
dOpenCL: Towards Uniform Programming for
Distributed Systems with Multi-Cores and GPUs

Philipp Kegel and Sergei Gorlatch

Abstract—Modern computer systems are becoming dis-
tributed and heterogeneous by comprising multi-core CPUs,
GPUs, and other accelerators. However, to program such
systems, the user currently has to use a combination of several
programming models (e.g., MPI with OpenCL or CUDA), which
is difficult and error-prone. We present dOpenCL (distributed
OpenCL) – a uniform approach to programming distributed sys-
tems with accelerators. Our approach is based on the OpenCL
standard and it allows the user to run existing OpenCL appli-
cations unmodified in a heterogeneous distributed environment.
The dOpenCL system also supports transparent execution of
multiple OpenCL applications in one distributed, multi-user
environment. We describe dOpenCL as an implementation of
the OpenCL programming model on distributed systems, and
we experimentally compare the performance of dOpenCL with
MPI+OpenCL and standard OpenCL implementations.

Index Terms—OpenCL, heterogeneous systems, distributed
systems, GPU computing, dOpenCL, multi-cores.

I. INTRODUCTION

MODERN systems increasingly comprise heteroge-
neous processing devices, e.g., multi-core CPUs,

GPUs, and other accelerators. The state-of-the-art approaches
to program such systems usually employ several program-
ming models in combination. For example, let us consider
programming a cluster where each node contains a multi-
core CPU and a GPU. First, the programmer has to distribute
the data to all compute nodes, e.g., using MPI [1] or
explicit, low-level network programming. Second, to exploit
the GPU at each node, another appropriate model, e.g.,
CUDA [2] is needed, which requires the programmer to
explicitly transfer data between the node’s main memory and
GPU. Furthermore, in order to use all cores of the CPU,
a thread programming model, e.g., Pthreads [3] is usually
employed. The main drawback of combining programming
models is that the programmer has to master several different
models, and he also has to take into account their possible
interference when used together in a single program.

We present dOpenCL (distributed OpenCL) – a uniform
programming approach for heterogeneous, distributed sys-
tems. It is based on OpenCL [4] – an open, widely ac-
cepted standard for heterogeneous systems. However, the
original OpenCL is limited to stand-alone systems and has
to be augmented by other programming models to create
applications for distributed systems. The dOpenCL approach
transparently implements the OpenCL programming model
for distributed systems, such that the programmer no longer
has to combine it with other programming models.

Note that our dOpenCL is not related to DOpenCL which
is an OpenCL binding for the D programming language [5].

Manuscript received December 28, 2012; revised January 23, 2013.
The authors are with the Institute of Computer Science, University of

Muenster, 48149 Muenster, Germany.
Email: gorlatch@uni-muenster.de

The paper is organized as follows. Section II introduces
the design of dOpenCL as an implementation of the OpenCL
API extended for distributed systems. In Sections III, an
extension of dOpenCL is presented which allows for multiple
OpenCL applications to run concurrently in a distributed
system. In Section IV, we present application studies to
experimentally evaluate the performance of dOpenCL and
to compare it to approaches that mix MPI and OpenCL
for programming distributed systems. We proceed with a
discussion of related work in Section V and we conclude
our work in Section VI.

II. THE DISTRIBUTED OPENCL (DOPENCL) SYSTEM

The dOpenCL system has two objectives: 1) provide the
application programmer with access to various compute
devices in a heterogeneous distributed system, and 2) avoid
mixing different models for programming such systems.

We develop dOpenCL as a fully-fledged implementation
of the OpenCL programming model for distributed systems.
In dOpenCL, all devices of the target architecture – (multi-
core) CPUs, GPUs, or other accelerators – are presented
to the programmer as if they were available in a single
stand-alone system. Therefore, dOpenCL hides from the
application programmer the underlying distributed system
structure: the programmer can use heterogeneous devices of
the system uniformly by means of the standard OpenCL API.

The main idea of the dOpenCL implementation is to merge
the native OpenCL implementations on the nodes of the
target distributed system into a single so-called OpenCL
platform. A dOpenCL platform describes the target system
consisting of a single host and a number of compute nodes
connected to it.

The most important task of dOpenCL which maps the
OpenCL programming model to distributed systems is to hide
from the programmer the network which connects the host
and the compute nodes. This is a challenging task since the
implementation has to:

• automatically connect nodes of a distributed system, as
the OpenCL API has no means for that;

• distribute contexts and associated objects transparently
across multiple compute nodes;

• ensure consistency of distributed objects according to
OpenCL’s release consistency model;

• synchronize command execution across distributed
compute nodes.

In the following, we describe in some detail how the
dOpenCL runtime system addresses these challenges.

The dOpenCL runtime system is designed as a distributed
application shown in Figure 1: it comprises one client driver
and multiple daemons which are installed on the nodes of
the target distributed system. A node with the client driver

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

c
o
m

p
u
te

 n
o
d
e

device device

h
o
s
t

Fig. 1. Overview of the dOpenCL runtime system.

is called the host, while each node that runs a daemon is
referred to as a compute node. The host runs the OpenCL
application’s host program, and the compute nodes execute
application kernels on their local devices.

The client driver provides a full implementation of
the OpenCL API which transparently replaces an existing
OpenCL implementation on the host: the original OpenCL
application does not have to be modified in any way in order
to use dOpenCL. The client driver does not interact with local
devices but only with compute nodes. On a compute node,
its daemon uses a native OpenCL implementation to interact
with the compute node’s devices on behalf of the client
driver. The client driver and the daemons are connected using
a communication library which allows the host to interact
with the compute nodes and their devices.

In the current implementation of dOpenCL, we use the
Generic Communication Framework (GCF) to implement
network communication. GCF is a part of the Real-Time
Framework [6], [7] which was originally developed for high-
performance communication in distributed real-time appli-
cations like massively multi-player online computer games.
While the GCF is not restricted to a particular communica-
tion stack, its current version supports TCP- and UDP-based
communication.

In contrast to the standard OpenCL that does not provide
any means to connect or disconnect remote systems in
order to access their devices, in dOpenCL, an automatic
connection mechanism enables OpenCL applications to run
on a distributed system.

connect to compute node ’gpuserver.example.com’
gpuserver.example.com
connect to compute nodes in local network
128.129.1.1
128.129.1.2

Listing 1. Example configuration file listing available compute nodes.

The user can specify a list of available compute nodes

in the target distributed system by a configuration file, like
the one shown in Listing 1. The file is placed into the
application’s execution directory. Creating this file is the only
additional effort required from the user in order to execute
existing OpenCL applications on a heterogeneous distributed
system. When the application requests a list of available
devices from the client driver for the first time, the client
driver automatically connects to the compute nodes specified
in the configuration file. From each daemon, it obtains the
list of available devices and merges them into a single list
which is returned to the application.

III. USING DOPENCL FOR MULTI-USER SYSTEMS

It is often desirable to run multiple applications simul-
taneously in a distributed system. Thereby, the system can
be shared by multiple users, and the system can be used to
its full capacity even if a single application is able to use
only a fraction of the system’s capacity. In both cases, the
dOpenCL implementation presented in the previous section
has a disadvantage: because each application can access all
devices of the system, a device would be possibly used by
multiple applications concurrently. While this is permitted
by the dOpenCL implementation, the system may be used
inefficiently.

As an illustration example, let us consider four appli-
cations, each requiring one GPU, that are executed on a
distributed system comprising four nodes with one GPU
each. With the dOpenCL implementation presented in the
previous section, each application can choose its device from
any of the four nodes. In particular, all applications might
choose the GPU of the first node, while the three other
nodes would remain idle. Specifying different nodes for each
application is not an option, because the applications are
independent from each other (e.g., started by different users),
such that they do not know which nodes are already used or
will be used next.

We extended the dOpenCL runtime system presented in
Section II by a central, network-accessible device manager,
in order to overcome this problem. The device manager
partitions devices among multiple applications by restricting
the host’s access to particular devices. It ensures that each
device is only used by one application at a time. A host
can obtain devices from a given list of compute nodes
and additionally request devices from the device manager.
Like the connection mechanism, the device manager runs
transparently for the application.

In order to integrate the device manager with the client
driver and daemon, the following mechanisms are required:

• The device manager must be able to determine the
available devices on all compute nodes.

• An application (i.e. its client driver) must be able to
request devices from the device manager.

• A compute node must only give a host access to devices
that the device manager has assigned to the application
running on that host.

In the following, we briefly describe how these mechanisms
are implemented in dOpenCL.

The device manager is installed either on one of the com-
pute nodes or on a dedicated node of the distributed system,
such that it can be used by multiple hosts simultaneously.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

Internally, the device manager maintains two sets of devices:
devices that are not assigned to a host (free) and assigned
devices. In order to fill these initially empty sets, the daemons
of the system’s compute nodes connect to the device manager
which obtains lists of devices from these nodes and adds
them to its set of free devices. Thus, the device manager
obtains information about all available compute nodes and
devices. Unlike the client driver, the device manager does
not actively connect to a fixed set of compute nodes, but
rather waits for incoming connections from compute nodes.
Compute nodes can also request to disconnect from the
device manager, such that their devices are no longer used
by an application.

When using the device manager, a daemon is started in
the so-called managed mode. In this mode, the daemon
automatically connects to the device manager, lets it obtain
a device list and passes access control for these devices to
the device manager. The address of the device manager is
specified by a command line parameter provided by the user.

To request devices from the device manager, an application
specifies the number and properties of the devices it requires.
This assignment request contains the number and type of
devices to be allocated and a set of properties that the
requested devices should have. Eligible device properties
are a subset of properties which can be requested using
the standard OpenCL function clGetDeviceInfo (e.g.,
minimal global memory size and number of processing
elements).

compute nodehost

1. send

assignment request

2. assign devices

3a. send

device list

3b. send

node list

4. request

devices

5. return

assigned

devices

Fig. 2. Requesting devices from the dOpenCL device manager.

In order to request devices (see Figure 2), the client driver
sends an assignment request to the device manager (1). The
device manager assigns the devices (2) and returns a list
of compute nodes to the client driver (3b) and a list of
assigned devices to the daemons (3a). The client driver then
connects to the compute nodes (4) from the received list
to obtain the assigned devices from the daemons (5). This
mechanism simplifies the configuration of applications, as
the user only has to know the device manager’s URL rather
than all compute nodes’ URLs.

As the standard OpenCL API does not provide any means
for the described requesting process, we implement a new
automatic device request mechanism. The user provides an
XML-based configuration file which contains the address of
the device manager and a list of properties for each type of

device that should be requested from the device manager.
In order to assign devices to a host, the device manager

of dOpenCL restricts other hosts’ access to these devices.
We implement this restriction mechanism using so-called
leases. A lease comprises a unique authentication ID, a set
of devices, and a set of compute nodes which own these
devices. When the device manager receives an assignment
request from a host, a new lease with a unique authentication
ID is created. To create a device set for the lease, the device
manager searches its set of free devices for devices which
comply with the devices’ properties from the assignment
request. Appropriate devices are added to the device set and
removed from the device manager’s set of free devices.

The host requests the devices assigned to it from the
compute nodes in the lease’s compute node set. When
connecting to the compute nodes, the host provides a valid
authentication ID, otherwise the connection is rejected by the
compute node. As the compute nodes are running in managed
mode, they only give the host access to those devices that are
associated with that ID. Thus, a host can only access devices
that have been assigned to it by the device manager.

IV. APPLICATION STUDIES AND EXPERIMENTS

We evaluate the performance of dOpenCL by running it
on a number of heterogeneous desktop PCs. A dual-core
(Intel Core2 6300 running at 1.86 GHz) computer is used
as host, while several quad-core (Intel Core i7 860 running
at 2.8 GHz) computers are used as default compute nodes.
Besides, we use a GPU system equipped with a quad-
core CPU (Intel Xeon E5520, 2.27 GHz) and an NVIDIA
Tesla S1070 (4 GPUs with 4 GB of memory each) as a
high-performance compute node. On the default compute
nodes, the AMD Accelerated Parallel Processing SDK [8]
is installed which provides the system’s CPU as a single
OpenCL device. The high-performance compute node uses
the NVIDIA OpenCL driver (version 304.51) to provide four
GPU devices. All nodes are connected via a Gigabit Ethernet
network.

A. Scalability: Basic Linear Algebra Subroutines

In order to evaluate the scalability of dOpenCL, we created
OpenCL-based implementations of the SAXPY and SGEMM
subroutines from the well-known Basic Linear Algebra Sub-
programs (BLAS) [9] API. BLAS subroutines are popular
benchmarks as they are frequently used as building blocks
in numerical applications. SAXPY (Single-precision real
Alpha X Plus Y) tends to be memory-bound as it usually
requires more time for reading and writing data than for
computations, whereas SGEMM (Single-precision General
Matrix Multiply) is usually compute-bound, i.e. it spends
more time for computations than for reading/writing data.

Table I lists the sizes of the vectors and matrices we pass to
each subroutine in our experiments along with the amount of
data that has to be transferred between the host and compute
nodes. We execute each subroutine on the host with and
without using dOpenCL for comparison. With dOpenCL, we
executed the subroutines on up to 8 compute nodes.

Figure 3 shows, for each subroutine, the measured average
time for initialization, kernel execution, and data transfer.
With dOpenCL, the kernel execution time for all subroutines

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

subroutine vector size matrix size upload (MB) download (MB)

SAXPY 67108864 – 512 256
SGEMM – 2048×2048 24 + 16×d 16

TABLE I
SIZE OF VECTOR, MATRICES, AND DATA TRANSFERS FOR BLAS ROUTINES ON d DEVICES.

decreases, as a single compute node has more computational
power than the host (leftmost bar “w/o dOpenCL”). But the
bandwidth for data transfers also decreases, as in dOpenCL
the Gigabit Ethernet, rather than the host’s system bus, limits
the achievable bandwidth. This multiplies the applications’
data transfer time by an order of magnitude. For the memory-
bound SAXPY, the decreased computation time does not
compensate for the increased data transfer time, such that
the overall runtime increases.

SAXPY

0

2

4

6

w/o
dOpenCL

1 2 4 8

R
u
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

SGEMM

0

50

100

w/o
dOpenCL

1 2 4 8

R
u
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

data transfer

execution

initialization

Fig. 3. Runtime of BLAS subroutines on up to 8 compute nodes.

We observe that the compute-intensive SGEMM is up to
12.8 times faster when using dOpenCL, as the increased
data transfer time is negligible as compared to the decreased
compute time. As the number of compute nodes increases,
the kernel execution time of SGEMM reduces proportion-
ally, whereas it stays constant for SAXPY. Unlike SAXPY,
SGEMM does not equally split its input data to all compute
nodes, but has to send a full copy of one of its input matrices
to all compute nodes. Therefore, the data transfer time for
SGEMM increases proportionally to the number of compute
nodes. The time for initialization remains roughly constant
in all subroutines.

B. dOpenCL vs. MPI+OpenCL: Mandelbrot Set

To compare the programming effort and performance of
dOpenCL against MPI mixed with OpenCL (MPI+OpenCL),
we use the computation of a fractal of the Mandelbrot set
which is a very popular benchmark application.

We adapted an existing OpenCL implementation of Man-
delbrot computation to both programming approaches. With
dOpenCL, we only have to provide a list of available
compute nodes (like in Listing 1), while the application
is not changed in any way. When using MPI+OpenCL, no
node list is needed, but even such an embarrassingly parallel
application as Mandelbrot required the following significant
modifications of the original OpenCL program:

• Based on the MPI process rank and communicator size,

an image tile (specified by its offset and size) is assigned
to each node.

• This tile, rather than the complete image, is passed to
the program’s algorithm for Mandelbrot computation.

• The tiles are merged into a complete image using the
MPI_Gather command.

• Initialization and finalization commands for the MPI
runtime are added.

In order to compare the scalability and runtime of the
dOpenCL- and MPI+OpenCL-based implementation, we ex-
ecuted both implementations on a cluster, with compute
nodes connected via 4x QDR Infiniband. Each compute node
is equipped with 2 hexa-core CPUs (Intel Westmere X5650,
running at 2.6 GHz), which are accessible as a single device
in OpenCL.

We measured the runtime of both application versions for
computing a 4800× 3200 fractal image with up to 10,000
iterations per pixel on 2, 4, 8, and so forth up to 32 nodes.
In both versions, each line of the Mandelbrot fractal is
computed by another device in a round-robin fashion, such
that all devices are assigned an equal amount of work.

The results shown in Figure 4 demonstrate that both, the
dOpenCL (left bar) and the MPI+OpenCL (right bar) ver-
sions scale well. As compared to the MPI+OpenCL program,
the dOpenCL program introduces only a moderate overhead.

2 devices 4 devices 8 devices 16 devices 32 devices

0

3

6

9

dOpenCL MPI +
OpenCL

dOpenCL MPI +
OpenCL

dOpenCL MPI +
OpenCL

dOpenCL MPI +
OpenCL

dOpenCL MPI +
OpenCL

R
u
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

data transfer

computation

initialization

Fig. 4. Runtime of the Mandelbrot application using up to 32 devices.

The stacked view of the runtime with program initializa-
tion (bottom), computation (center), and data transfer (top)
reveals that this overhead is introduced by program initializa-
tion and data transfer. The overhead for data transfer is fixed
and does not increase as more nodes are employed by the
application. MPI performs better in bulk data transfer than
dOpenCL, because it directly uses the cluster’s Infiniband
fabric, while the current implementation of dOpenCL uses
a TCP/IP stack which achieves only about 56% of the
performance of the native Infiniband library. The initial-
ization overhead is only relevant in dOpenCL and slightly
increases with the number of nodes. Unlike the MPI runtime
system which is initialized before the application is started,
dOpenCL sets up its runtime system during the application’s

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

runtime, i.e. it connects to all compute nodes and obtains a
list of available devices. Moreover, OpenCL’s initialization
process for building the OpenCL program binaries requires
dOpenCL to transfer the OpenCL program code to all com-
pute nodes over the network. In MPI, the compiled program
binary has to be present on each node before the application
is started. While the setup of the runtime system increases the
initialization time, this also makes dOpenCL more flexible,
as the runtime system is created dynamically before each
execution.

V. RELATED WORK

Several distributed implementations of the OpenCL stan-
dard API have been proposed recently. SnuCL [10] imple-
ments the OpenCL API using MPI and provides a number
of additional API functions which resemble collective oper-
ations in MPI. Hybrid OpenCL [11] is based on a modified
version of the FOXC OpenCL runtime [12], such that it
not only provides access to the devices of the system it
is running on (the host system), but also to the devices
on remote systems. An approach named clOpenCL [13]
is an implementation of the OpenCL API for clusters. It
uses Open-MX as communication library which provides a
Myrinet communication stack for Ethernet networks. The
MOSIX Many GPUs Package (MGP) [14] is a library and
runtime system which aim at simplifying the programming
of clusters with GPUs. MGP provides an API layer called
MOSIX Virtual OpenCL which enables unmodified OpenCL
applications to be executed on clusters.

While the objectives of the aforementioned approaches are
similar to ours, none of them provides a central mechanism
for assigning devices to multiple applications that are exe-
cuted on a distributed system concurrently. We specifically
address this issue in our approach. Moreover, our approach
is not particularly focused on parallel execution on clusters,
but also aims at distributed computing in local area networks.

VI. CONCLUSION

This paper presents dOpenCL – a novel approach based
on OpenCL for uniformly programming distributed heteroge-
neous systems comprising multi-core processors and multiple
GPUs. Using dOpenCL, standard OpenCL applications can
transparently access remote devices (CPU and GPU). Our
approach, on the one hand, considerably extends the scope
of OpenCL: by means of the device manager, devices of a
distributed system can be shared efficiently between multiple
OpenCL applications, and additional devices can be added
transparently from clouds. On the other hand, our approach
facilitates a seamless integration with existing OpenCL ap-
plications without the necessity to rewrite them.

Unlike mixed-mode programming approaches such as
MPI+OpenCL, the dOpenCL programming model does not
require existing OpenCL programs to be modified for being
executed on a distributed system. For compute-intensive
applications, like the presented SGEMM and Mandelbrot
benchmarks, the overall runtime overhead introduced by
dOpenCL is shown to be negligible. Even with a com-
paratively slow Gigabit Ethernet network, we achieved re-
markable performance increase when using devices in a
distributed system. We expect an additional performance

imrovement by using an alternative implementation of
dOpenCL for Infiniband networks which is currently under
active development.

ACKNOWLEDGMENT

The authors would like to thank NVIDIA Corp. for their
generous hardware donation.

REFERENCES

[1] MPI: A Message-Passing Interface Standard, http://www.mpi-forum.
org/docs/mpi-2.2/mpi22-report.pdf, Message Passing Interface Forum,
2009, version 2.2.

[2] NVIDIA CUDA API Reference Manual, http://developer.download.
nvidia.com/compute/DevZone/docs/html/C/doc/CUDA Toolkit
Reference Manual.pdf, February 2011, version 4.0.

[3] POSIX, Part 1: System API, ANSI/IEEE Std 1003.1c, Amendment 2:
Threads Extension, IEEE Standards Press, Technical Committee on
Operating Systems and Application Environments of the IEEE., 1996.

[4] A. Munshi, The OpenCL Specification, Beaverton, OR, 2010, version
1.1, Document Revision: 33.

[5] “DOpenCL,” http://www.ohloh.net/p/DOpenCL.
[6] F. Glinka, A. Ploß, J. Müller-Iden, and S. Gorlatch, “RTF: A Real-

Time Framework for Developing Scalable Multiplayer Online Games,”
in Proceedings of the 6th ACM SIGCOMM Workshop on Network and
System Support for Games, ser. NetGames ’07. New York, NY, USA:
ACM, 2007, pp. 81–86.

[7] F. Glinka, A. Ploß, and S. Gorlatch, “RTF: Real Time Framework,”
http://www.real-time-framework.com/.

[8] “AMD Accelerated Parallel Processing SDK,” http://developer.amd.
com/sdks/amdappsdk.

[9] “BLAS (Basic Linear Algebra Subprograms),” http://www.netlib.org/
blas/.

[10] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “SnuCL: An OpenCL
framework for heterogeneous CPU/GPU clusters,” in Proceedings of
the 26th ACM International Conference on Supercomputing, ser. ICS
’12. New York, NY, USA: ACM, 2012, pp. 341–352.

[11] R. Aoki, S. Oikawa, R. Tsuchiyama, and T. Nakamura, “Hybrid
OpenCL: Connecting Different OpenCL Implementations over Net-
work,” in Proceedings of the 2010 10th IEEE International Conference
on Computer and Information Technology, ser. CIT ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 2729–2735.

[12] “FOXC, an OpenCL Compiler and Runtime,” http://www.fixstars.com/
en/opencl/foxc/.

[13] A. Alves, J. Rufino, A. Pina, and L. P. Santos, “clOpenCL – Supporting
Distributed Heterogeneous Computing in HPC Clusters,” in Euro-Par
2012 Parallel Processing Workshops, ser. Lecture Notes in Computer
Science. Springer, to appear.

[14] A. Barak, T. Ben-Nun, E. Levy, and A. Shiloh, “A package for
OpenCL based heterogeneous computing on clusters with many GPU
devices,” in Workshop on Parallel Programming and Applications on
Accelerator Clusters (PPAAC10), IEEE Cluster 2010, September 2010.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

