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Abstract—The calculus of variations is an important tool
in the study of boundary value problems for differential
systems. A development of this approach, called the control
variational method, is based on the use of the optimal control
theory, especially of the Pontryagin maximum principle. In this
presentation, we review the results established in the literature
on the control variational method and its applications, in the
last decade.

Index Terms—optimal control, variational method, boundary
value problems.

I. INTRODUCTION

THE control variational method was introduced in the pa-
pers [1], [18] in connection with new efficient methods

for the solution of the biharmonic equation and the associated
thickness (volume) optimization problems for plates. Several
important applications, including the case of nonsmooth
Kirchhoff - Love arches and related geometric optimization
problems, are colected in the monograph [11], Ch. 3.4 and
Ch. 6.1.

One of the simplest and most intuitive examples is the
case of a simply supported plate:

(1.1) ∆(u3∆y) = f in Ω,

(1.2) y = ∆y = 0 on ∂Ω,

where Ω ⊂ Rd is a bounded domain with sufficiently smooth
boundary ∂Ω (d ∈ N and the case d = 2 corresponds to the
plate model), u ∈ L∞(Ω)+ is the thickness of the plate and
y ∈ H2(Ω)∩H1

0 (Ω) denotes the deflection of the plate under
the load f ∈ L2(Ω). The existence of a unique weak solution
to (1.1), (1.2) follows by the Lax - Milgram lemma.

If turns out that (1.1), (1.2) can be equivalently formulated
as an unconstrained optimal control problem

(1.3) Min
h∈L2(Ω)

1

2

∫
Ω

l(x)h2(x)dx

 ,

(1.4) ∆y = lz + lh in Ω,

(1.5) y = 0 on ∂Ω,

where l = u−3 ∈ L∞(Ω)+ and z ∈ H2(Ω) ∩ H1
0 (Ω) is

defined as the unique solution of ∆z = f in Ω.
The equivalence of (1.1), (1.2) with (1.3) - (1.5) becomes

quite intuitive if one writes (1.1), (1.2) as a system
∆y = zl in Ω,
∆z = f in Ω,
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y = z = 0 on ∂Ω,
which looks ”almost” as the first order optimality conditions
(state equation and adjoint equation) associated to (1.3) -
(1.5). The equivalence is proved by writing in detail the
maximum principle for (1.3) - (1.5), [11].

Although such remarks are simple, one can see already
that interesting applications may arise. For instance, the
numerical approximation of (1.3) - (1.5) may be performed
via the simplest piecewise linear and continuous finite ele-
ments in Ω. Consequently, a similar approximation may
be obtained for (1.1), (1.2). However, in the mathematical
literature, higher order finite elements are generally used for
the numerical approximation of (1.1), (1.2), [6], [7].

More numerical results obtained by the control variational
method in various linear or nonlinear boundary value pro-
blems may be found in [1], [2], [8].

Another, rather surprising, consequence of the above
equivalence appears in connection with shape optimization
problems associated to (1.1), (1.2). We take the example of
the volume minimization problem, under constraints on the
thickness and on the deflection:

(1.6) Min


∫
Ω

u(x)dx

 ,

(1.7) 0 < m ≤ u(x) ≤M a.e. in Ω,

(1.8) y ∈ C,

where C ⊂ L2(Ω) is nonempty and closed, 0 < m < M are
constants and y, u satisfies (1.1), (1.2) as well.

The application of the control variational method allows
to rewrite (1.6) - (1.8), (1.1), (1.2) in the equivalent form:

(1.9) Min


∫
Ω

l−
1
3 (x)dx

 ,

(1.10) ∆y = zl in Ω,

(1.11), y = 0 on ∂Ω,

(1.12) 0 < M−3 ≤ l(x) ≤ m−3 a.e. in Ω,

and (1.8).
Notice that (1.6) - (1.8), (1.1), (1.2) is a nonconvex optimiza-
tion problem due to the nonlinear correspondence u→ y as
defined by (1.1), (1.2). However, if C in (1.8) is a convex
subset, the transformed problem (1.8) - (1.12) is strictly
convex since the application l → y is linear in (1.10) and
(1.9) is strictly convex. We get, [21]:
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Theorem 1.1 If C is convex and the admissibility hypo-
thesis is fulfilled, then the volume optimization problem (1.6)
- (1.8), (1.1), (1.2) has a unique optimal pair [y∗, u∗] ∈
H2(Ω)× L∞(Ω)+.

The shape optimization problem may have infinitely many
local optimal pairs, but the global optimum is unique. Such
convexity and/or uniqueness properties are very rare in shape
optimization [9].

Another important remark is that the substitution of lh as
given by (1.4), in (1.3) and simple computations involving
the definitions of l, z show that the cost functional (1.3)
represents, up to a constant, the usual energy functional
associated to (1.1), (1.2).

Therefore, (1.3) - (1.5) is, in fact, a reformulation of
the classical Dirichlet principle associated to the biharmonic
operator. Consequently, the control variational method is a
modification of the classical variational approaching, via the
use of optimal control theory. From this point of view, it
is also important to notice that our method is essentially
different from the optimal control approaches obtained via
the least squares fitting to the data procedure applied in
various situations. Moreover, the control variational approach
allows many variants of such modifications. This flexibility
may be very advantageous in certain applications. We shall
exemplify it in the next section via some abstract schemes.
Section 3 is devoted to applications to unilateral problems
where constrained control problems have to be used. The
last section briefly discusses the case of time-dependent pro-
blems, which is more difficult and still under development.
The paper ends with a short conclusion.

For various applications of the control variational method,
we quote [2], [8], [16], [17], [19], [20], [22].

II. ABSTRACT VARIANTS

Let V ⊂ H ⊂ V ∗ be separable Hilbert spaces with
dense and continuous embeddings, endowed with the scalar
products (·, ·)V , (·, ·)H , the pairing (·, ·)V×V ∗ and the norms
|·|V , |·|H , |·|V ∗ respectively. Let A1, A2 : V → V ∗ be linear,
bounded symmetric operators with A1 positively defined and
ϕ : V →]−∞,+∞] be lower semicontinuous, proper, satis-
fying the following subquadratic growth (descent) condition
at infinity:

(2.1) ϕ(x) ≥ −c|x|αV + β, if |x|V ≥ K > 0

where K > 0, α ∈]0, 2[, c > 0, β ∈ R are some constants.
In (2.1), it is possible to choose α = 2 if c > 0 is dominated
by the coercivity constant of A1.

We consider first the linear equation

(2.2) (A1 +A2)y = f ∈ H.

The existence of a unique solution of (2.2) is assumed (or
stronger hypotheses may be imposed on A2 in order to prove
it).

We also consider the nonlinear multivalued equation:

(2.3) A1y +A2y + Fy 3 f

where F = ∂ϕ is the Clarke [4] subdifferential. Equations
(2.2), (2.3) may be discussed in the case when A1 is
nonlinear as well (for instance, A1 is the p - Laplacian,

p > 1). We associate to (2.2), respectively (2.3), the fol-
lowing unconstrained optimal control problems:

(2.4) Min
u∈V ∗

{(u, y)V ∗×V − 3(u, g)V ∗×V + (A2y, y)V ∗×V }

subject to:

(2.5) A1y = u− f,

where g ∈ V is the unique solution of A1g = f ;
The second control problem is

(2.6) Min
u∈U
{< u,Gy >U×U∗ −3 < u,Gg >U×U∗ +

+(A2y, y)V ∗×V + 2ϕ(y)}

subject to
(2.7)
(A1y, v)V ∗×V =< u,Gv >U×U∗ −(f, v)V ∗×V , ∀ v ∈ V,

where G : V → U∗ is a linear continuous operator and U is
another Hilbert space with dual U∗ and < ·, · >U×U∗ is their
pairing. Obviously, the state equation (2.7) may be rewritten
in the more usual form

(2.8) A1y = G∗u− f

where G∗ : U → V ∗ is the adjoint operator of G. However,
in certain applications G∗ may be difficult to compute and
it is easier to use (2.7), which is the weak form of (2.8).

The coercivity of A1 ensures the existence of a unique
solution y ∈ V to (2.5), respectively (2.7). That is, the
optimal control problems (2.4), (2.5), respectively (2.6), (2.7)
are well defined. They have a simple structure due to the
absence of constraints.

The abstract equations (2.2), respectively (2.3) model
elliptic boundary value problems or nonlinear problems like
variational inequalities, quasi - variational inequalities [10],
[12]. In such applications, the corresponding optimal control
problems may involve state or control constraints as well [1],
[14], [17] (see Section 3). The aim of introducing the optimal
control problems (2.4), (2.5), respectively (2.6), (2.7) is to
separate the ”good” operator A1 from the possibly singular
operator A2 or the nonlinear operator F . One should notice
that in the optimal control problems just operator A1 has
to be inverted, while operators A2, F have simply to be
computed in the corresponding cost functional.

The following results from [14], [21] show that the solu-
tion of the equations may be replaced by the solution of the
corresponding optimal control problem. Its proof is based on
the Pontryagin maximum principle.

Theorem 2.1 If [y∗, u∗] is an optimal pair of (2.4), (2.5),
respectively (2.6), (2.7), then y∗ is a solution of (2.2),
respectively (2.3).

Remark In the above theorem, the existence of the solu-
tions is assumed and the uniqueness plays no role. Supple-
mentary arguments and hypotheses are necessary in order
to discuss such properties. Moreover, it is clear from the
formulations of the control problems (2.4), (2.5), respectively
(2.6), (2.7) that to some given linear/nonlinear equation, the
associated control problem via the control variational method
is not unique. In fact one may associate an infinity of such
control problems to any equation of the form

Ay = f
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by choosing various (convenient) decompositions A = A1 +
A2. In particular, the classical calculus of variational a-
pproach (the Dirichlet principle) is a special case of the
problems discussed in this section. See [21] for a more
detailed presentation.

We close this section with an example of application of the
control variational method to a multiscale elliptic problem in
Ω ∈ R2:

(2.9)
∂2y

∂x1
+ ε

∂2y

∂x2
= f in Ω,

(2.10) y = 0 on ∂Ω,

where f ∈ L2(Ω) and ε > 0 is ”very small”. Other boundary
conditions may be considered as well in (2.4), (2.10).

The associated unconstrained optimal control problem is
(2.11)

Min

 1

2
|w|2L2(Ω)2 −

1− ε
2

∣∣∣∣ ∂y∂x2

∣∣∣∣2
L2(Ω)

−
∫
Ω

fydx

 ,

(2.12)

∫
Ω

∇y · ∇ψ =

∫
Ω

w · ∇ψ, ∀ ψ ∈ H1
0 (Ω).

The symbol ”·” is the scalar product in R2.
Notice that the state equation (2.12) is exactly the Laplace
equation in the weak form.

We denote by [w∗, y∗] an optimal pair for (2.11), (2.12)
assumed to exist. The Euler - Lagrange equation correspon-
ding to (2.11), (2.12) is∫

Ω

w∗vdx− (1− ε)
∫
Ω

∂y∗

∂x2

∂z

∂x2
dx−

∫
Ω

fzdx = 0

with [v, z] arbitrary and satisfying the equation in variations∫
Ω

∇z · ∇ψ =

∫
Ω

v · ∇ψ, ∀ ψ ∈ H1
0 (Ω)

(which is again just the Laplace equation).
Choosing v = ∇z (which is admissible), for arbitrary z ∈

H1
0 (Ω) and combining with (2.12), we get

0 =

∫
Ω

w∗∇zdx− (1− ε)
∫
Ω

∂y∗

∂x2

∂z

∂x2
dx−

∫
Ω

fzdx =

=

∫
Ω

∇y∗ · ∇zdx− (1− ε)
∫
Ω

∂y∗

∂x2

∂z

∂x2
dx−

∫
Ω

fzdx =

=

∫
Ω

∂y∗

∂x1

∂z

∂x1
dx+ ε

∫
Ω

∂y∗

∂x2

∂z

∂x2
dx−

∫
Ω

fz, ∀ z ∈ H1
0 (Ω).

which is exactly the weak formulation of (2.9), (2.10).

Remark It is possible to prove that the problem (2.11),
(2.12) has a unique optimal pair by the direct method in the
calculus of variations.

Remark The boundary value problem (2.9), (2.10) is an
example of ”stiff” problems, studied for instance in [13]
in connection with the ”locking problem” - the loss of the
numerical stability due to the presence of the ”very small”
parameter ε > 0, [3].

The control variational method offers alternative approaches
for the solution of this difficulty. Such multiscale problems
arise frequently in the setting of thin elastic structures like
beams, arches, curved rods, plates or shells. The ”very small”
parameter is the thickness of the structure which enters
into the coefficients of the differential system modelling the
behavior of the structure.

III. CONSTRAINED CONTROL PROBLEMS

We start with an example of a variational inequality
with unilateral conditions in the whole domain Ω ⊂ Rd,
associated to plate models. The weak formulation is given
by
(3.1)∫
Ω

u3∆y(∆y−∆w)dx ≤
∫
Ω

f(y−w)dx, ∀ w ∈ K∩H2
0 (Ω).

Here, K is a closed convex subset in H2(Ω) and some
examples are:

(3.2) K = {w ∈ H2(Ω) ∩H1
0 (Ω); a ≤ w ≤ b a.e. Ω},

(3.3) K = {w ∈ H2(Ω) ∩H1
0 (Ω); a ≤ ∆w ≤ b a.e. Ω},

with a, b ∈ R, a < 0 < b. The second example was
discussed in [6] by a different method. The case of plate
models corresponds to d = 2 and the physical interpretation
of u ∈ L∞(Ω)+, y ∈ K∩H2

0 (Ω), f ∈ L2(Ω) is as in Section
1. The existence of a unique weak solution w ∈ K for (3.1),
with K given by (3.2) or (3.3) is obtained immediately by
studying the minimization of the associated energy:

(3.4) Min
y∈K∩H2

0 (Ω)

1

2

∫
Ω

u3(∆y)2dx−
∫
Ω

fydx

 .

In (3.1) or in (3.4), the boundary conditions imposed on y
are

y = 0,
∂y

∂n
= 0 on ∂Ω

which correspond to the case of clamped plates. The for-
mulation as an optimal control problem takes into account
just the first boundary condition in (3.5), while the second
is penalized in the cost functional:

(3.6) Min

 1

2ε

∫
∂Ω

(
∂y

∂n

)2

dτ +
1

2

∫
Ω

lh2dx

 , ε > 0,

subject to

(3.7) ∆y = lz + lh in Ω,

(3.8) y = 0 on ∂Ω,

(3.9) y ∈ K.

The notations z, l in (3.7) are as in (1.4) and the unilateral
condition in (3.1) is expressed via the state constraint (3.9).

Since l ≥ c > 0, then the cost functional (3.6) is
coercive (and strictly convex) and we get the existence of
a unique optimal pair denoted by [yε, uε] ∈ K×L2(Ω). The
relationship between the problems (3.1) and (3.6) - (3.9) is
given by an approximation property [18], for ε→ 0:

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013



Theorem 3.1 We have yε → y∗ weakly in H2(Ω),
∂yε
∂n
→

0 strongly in L2(∂Ω) and y∗ ∈ K ∩ H2
0 (Ω). Moreover, y∗

is the unique solution of (3.1).

Notice that the constrained optimal control problem (3.6) -
(3.9) is an alternative formulation of the Dirichlet principle
(3.4) for the approximation of the (nonlinear) boundary value
problem (3.1).
As in Section 1, the possibility to solve numerically (3.6) -
(3.9) by using simple finite elements is an obvious advantage
over the usual treatment in the literature via higher order
elements [6], [7]. Applications of the control variational
method to variational inequalities associated to the general
linear elasticity system (for isotropic materials) are discussed
in [14], [20]. For instance, in these works it is shown that
one may solve the linear elasticity system by using just the
Laplace equation.
We continue with the case of variational inequalities for
Kirchhoff - Love arches, including examples of unilateral
conditions on the boundary. The weak variational formulation
is given by:

(3.10)
1

δ

1∫
0

((vδ1)′ − cvδ2)((vδ1)′ − cvδ2 − w′1 + cw2)ds+

+

1∫
0

((vδ1)′ + cvδ1)′((vδ2)′ + cvδ1 − w′2 − cw1)′ds ≤

≤
1∫
0

f1(vδ1 − w1)ds+

1∫
0

f2(vδ2 − w2)ds,

∀ [w1, w2] ∈ C ∩ [V × U ].

Here c denotes the curvature of the arch parametrized by
ϕ : [0, 1]→ R2 with constant thickness given by

√
δ (fixed)

and clamped at the left end. The mappings [vδ1, v
δ
2] ∈ C

denote the tangential, respectively the normal components
of the deflection of the arch under the load [f1, f2] ∈
L2(0, 1)2, decomposed similarly in the local bases along
the arch. Moreover, C ⊂ L∞(0, 1)2 is a closed convex
nonvoid subset and V = {w ∈ H1(0, 1);w(0) = 0},
U = {z ∈ H2(0, 1); z(0) = z′(0) = 0}.

The formulation (3.10) implicitely assumes the existence
of at least three derivates (and their integrability) for the
parametrization ϕ, since the curvature c and its derivative
appear in (3.10).

Examples of convex sets C are given by
(3.11)
C = L∞(0, 1)× {v2 ∈ L∞(0, 1); a ≤ v2 ≤ b a.e. in [0, 1]},

(3.12) C = {[v2, v2] ∈ V × U ; v1(1) ≥ r},

a, b, r ∈ R given constants.
Example (3.11) corresponds to unilateral coditions (the ob-

stacle problems) for the normal component of the deflection,
while (3.12) corresponds to a partially clamped arch with
unilateral conditions on the tangential component in the right
end. If C includes null boundary condition in both ends of
the arch, then we obtain a unilateral problem for clamped
arches.

In order to write the control variational formulation of
(3.10), we introduce the angle θ : [0, 1] → R between the
tangent to the arch, given by ϕ′, and the horizontal axis. If
ϕ is smooth, then θ′ = c. We also introduce the orthogonal
matrix

(3.13) W (t) =

(
cos θ(t) sin θ(t)

− sin θ(t) cosθ(t)

)
and the mappings g1, g2, h, l constructed from f1, f2 as

follows:

(3.14)

[
l

h

]
(t) =

1∫
t

W (t)W−1(s)

[
f1(s)

f2(s)

]
ds,

(3.15) g1 = δl, −g′′2 = h, g2(0) = g′2(0) = 0.

The optimal control problem associated to (3.10) has a
less intuitive formulation in this case and reads as follows:

(3.16) Min
[u,z]∈L2(0,1)×V

1

2

1∫
0

u2(s)ds+
1

2

1∫
0

z′(s)2ds

 ,

subject to the state system
(3.17)[

v1

v2

]
(t) =

t∫
0

W (t)W−1(s)

[
u(s) + g1(s)

z(s) + g2(s)

]
ds

and the state constraint

(3.18) [v1, v2] ∈ C.

An important observation is that the constrained optimal
control problem (3.16) - (3.18), under the notations (3.13)
- (3.15), makes sense for θ ∈ L∞(0, 1), that is, here, it
is enough to assume the parametrization ϕ of the arch to
be Lipschitzian (or even less according to [17]). Under the
standard regularity assumptions from the literature, we show
that the unique optimal pair of (3.16) - (3.18) has the property
[11], [18]:

Theorem 3.2 If ϕ ∈ W 3,∞(0, 1)2, then the optimal state
of (3.16) - (3.18), denoted by [vδ1, v

δ
2] satisfies (3.10).

Remark Besides the important property that the formula-
tion (3.16) - (3.18) of the arch problem is valid under much
less regularity assumptions on the geometry, it has another
surprising advantage. Namely, when C is the whole space
(i.e. the variational inequality (3.10) becomes an equation)
one obtains explicit formulas for its solution [8]. This allows
further applications in the difficult case of shape optimization
problems associated of Kirchhoff - Love arches. The explicit
formula also gives a complete solution of the ”locking
problem”, in this case (caused by the presence of the ”very
small” parameter δ > 0 in (3.10)), [8], [3].

IV. TIME - DEPENDENT PROBLEMS

Although in the case of parabolic or hyperbolic equations,
one can define the associated energy [5], however the ge-
neralization of the Dirichlet principle to the case of evolution
equations is not obvious.

In this section, we report on the posibility to apply the
control variational method. The existing results are weaker
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than in the elliptic case and this may be a fruitful research
direction for the future.

We define directly the optimal control problem (with
respect to both the time and space variables):

(4.1) Min
h


T∫
0

|h(x, t)|2L2(Ω)ddt+

∫
Ω

|y(x, T )|2dx


subject to

(4.2) ∇xy(x, t) = h(x, t) + l(x, t) in Ω×]0, T [,

where T > 0 is the given final time moment, Ω ⊂ Rd is a
bounded domain with a sufficiently smooth boundary, h ∈
L2(0, T ;L2(Ω)d) is the control parameter and l is defined
by

(4.3) −divxl(x, t) = f(x, t) in Ω×]0, T [

with f ∈ L2(0, T ;L2(Ω)) given.
Notice that (4.3) does not define l uniquely and we fix l by
choosing l = ∇xp, where p ∈ L2(0, T ;H1

0 (Ω)) satisfies
−∆p(x, t) = f(x, t) and t ∈ [0, T ] is interpreted as a
parameter.

The problem (4.1), (4.2) has the structure of an un-
constrained control problem (cost functional and state sys-
tem). Due to the presence of t ∈ [0, T ] as a parame-
ter, it is easier to understand it as a constrained mini-
mization problems: the set of admissible pairs [y, h] ∈{
C(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω))
}
×L2(0, T ;L2(Ω)d) is

constrained by relation (4.2).
It has been established in [22] that

Theorem 4.1 If [y∗, h∗] is a sufficiently smooth optimal
pair for (4.1), (4.2), then
(4.4)
T∫
0

y∗t (x, t)dt−
T∫
0

∆y∗(x, t)dt =

T∫
0

f(x, t)dt−y∗(x, 0) in Ω.

Remark Although the cost functional (4.1) is coercive in
h ∈ L2(0, T ;L2(Ω)d), the existence of optimal pairs in (4.1),
(4.2) is not clear due to the required continuity with respect
to the time of the state y.

Remark Relation (4.4) may be viewed as a generalized
weak form of the corresponding parabolic equation and
Theorem 4.1 is similar to the results established in the
previous sections.

Finally, we indicate an application to a hyperbolic equa-
tion. We take Ω =]a, b[⊂ R, Q =]0, T [×Ω and we define
the unconstrained control problem

(4.5) Min

−1

2

∫
Q

|zx|2dx+
1

2

∫
Q

w2dx


subject to

(4.6) zt = w + f in Q,

(4.7) z(0, x) = z0(x) in Ω.

Here f ∈ L2(Q) is given, w ∈ L2(Q) is the control
mapping and (4.6) has to be understood as an ordinary

differential equation, with x ∈]a, b[ as parameter. We assume
that its solution has enough smoothness in order that the cost
functional makes sense.

Again by writing the Euler - Lagrange equation associated
to (4.5) - (4.7) and some computations, one can show that for
any solution of (4.5) - (4.7), denoted by [w∗, z∗] ∈ L2(Q)×
H1(Q) (and assumed to exist), the optimal state z∗ satisfies
the hyperbolic equation in the generalized weak form:

0 =

∫
Q

ztqt −
∫
Q

zxqx −
∫
Q

fqt

for any test function q ∈ H1
0 (Q).

Remark In order to obtain pointwise in time information
for the obtained evolution equations and for the correspond-
ing boundary/initial conditions, time-dependent variations in
the control problems (4.1), (4.2), respectively (4.5) - (4.7)
have to be used [22]. Their form is not clear.

V. CONCLUSION

The variational method plays a fundamental role in the
study of differential equations. In this paper, a brief presen-
tation of the control variational method and its applications
is performed. It is mainly based on the papers published by
the author and his coworkers during the last decade.

The control variational method uses the optimal control
theory instead of the classical calculus of variations, in the
minimization problems obtained via the Dirichlet principle.
It may be extended to time-dependent problems and it is very
flexible in the sense that to a given differential equation, one
may associate ”many” optimization problems characterizing
its solution. The most important tool in the analysis of
the control variational method is the Pontriagyn maximum
principle.

The control variational method is relevant both from the
theoretical and the numerical points of view. Numerical
experiments show that it is very efficient in difficult examples
like shape optimization problems, which are not convex
in general. Important theoretical advances via the control
variational approach are the explicit formula for the solution
of the Kirchhoff - Love arches or the treatment of plates with
discontinuous thickness.
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