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Abstract—In this paper, we propose a chattering-free sliding 

mode control (SMC) scheme for the synchronization of   

generalized Lorenz chaotic systems with unmatched 

uncertainties. The concept of quasi sliding mode controller 

(QSMC) is newly introduced to avoid chattering phenomenon 

that frequently appears in the conventional sliding mode 

control systems. The error states between drive and response 

systems can be stabilized and driven into an arbitrary and 

predictable neighborhood of zero even with unmatched 

uncertainties. An example is given to illustrate the effectiveness 

of the proposed chattering-free SMC developed in this paper. 

 
Index Terms—Sliding mode control; Chattering-free; 

Synchronization; Chaos; Generalized Lorenz chaotic system 

I. INTRODUCTION 

esigning a system to mimic the behavior of another 

chaotic system is called synchronization. The two 

chaotic systems are generally called drive (master) and 

response (slave) systems, respectively. Chaos 

synchronization can be applied in the wide fields of physics 

and engineering systems such as power converters, chemical 

reactions, biological systems, information processing, and 

especially for secure communication. Up to now, many 

control methods such as adaptive control [2,9], sliding mode 

control [3,13], fuzzy control [6,8,12], backstepping control 

[11,14] have been employed to synchronize chaotic systems 

with different initial conditions. However, in the 

conventional SMC systems [1,3,13], ideal sliding mode only 

exists for infinite frequency switching operation. From 

practical point of view, thus control input is impossible to 

implement and will cause the undesired chattering 

phenomenon [4]. Consequently, there are a lot of control 

methods in the literature to suppress the chattering 

phenomenon. For instance, in [5], authors used the concept of 

‘extended system’ by introducing a new state such that the 

control input becomes continuous as a result of integral 

function. However, the major problem in this method is that 

the external disturbance should be enlarged and the control 

signal might become saturated. In the methods of [6,8], fuzzy 

control is utilized to effectively eliminate the chattering. But 

these methods proposed above should increase the 

complexity of control circuits and the cost for implementing 

such control circuit might be increase. In [10], the control  
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input is switched to reduce the chattering when the system 

trajectories enter a specified layer close to the switching 

surface. However, the relations between the layer bound and 

steady error are still necessary to be further discussed. 

Furthermore, most of controllers in above papers are carried 

out with an ideal assumption of matched uncertainties. The 

error bound of synchronization, due to the mismatch 

uncertainties, is not well discussed and cannot be predicted or 

estimated in their work. 

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION 

In this section, we consider the robust synchronization of 

two identical GLCSs. 

A. Generalized Lorenz chaotic systems 

We consider the following GLCS: 
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where   3

321 )()()()( Rtxtxtxtx
T
  is the state vector, 

 Txxx 302010
is the initial value vector, and k is the 

system parameter with 10  k . Obviously, the original 

Lorenz system is a special case of system (1) with 3.0k

The dynamics of this system has been extensively studied in 

[16] for a space range of the amplitude of the term k and 

displays chaotic behavior for each 10  k . Fig. 1 (a)-(d) 

show the chaotic motion of system (1) for 3.0k  with 

initial condition of    TT
xxx 6    2    1302010  . In the 

following, we will consider the synchronization of two 
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GLCSs and give an explicit and simple procedure to establish 

a QSMC to achieve the control goal. 

B. Synchronization problem formulation 

Consider the following two GLCSs, where the drive 

system and response system are denoted with x and y, 

respectively.  

Drive system: 
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Response system:  
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In general, the unmatched uncertainties 1,2,3 ),( itdi
 are 

assumed bounded, respectively, by 

3,2,1,)(  itd ii                (4) 

where  0i are given.  

We introduce the single control input u into the second 

equation in response system (3). Let us define the 

synchronization errors between the response system (3) and 

the drive system (2) as follows: 

  

 T

T

txtytxtytxty

tetetetE

)()()()()()(

)()()()(

332211

321



     (5) 

, then the dynamics of the error system is determined, as 

follows: 
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The objective of this study is stated as follows: giving the 

drive system as (2), the chattering-free QSMC will be 

designed in spite of the unmatched uncertainties so that the 

resulting synchronization error can be driven to predictable 

bounds, i.e. 

3,2,1,lim 


ie ii
t

              (7) 

where 0i  are constants, which are dependent on 

unmatched uncertainties and the parameter chosen in the 

QSMC specified later. 

III. DEFINITION OF QUASI SLIDING MANIFOLD AND 

SWITCHING SURFACE DESIGN OF SYNCHRONIZATION 

Synchronizing the GLCSs as (2) and (3) by using the 

QSMC technique involves two major phases. First, an 

appropriate switching function for the system must be 

selected such that the error dynamics in quasi sliding 

manifold can result in .3,2,1,lim 


ie ii
t

  Second, a QSMC 

scheme must be designed to guarantee the existence of quasi 

sliding manifold. To complete the above two phases, a 

switching function is defined as follows: 

 )()()( 12 tetets              (8) 

where Rs  and 1  is a designed constant. Before 

continuing our discussion, we first give the definition of 

quasi sliding manifold as follows. 

Definition 3.1: The error system is said to be in the quasi 

sliding manifold if there exist 0Q  and 0Qt  such that 

any solution )(x  of the error system (6) satisfies
Qts )( , 

for all
Qtt  . 

Obviously if the controlled system is in the quasi sliding 

manifold, from (6), (8) and Definition 3.1, the following 

dynamics of )(1 te  can be obtained as 
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Solving the differential equation (9) for )(1 te  when 
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results in 

 
 t

t

t

Q

tt

Q

Q ddsketeete
 

 
1

)( 

1

)(

1 )]()()
29

25
10[()()( 11   (10) 

Since the system is in the quasi sliding manifold, 
Qts )(

and the bound of  )(1 te  can be estimated by 
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Furthermore, since 1  is determined such that
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10(1   k , the bound for )(1 te  is obtained 
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Since both )(1 te  and )(2 te  converge to 
1 and

2 , 

respectively, as discussed above, there always exists a time 

point 
t  such that

iie  , 2,1i , for
tt  . Thus solving 

the differential eqn. (6) for state )(3 te  when 
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Furthermore, according to Theorem 1 in [15], the state 

response of GLCS (2) is contained in the sphere   given by 
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, thus the bound for )(3 te with t  can be also obtained 

as 
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Obviously, by (12), (13) and (16), it reveals that the bounds 

of 3,2,1, ii  are relative to 
Q . Therefore, to control the 

system with a smaller value of 
Q  is important and the 

solution is given in the following section. 

IV. QSMC DESIGN FOR QUASI SLIDING MANIFOLD 

To ensure the occurrence of the quasi sliding manifold, the 

continuous QSMC is proposed as 
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The proposed control scheme above will guarantee the 

occurrence of quasi sliding manifold for the system (6), and is 

proven in the following theorem. 

 

Theorem 1: Consider the error system (6), if this system is 

controlled by )(tu  in (17). Then the system trajectory 
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Since 1w has been chosen in the controller (17), (19) 

implies that 0V , whenever
1
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w

w
ts Q
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 . That is to 

say that s  will converges to the region of

1
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w

w
ts Q


 . Thus the proof is achieved completely. 

V. A NUMERICAL EXAMPLE 

In this section, simulation results are presented to 

demonstrate and verify the effectiveness of the proposed 

QSMC scheme. The system parameter is chosen as 3.0k  

to guarantee the chaos behavior for the drive GLCS (2). The 

initial states of the drive GLCS (2) are 22)0(1 x , 

15)0(2 x , 12)0(3 x and those of the response GLCS (3) 

are 20)0(1 y , 13)0(2 y , 12)0(3 y . The unmatched 

uncertainties are given as 

)5sin(1.0)(1 ttd  , )2sin(2.0)(2 ttd  and

)6cos(1.0)(3 ttd  , respectively. Obviously, we have

1.0)( 11 td
, 

2.0)( 22 td
,

1.0)( 33 td
.   

The QSMC design procedure for synchronizing the drive and 

response GLCSs can be summarized as follows: 

 

Step1:  According to (8), parameter 01  is selected 

such that 0)1)(
29

25
10(1   k and the stable bound 

of error dynamics system (6) in the quasi sliding mode is then 

ensured. 

 

Step2: Consequently, the switching surface )(ts  is 

constructed as: 

)()()( 12 tetets                 (20) 

Select the control parameters in (17) as 03.0  and 4w  

and according to Theorem 1, we have  04.0Q  
 

Step3:  By (12), (13) and (16), we can calculate the 

predictable bounds 3,2,1, ii  as 

0249.011  e ; 0649.022  e ; 4862.133  e  (21) 

 

Step4:  Construct the  QSMC from (17) as 
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3.0k ; 1 ; 1.01  ; 2.02   

 

The simulation results are shown in Fig. 2-4 under the 

proposed continuous QSMC(22). Fig. 2 and Fig. 3 show, 

respectively, the corresponding )(ts  error state responses 

between the drive and controlled response GLCSs under the 

proposed QSMC(22). The continuous QSMC(22) is shown in 
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Fig. 4. From the simulation result, it shows that the trajectory 

of error dynamics quickly converges to quasi sliding 

manifold 04.0)(  Qts   and the synchronization error 

also converges to the predicted bounds as calculated in (21). 

Also the chattering does not appear due to the continuous 

control input as shown in Fig. 4. 

VI. CONCLUSIONS 

In this paper, a chatter-free SMC scheme for the robust 

synchronization of generalized Lorenz chaotic systems is 

studied. The concept of QSMC has been introduced firstly to 

avoid chattering phenomenon. As expected, under the 

proposed control law, the error states can be stabilized and 

driven into an arbitrary and predictable neighborhood of zero 

even when the unmatched uncertainties are present. 

Numerical simulations have verified the effectiveness of the 

proposed method. 
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Fig. 1. (a) Trajectories of GLCS (b) Trajectories projected on the 

1x -
2x

plane (c) Trajectories projected on the 
1x -

3x  plane (d) Trajectories 

projected on the 
2x -

3x  plane. 

 

 

Fig. 2. The time response of switching function )(ts . 

 
Fig. 3. The time responses of error state. 

 
Fig. 4. The time response of the continuous QSMC (22). 
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