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Abstract—In this paper, we introduce an explicit method for
finding the least norm of fixed points for strict pseudo mappings
by using the projection technique. We provide algorithm which
strong convergence theorems are obtained in Hilbert spaces.
Then, we apply these algorithm to solve some convex optimiza-
tion problems. The results of this paper extend and improve
several results presented in the literature in the recent past.

Index Terms—Monotone mapping, Nonexpansive mapping,
Explicit Method, Minimum-Norm,Variational inequality.

I. INTRODUCTION

CONSIDER a real Hilbert space H with inner product
⟨·, ·⟩ and norm ∥·∥. Let C be a nonempty closed convex

subset of H . First, we recall the basic concept of mappings
as shown in the following:

• A is called monotone if and only if for each x, y ∈ C,

⟨x− y,Ax−Ay⟩ ≥ 0.

• A is said to be strongly positive on H if there exists a
constant γ > 0 such that

⟨Ax, x⟩ ≥ γ∥x∥2, ∀x ∈ H.

• A mapping A of C into H is called α-inverse-strongly
monotone if there exists a positive real number α such
that

⟨x− y,Ax−Ay⟩ ≥ α∥Ax−Ay∥2,

for all x, y ∈ C.
• A is an α-inverse strongly monotone mapping of C into

H , such that

∥Ax−Ay∥ ≤ 1

α
∥x− y∥

for all x, y ∈ C.
• A mapping S from C into itself is said to be a

nonexpansive mapping if

∥Sx− Sy∥ ≤ ∥x− y∥.

for any x, y ∈ C.
In this work, we may assume that Fix(S) ̸= ∅, which

Fix(S) is closed and convex. So there exists a unique x∗ ∈
Fix(S) satisfies the following :

∥x∗∥ = min{∥x∥ : x ∈ Fix(S)}.
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That is, x∗ is the minimum-norm fixed point of S.
Since 1967, Halpern introduced an explicit iterative

scheme as shown in the following:

xn+1 = αnu+ (1− αn)Sxn, ∀n ≥ 0,

where {αn} ⊂ [0, 1]. He proved that the convergence
theorem which the Halpern’s iterative method do find the
minimum-norm fixed point x∗ of S if 0 ∈ C. In 2004, Xu
studied the iteration process {xn} called viscosity approxi-
mation method as shown in the following:

xn+1 = αnf(xn) + (1− αn)Sxn, for n ≥ 1,

where {αn ⊂ (0, 1)} and f : C → C is a contraction.
He also proved the strong convergence theorem of the
sequence {xn} which generated by the above scheme under
the appropriate conditions.

Recently, Yao and Xu [5] independently introduced two
iterative methods for finding the minimum-norm fixed point
of nonexpansive mapping which is defined on closed convex
subset C of H . The proposed algorithms are based on the
well-known Browder’s iterative method [1] and Halpern’s
iterative method [2]. .

Motivated and inspired by the previous mentioned re-
searches, we present new strongly convergent methods for
approximating minimum-norm fixed point of a nonexpansive
mapping and variational inequality for an α-inverstrongly
monotone operator such that

F (S) ∩ V I(C,A) ̸= ∅,

and for each λ ∈ (0, 1),

xn+1 = (1− αn)(λSPC(I − λA)xn + (1− λ)xn), (1)

where {αn} ⊂ (0, 1).
We prove that the sequence {xn} generated by (1) con-

verges strongly to the element of minimal norm fixed point of
a nonexpansive mapping. As application, we provide iterative
processes for solving the constrained convex optimization
problem.

II. PRELIMINARIES

Let C be a nonempty closed and convex subset of a real
Hilbert space H. We use the following notions in the sequel:

1) ⇀ for weak convergence and → for strong conver-
gence,

2) ωw(xn) = x : ∃xj ⇀ x denotes the weak ω - limit set
of xn.

Recall that the orthogonal projection

PCx = argmin
y∈C

∥x− y∥. (2)
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The orthogonal projection has the following well-known
properties. For a given x ∈ H ,

1) ⟨x− PCx, z − PCx⟩ ≤ 0, for all z ∈ C;
2) ∥PCx−PCy∥2 ≤ ⟨PCx−PCy, x−y⟩, for all x, y ∈ H .
We shall make use of the following results.

Lemma II.1. (Demiclosedness principle of nonexpansive
mapping) Let S : C → C a nonexpansive mapping with
Fix(S) ̸= ∅. If xn ⇀ x and (I − S)xn → 0, then x = Sx.

Lemma II.2. (see, [3] Let {xn} and {yn} be bounded
sequences in a Banach space E and let {βn} be a sequence
in [0, 1] with 0 < lim inf βn ≤ lim supβn < 1. Suppose
xn+1 = βnyn + (1− βn)xn for all n ≥ 0 and

lim sup
n→∞

(∥yn+1 − yn∥ − ∥xn+1 − xn∥) ≤ 0. (3)

Then limn→∞ ∥yn − xn∥ = 0.

Lemma II.3. (see, [4]) Let {an} be a nonnegative real
sequence satisfying the following inequality :

an+1 ≤ (1− γn)an + γnδn, n ≥ 0,

where {γn} ⊂ (0, 1) such that Σ∞
n=0γn = +∞, and

lim supn→∞ δn ≤ 0. Then limn→∞ an = 0.

III. MAIN RESULT

Theorem III.1. Let C be a closed convex of a real
Hilbert space H. Let A be an α-inverse strongly mono-
tone. Let S : C → C be a nonexpansive mapping and
Ω := F (S) ∩ V I(C,A) ̸= ∅. Assume that a sequence
{αn} ⊂ (0, 1) satisfies the following conditions:

1) limn→∞ αn = 0;
2) Σ∞

n=0αn = +∞.
Then the sequence {xn} generated by the algorithm

xn+1 = (1− αn)[λSPC(I − λA)xn + (1− λ)xn] (4)

converges strongly to a fixed point of S which is a minimal
norm and the unique solution of the variational inequality:

x∗ ∈ Ω, ⟨x∗, x− x∗⟩ ≥ 0, ∀x ∈ Ω.

Proof: Step 1. we prove that the sequence {xn} is
bounded. Let q ∈ Ω. By (4), we have

∥xn+1 − q∥ = ∥(1− αn)[λSPC(I − λA)xn

+(1− λ)xn]− q∥
≤ ∥(1− αn)[(1− λ)(xn − q)

+λ(SPC(I − λA)xn − q)]− αnq∥
≤ ∥(1− αn)[(1− λ)∥(xn − q)∥

+λ∥(xn − q)∥]− ∥αnq∥
≤ (1− αn)∥xn − q∥+ αn∥q∥
≤ max{∥xn − q∥, ∥q∥}.

By induction, it follows that

∥xn − q∥ ≤ max{∥x0 − q∥, ∥q∥},

for all n ≥ 0. Then {xn} is bounded. Therefore,
{SPC(I − λA)xn} is also bounded.

Let yn = (1−αn)λSPC(I−λA)xn

αn+(1−αn)λ
, then the iterative

sequence (4) is equivalent to

xn+1 = (αn+(1−αn)λ)yn+(1−αn−(1−αn)λ)xn. (5)

Since limn→∞(αn + (1− αn)λ) = λ, then

∥yn − q∥ =
∥∥∥ (1− αn)λSPC(I − λA)xn

αn + (1− αn)λ
− q

∥∥∥
=

∥∥∥ (1− αn)λSPC(I − λA)xn − (αn + (1− αn)λ)q

αn + (1− αn)λ

∥∥∥
=

∥∥∥ (1− αn)λSPC(I − λA)xn − αnq − (1− αn)λq

αn + (1− αn)λ

∥∥∥
≤ (1− αn)λ∥xn − q∥ − αn∥q∥

αn + (1− αn)λ

=
αn

αn + (1− αn)λ
∥q∥

+(1− αn

αn + (1− αn)λ
)∥xn − q∥

≤ max{∥xn − q∥, ∥q∥}.

Thus, {yn} is bounded. Hence by nonexpansiveness of S
and PC , we have

∥yn+1 − yn∥ − ∥xn+1 − xn∥

=
∥∥∥ (1− αn+1)λSPC(I − λA)xn+1

αn+1 + (1− αn+1)λ

− (1− αn)λSPC(I − λA)xn

αn + (1− αn)λ

∥∥∥− ∥xn+1 − xn∥

≤ (1− αn+1)λ

αn+1 + (1− αn+1)λ
∥SPC(I − λA)xn+1

−SPC(I − λA)xn∥

+
∣∣∣ (1− αn+1)λ

αn+1 + (1− αn+1)λ
− (1− αn)λ

αn + (1− αn)λ

∣∣∣
×∥SPC(I − λA)xn∥

≤ (1− αn+1)λ

αn+1 + (1− αn+1)λ
∥Sxn+1 − Sxn∥

+
∣∣∣ (1− αn+1)λ

αn+1 + (1− αn+1)λ
− (1− αn)λ

αn + (1− αn)λ

∣∣∣
×∥SPC(I − λA)xn∥ − ∥xn+1 − xn∥

≤
( (1− αn+1)λ

αn+1 + (1− αn+1)λ
− 1

)
∥xn+1 − xn∥

+
∣∣∣ (1− αn+1)λ

αn+1 + (1− αn+1)λ
− (1− αn)λ

αn + (1− αn)λ

∣∣∣
×∥SPC(I − λA)xn∥.

From {xn} and {SPC(I − λA)xn} are bounded sequences
and limn→∞ αn = 0, then

lim sup
n→∞

(∥yn+1 − yn∥ − ∥xn+1 − xn∥) ≤ 0.

By Lemma II.2, we obtain that limn→∞ ∥yn − xn∥ = 0.
Therefore,

lim
n→∞

∥xn+1−xn∥ = lim
n→∞

(αn+(1−αn)λ)∥yn−xn∥ = 0.

(6)
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On the other hand, we consider

∥xn − SPC(I − λA)xn∥
≤ ∥xn − xn+1∥+ ∥xn+1 − SPC(I − λA)xn∥
= ∥xn − xn+1∥+ ∥(1− αn)(λSPC(I − λA)xn

+(1− λ)xn)− SPC(I − λA)xn∥
≤ ∥xn − xn+1∥+ (1− αn)(1− λ)

∥xn − SPC(I − λA)xn∥
+αn∥SPC(I − λA)xn∥.

It follows that

∥xn − SPC(I − λA)xn∥

≤ 1

1− (1− αn)(1− λ)
∥xn − xn+1∥

+
1

1− (1− αn)(1− λ)
αn∥SPC(I − λA)xn∥

−→ 0 as n → ∞.

Step 2. we prove that lim supn→∞⟨x∗ − xn, x
∗⟩ ≤ 0.

Since {xn} is bounded. Then, we can take a subsequence
{xni} of {xn} such that

lim sup
n→∞

⟨x∗ − xn, x
∗⟩ = lim

i→∞
⟨x∗ − xni , x

∗⟩.

Again, since {xn} is bounded, without loss of generality,
we may assume that xni ⇀ x

′
. Consequently,

lim sup
n→∞

⟨x∗ − xn, x
∗⟩ = ⟨x∗ − x

′
, x∗⟩ ≤ 0.

From (6) it follows that

lim sup
n→∞

⟨x∗ − xn+1, x
∗⟩ = ⟨x∗ − x

′
, x∗⟩ ≤ 0.

Notice that limn→∞ ∥xn − SPC(I − λA)xn∥ = 0. By the
demiclosedness principle of nonexpansive mapping SPC(I−
λA), we have x′ ∈ Ω. Since x∗ = PΩ(I − λA). It follows
from the properties of projection operator that

lim sup
n→∞

⟨x∗ − xn, x
∗⟩ = ⟨x∗ − x′, x∗⟩ ≤ 0. (7)

By (III.1), we have

∥xn+1 − (1− αn)x
∗∥2

= ∥[(1− αn)λSPC(I − λA)xn+1 + (1− λ)xn]

−(1− αn)x
∗∥2

= ∥(1− αn)[λSPC(I − λA)xn + (1− λ)xn]− x∗∥2

= ∥(1− αn)[λSPCxn − (1− λ)xn]− (1− λ+ λ)x∗∥2

≤ (1− αn)∥λ(Sxn − x∗) + (1− λ)(xn − x∗)∥2

≤ (1− αn)∥λ(xn − x∗) + (1− λ)(xn − x∗)∥2

≤ (1− αn)∥xn − x∗∥2. (8)

Observe that

∥xn+1 − (1− αn)x
∗∥2

= ∥xn+1 − x∗∥2 − 2αn⟨−x∗, xn+1 − x∗⟩+ α2
n∥x∗∥2

≥ ∥xn+1 − x∗∥2 − 2αn⟨xn+1 − x∗, x∗⟩.

Therefore by (8) and (9), we get

∥xn+1−x∗∥2 ≤ (1−αn)∥xn−x∗∥2+2αn⟨xn+1−x∗, x∗⟩.
(9)

By the condition (ii) and the inequality (7), we can apply
Lemma (II.3) to (9) and conclude that {xn} converges
strongly to x∗ as n → ∞ that is, the minimum - norm fixed
point of S. This completes the proof.

Remark III.2. Theorem III.1 also improve the [[5],
Theorem 3.2 ], in which the restrictions Σ∞

n=0|αn+1−αn| <
+∞ or limn→∞

αn

αn+1
= 1 are removed.

Corollary III.3. Let C be a closed convex of a real
Hilbert space H. Let S : C → C be a nonexpansive
mapping and Ω := F (S) ̸= ∅. Assume that a sequence
{αn} ⊂ (0, 1) satisfies the following conditions:

1) limn→∞ αn = 0;
2) Σ∞

n=0αn = +∞.
Then the sequence {xn} generated by the algorithm

xn+1 = (1− αn)[λSxn + (1− λ)xn] (10)

converges strongly to a fixed point of S which is a minimal
norm and the unique solution of the variational inequality:

x∗ ∈ Ω, ⟨x∗, x− x∗⟩ ≥ 0,∀x ∈ Ω.

Proof. If we take A = 0. So, by Theorem III.1, we obtain
the the following corollary.

IV. APPLICATIONS TO CONVEX OPTIMIZATION PROBLEM

In this section,we apply the proposed methods for ap-
proximating the minimum-norm solution of convex function
and split feasibility problems. Let’s recall that standard
constrained convex optimization problem as follows :

find x∗ ∈ C, such that f(x∗) = min
x∈C

f(x), (11)

where f : C → R is a convex, Fréchet differentiable
function, C is closed convex subset of H .

It is known that the above optimization problem is equiv-
alent to the following variational inequality:

find x∗ ∈ C, such that ⟨v−x∗,∇f(x∗)⟩ ≥ 0, for all v ∈ C,
(12)

where ∇f : H → H is the gradient of f .
It is well-known that the optimality condition (12) is

equivalent to the following fixed point problem:

x∗ = PC(I − µ∇f)x∗,

where PC is the metric projection onto C and µ > 0 is
positive constant. Based on the fixed point problem, we
deduce the projected gradient method.{

x0 ∈ C,

xn+1 = xn − µ∇f(xn), n ≥ 0.
(13)

Using Theorem III.1, we immediately obtain the following
result.

Theorem IV.1. Assume that the solution set of (11) is
nonempty. Let the objective function f be convex, fréchet
differentiable and it gradient ∇f is Lipschitz continuous with
Lipschitz constant L. In addition, if 0 ∈ C or C is closed
convex cone. Let µ ∈ (0, 2

L ) and define a sequence {xn} by
following

xn+1 = (1− αn)((I − µ∇f)(xn) + (1− λ)xn), n ≥ 0
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where λ ∈ (0, 1) and the sequence {αn} ⊂ (0, 1) satis-
fies conditions in Theorem III.1. Then the sequence {xn}
converges strongly to the minimum-norm solution of the
minimization (11).

Proof. Since ∇f is lipschitz continuous with constant L,
then well-known that the PC(I−µ∇f) is nonexpansive map-
ping. Replace the mapping (PC(I−λA)) with PC(I−µ∇f)
and take S = I in (1). Therefore, the conclusion of this
Theorem IV follows from Corollary III.3 immediately.

V. CONCLUSION

In this paper we obtained a new strong convergence
theorem for approximating minimum-norm fixed point of a
nonexpansive mappings and variational inequality for an α-
inverse strongly monotone operator in a real Hilbert space.
Furthermore, as application, we also obtained an iterative
process for solving the constrained convex optimization
problem.
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