xn)− p∥2

+∥xn − xn+1∥(∥xn − p∥
+∥xn+1 − p∥).

It is obvious that ∥xn − un∥ → 0.
Next, we consider

∥Snun − un∥ ≤ ∥Snun − xn∥+ ∥xn − un∥,

then we have ∥Snun − un∥ → 0. Similarly, we also obtain

∥xn − Snxn∥ ≤ ∥xn − Snun∥+ ∥un − xn∥.

So, ∥xn − Snxn∥ → 0.
Step 3. We will show that lim supn→∞⟨f(z)−z, xn−z⟩ ≤ 0,
where z = P∩∞

n=1 F (Sn)∩EP (F )f(z).
We choose a subsequence {uni} of {un} such that

lim
i→∞

⟨f(z)− z, xni − z⟩.

Since {uni} is bounded, there exists a subsequence {unij}
of {uni} which converges weakly to w. With out loss of
generality, we can assume that uni ⇀ w. From ∥Snun −
un∥ → 0, we can obtain Snuni ⇀ w. Next we will show
that w ∈ EP (F ). By un = Trnxn, we have

F (un, y) +
1

rn
⟨y − un, un − xn⟩ ≥ 0 ∀y ∈ C.

By the monotonicity of F , we have

1

rn
⟨y − un, un − xn⟩ ≥ F (y, un)

hence

⟨y − uni ,
uni − xni

rni

⟩ ≥ F (y, uni).

Since
uni − xni

rni

→ 0 and uni ⇀ w, from (A4) we have

0 ≥ F (y, w) for all y ∈ C.

For t ∈ (0, 1] and y ∈ C, let yt = ty+(1−t)w. Since y ∈ C
and w ∈ C, we have yt ∈ C and hence F (yt, w) ≤ 0. So,
from (A1) and (A4) we have

0 = F (yt, yt)

≤ tF (yt, yt) + (1− t)F (yt, w)

≤ tF (yt, y)

and hence 0 ≤ F (yt, yt). From (A3), we have 0 ≤ F (w, y)
for all y ∈ C. Therefore, we have w ∈ EP (F ). Next we shall
show that w ∈

∩∞
n=1 F (Sn). Assume that w /∈

∩∞
n=1 F (Sn)

and since uni ⇀ w and w ̸= Snw, from the Opial’s theorem,
we have for all n ∈ N

lim inf
i→∞

∥uni − w∥ < lim inf
i→∞

∥uni − Snw∥

≤ lim inf
i→∞

{∥uni − Snuni∥

+∥Snuni − Snw∥}
≤ lim inf

i→∞
∥uni − w∥.

This is the contradiction. So, w ∈
∩∞

n=1 F (Sn). Therefore,
w ∈

∩∞
n=1 F (Sn) ∩ EP (F ).

Since z = P∩∞
n=1 F (Sn)∩EP (F )f(z), we have

lim sup
n→∞

⟨f(z)− z, xn − z⟩ = lim
i→∞

⟨f(z)− z, xni − z⟩

= ⟨f(z)− z, w − z⟩ ≤ 0.

By Lemma III.1, we have

lim
n→∞

sup⟨PH(xn,Snun)f(x
∗)− x∗, xn − x∗⟩ ≤ 0.

Step 4. We will show that {xn} converges to
z ∈

∩∞
n=1 F (Sn) ∩ EP (F ).

From

xn+1−z = αn(PH(xn,Snun)f(xn)−z)+(1−αn)(Snun−z),

we have

(1− αn)
2∥Snun − z∥2

≥ ∥xn+1 − z∥2

−2αn⟨PH(xn,Snun)f(z)− z, xn+1 − z⟩.
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So, we have

∥xn+1 − z∥2

≤ (1− αn)
2∥Snun − z∥2

+2αn⟨PH(xn,Snun)f(xn)− z, xn+1 − z⟩
≤ (1− αn)

2∥un − z∥2

+2αn⟨PH(xn,Snun)f(xn)

−PH(xn,Snun)f(z), xn+1 − z⟩
+2αn⟨PH(xn,Snun)f(z)− z, xn+1 − z⟩

≤ (1− αn)
2∥xn − z∥2 + 2αnα∥xn − z∥∥xn+1 − z∥

+2αn⟨PH(xn,Snun)f(z)− z, xn+1 − z⟩
≤ (1− αn)

2∥xn − z∥2

+αnα{∥xn − z∥2 + ∥xn+1 − z∥2}
+2αn⟨PH(xn,Snun)f(z)− z, xn+1 − z⟩

≤
(1− αn)

2 + αnα

1− αnα
∥xn − z∥2

+
2αn

1− αnα
⟨PH(xn,Snun)f(z)− z, xn+1 − z⟩

=
1− 2αn + αnα

1− αnα
∥xn − z∥2 +

α2
n

1− αnα
∥xn − z∥2

+
2αn

1− αnα
⟨PH(xn,Snun)f(z)− z, xn+1 − z⟩

≤ (1−
2(1− α)αn

1− αnα
)∥xn − z∥2 +

α2
n

1− αnα
∥xn − z∥2

+
2αn

1− αnα
⟨PH(xn,Snun)f(z)− z, xn+1 − z⟩

= (1−
2(1− α)αn

1− αnα
)∥xn − z∥2 + bn

where

bn =
α2
n

1− αnα
∥xn − z∥2

+
2αn

1− αnα
⟨PH(xn,Snun)f(z)− z, xn+1 − z⟩

and
∑∞

n=1 < ∞. It is obvious that cn =
2(1− α)αn

1− αnα
and∑∞

n=1 cn = ∞.
By Lemma II.6, Lemma III.1, we have that {xn} con-

verges strongly to z. This completes the proof.
Based on Theorem III.2, we can deduce our result to the

following corollary.

Corollary III.3. Let H be a real Hilbert space and F be a
bifunction from C × C to R satisfying (A1)-(A4). Let Sn :
H → H be a mapping in class T and satisfies the condition
(Z) such that F :=

∩∞
n=1 F (Sn) ∩ EP (F ) ̸= ∅. Let f be

an α-contraction mapping of H into itself and {xn} be a
sequence generated by the following:

x0 = x ∈ C,
F (un, y) +

1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

xn+1 = αnPH(xn,Snun)f(xn) + (1− αn)Sun,
(17)

for all n ∈ N, where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞)
satisfy the following conditions:
(1) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞,

(2)
∑∞

n=1 |αn+1 − αn| < ∞,
(3) lim infn→∞ rn > 0.

Then, {xn} converges strongly to z ∈ F :=
∩∞

n=1 F (Sn) ∩
EP (F ), where z = PFf(z).

IV. NUMERICAL TEST

In this section, we give a numerical example of the main
result as follow:
Example For simplicity, we assume H = R and C =
[−1, 1]. Let F (x, y) = −2x2 + xy + y2, f(x) = x

2 ,
T1(x) = sin(x). Furthermore, let r = 0.5 and αn = 1

10n .
By using MATLAB 7.11.0, we can give the result that
support our Main Theorem as shown by the following:

n xn

1 1.000000000000000
2 0.389418342308651
3 0.155138191495153
4 0.062015456596188
5 0.024803638649656
6 0.009921292690458
...

...
38 0.000000000000002
39 0.000000000000001
40 0.000000000000000

Fig. 1. This table shows the value of sequence {xn} on each iteration
steps.

Fig. 2. This figure shows the graph of the above table, we can see that
xn converges to zero.

V. CONCLUSION

We focused on an iterative scheme for the class of
T mappings in Hilbert spaces. We established the strong
convergence theorem and gave a numerical test to illustrate
our main theorem. Our scheme can be used for determining
common solutions of fixed point problems and equilibrium
problems which will lead to solve variational inequality
problems or optimization problems as its advanced appli-
cations. The result of this paper extended and improved the
corresponding result given by Qiao-Li Dong and Songnian
He [2] and some authors in the literature.

ACKNOWLEDGMENTS

The authors would like to thank the Office of the Higher
Education Commission for the supports under the Higher
Education Research Promotion project.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013



REFERENCES
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