

Abstract—Each database host in the cloud platform often has
to service more than one database application system. However,
under the resource limitations of the host, evenly distributed
databases into each host is an important issue needed to be
addressed. The database sizes and the number of databases must
be taken into account for workload balancing among database
hosts. If too many data or databases are gathered in only few
database hosts, the data skew may occur and result in poor
quality of service. Currently, how to evenly allocating databases
into hosts has not been concerned yet. In this research, we will
propose five database allocation algorithms for distributing
databases to hosts in the cloud platform. The equations used to
evaluate the deviation of database allocation results are also
provided in this report. In our experimental study, one of
proposed approach can perform very near optimal solution. We
hope that it will help the practical applications in the cloud
platform.

Index Terms—cloud computing, database allocation, load
balancing, Best Fit Decreasing Strategy

I. INTRODUCTION
HE Cloud computing is an emerging business solution
and has brought to much attention [7][12][18][19]. In the

cloud platform, the Storage as a Service (StaaS) is a business
model in which a large company rents space in their storage
infrastructure to a smaller company or individual [21][24]. It
can address the requirements of each software service to
distribute the storage space and all kinds of the service on the
resource pool. Cloud storage services allow users through the
web-based applications at any place and any time via
Internet-connected devices for facilitate the use of its storage
capabilities without the need for extra proprietary storage
system. The storage layer is the main core of the cloud storage,
like infrastructure as a service (IaaS) in cloud computing,
which is composed of various types of storage devices
dispersed in different regions. In this storage layer, either
DAS, FC SAN, iSCSI or NAS of IP storage devices can be
integrated by consolidation system of storage virtualization
technology. Thus remote monitoring and management for all
devices can be performed in this consolidation system.
Moreover, there must be collaboration between different
storage devices, and provides a single integrated services.

Due to a great diversity and large volume of data in the
cloud, the databases are spread across a broad range of hosts
to serve numerous of users and must have sufficient
scalability and management capabilities to face any specific
data needs in real time. Therefore, several researches on how
to efficiently manage databases in cloud platform have been
proposed [6][10][11][13][16].

1 Yu-Lung Lo and Min-Shan Lai are with the Department of Information

management, Chaoyang University of Technology, Wufong District,
Taichung, 41349 Taiwan. Phone: +886-04-2332-3000 ext. 4274; fax:
+886-4-2374-2337; e-mail: yllo@cyut.edu.tw; s10014608@cyut.edu.tw.

A database management system on the database server to
serve a large number of users is quite resource consumption,
such as the demand on storage space and memory as well as
the executing database engine for service and management of
the database. On the practical application, a host often serves
more than one database application systems concurrently.
Accordingly, if too many of them share the limited resources
of a host, it may decrease the efficiency of the application
systems. Therefore, how to allocate various sizes and the
number of databases to every host evenly is one of most
important issues for ensuring the good performance in the
cloud. However, it has not been discussed until now.

In this paper, we would like to study the load balancing of
database allocations in the cloud by considering both two
factors of the various sizes of databases and the number of
databases. The remaining of this paper is organized as follows:
in section 2, we review the related works of data allocations.
Then, in section 3, we propose five algorithms for database
allocation in cloud platform. After that, we design
experiments to evaluate the efficiencies of proposed
approaches in section 4. Finally, a conclusion is given in the
last section.

II. RELATED WORKS
Cloud infrastructure consists of global master nodes and

local slave nodes. Databases are always allocated in slave
nodes to serve as database hosts. A database host can serve
more than one database and the application systems
concurrently. There still has not any report to address the load
balancing issue for database hosts in the cloud platform.
There is a similar concept by Mackey et al [9] for storing
small files in HDFS efficiently and improving the space
utilization for metadata. HDFS stands for Hadoop
architecture consists of a distributed file system [25]. We will
briefly introduce Mackey's approach in this section.
Furthermore, since the ideas of Round-robin scheduling and
the Best fit decreasing strategy will be used in our proposed
schemes, we would also like to give an introduction for them.

A. Metadata Management for Small Files in HDFS

The Hadoop architecture consists of a Distributed file system
(HDFS) and a programming framework MapReduce [2]. It is
formed with a metadata server called the Name node and a
large number of I/O nodes called Data nodes, such that a
single Name node keeps metadata of all files on different Data
nodes as shown in Figure 1 [9]. In conventional multi-user
environments, users are given quotas to access and use such
that the HDFS provides for a mechanism to put quotas on user
directories. In Hadoop’s implementation, cluster
administrators are given two options for applying user quotas;
1) maximum number of files per directory 2) maximum file
space for a user directory. Mackey et al discuss their work on
these options [9]. Figure 2 shows two cases where an

The Load Balancing of Database Allocation
in the Cloud
Yu-lung Lo and Min-Shan Lai1

T

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

incoming request may exceed the quota limitations. Assuming
the user quota for number of files is seven and storage is 7GB.
N shows the current number of files and S shows the current
storage capacity. User 2 in the figure has reached the limit on
the number of files, although the space quota is still under
utilization. User n has reached the space limit, but the number
of files is under utilization. In both cases, users will not be
allowed to proceed with the MapReduce job because of the
inability to create new files in the respective directory [9].

Figure 1. Hadoop file system [9]

Figure 2. An incoming request May be exceeding number of files quota or

storage quota [9]

B. Round-Robin Scheduling

Round-robin scheduling [14] is a simple algorithm
designed especially for time-sharing systems for arranging
processes in an operating system in which all runnable
processes are kept in a circular queue as shown in Figure 3.
The CPU scheduler goes around this queue and allocates the
CPU to each process for a time interval of time slices without
priority. It provides a complete fairness among the processes.
Round-robin algorithm has been widely used in many
scheduling approaches [15][3][23].

Figure 3. Round-robin scheduling [23]

C. Best Fit Decreasing Strategy
Best fit decreasing strategy is often used to solve the bin

packing problem and look for the near optimal solution [4][5].
In the problem, objects of different volumes (sizes) must be
packed into a finite number of bins with limited capacity each
in a way that minimizes the number of bins used. In another
similar problem that the objects distributed into all the bins
are most evenly. By best fit decreasing strategy, the objects
are first sorted into decreasing order according to sizes. In the
each iteration, the current largest object is assigned to the bin
which currently owns the smallest volumes of packs assigned.
This process is repeated until all the objects have been
assigned as shown in Figure 4. In the figure, P1 and P2 could
be bins, and B1, B2, ..., B8 could be packages in decreasing
order according to size. This scheme is also used in many
research fields such as data processing and data allocations
[8][11][20].

Figure 4. Best Fit Decreasing Strategy

III. LOAD BALANCING FOR DATABASE ALLOCATIONS

A database host often serves a number of database
management systems. If too many of databases share the
limited resources of a host concurrently, it may decrease the
efficiency of the application systems. Therefore, evenly
designating various sizes and the number of databases to
every host can ensure the efficiencies of application systems
in the cloud. In this section, we design five allocation
algorithms for allocating databases to the hosts. The volumes
of data and the number of databases are taken into account for
load balancing the allocations. Suppose that all the databases
have been sorted in decreasing order according to their sizes
and will be allocated into hosts in this sequence.

A. Round-Robin Allocation

Round-robin allocation uses the idea of Round-Robin
scheduling to allocate databases in round robin fashion as
shown in Figure 5. In the figure, D1, D2, ..., and etc. denote the
databases in decreasing order of sizes, and are periodically
allocated to hosts N1 to N5.

This allocation scheme can guarantee to designate the
number of databases to every host in an optimal distribution.
Nevertheless, it cannot ensure the volumes of data in every
host being evenly.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

http://en.wikipedia.org/wiki/Computer_process�

Figure 5. Round-Robin Allocation

B. Z-Distribution

Z-Distribution modifies the Round-robin allocation to
allocate databases into hosts in a Z like manner. In this
approach, databases are sequentially designated to hosts from
N1 to N5 in odd iterations and to hosts from N5 to N1 in even
iterations, as shown in Figure 6.

This scheme like Round-robin allocation can well
distribute the number of databases to host. In addition, it can
distribute the volumes of data to every host more evenly than
Round-robin allocation.

Figure 6. Z-distribution

C. Best Fit Decreasing Strategy with Size First

Best fit decreasing strategy with size first uses the Best
fit decreasing strategy [5] to allocate databases into hosts with
considering the sizes of databases only. The designation of
this scheme is similar to that of the Figure 4.

This allocation method emphasizes that it tries to evenly
distributing the volumes of data instead of the number of
databases to each hosts.

D. Best Fit Decreasing Strategy with Limited Number of
Databases

Best fit decreasing strategy with limited number of
databases also use the Best fit decreasing strategy to allocate
databases into hosts additional the number of databases is
limited in each host. When the number of databases allocated
reaches the limitation of a host, the host won't be assigned
database again and the database is allocated to the next host
with smallest volume of data.

In this approach, we specify the average number of
databases (each host assigned if evenly distributed) for the
limited number of databases for each host. Therefore, we can
evenly allocate the number of databases to hosts like in
Round-robin allocation and Z-distribution. However, the load
balance of volume of data for each host may not as good as
Best fit decreasing strategy with size first.

E. Quantity Ratio Allocation

Quantity Ratio Allocation tries to designate the
databases with the smallest volumes of data together with the
largest volumes of data to a same host. Since databases are
sorted in decreasing order, a host allocated a few number of
databases but large volumes of data should delay the
designation and wait for the smaller ones. The Equation (1) is
designed for evaluating the Quantity Ratio (QRi) for the host i,
where NDBavg and DBavg denote the average number of
databases and the average data volume respectively which
each host can be allocated, NDBi and DBi denote the number
of databases and the data volume respectively already
allocated in the ith host concurrently. The next designation of
database will go for the host with the highest value of quantity
ratio. We also note that the limited number of databases for
each host can also be applied in this approach to evenly
designate the number of databases to hosts.

iavg

iavg
i NDBNDB

DBDB
QR

−
−

= … (1)

Let's give an example for illustration. Suppose that the
known average number of databases (NDBavg) is 10 and
average data volume is 150GB. If host A has already been
allocated one database with data volume of 100GB, its
quantity ratio will be 5.6 (50/9=). If the other host B has
already been allocated five databases with total data volume
of 90GB, its quantity ratio will be 12 (60/5=). Since host B
has the higher quantity ratio, the next database will be
designated to host B. The host A will be delayed and wait for
allocating smaller databases.

IV. PERFORMANCE STUDY
In order to evaluate the performances of our proposed

database allocation schemes, a series of experiments are
performed in this section.

A. Experimental Model

We first design following 3 equations to evaluate how
balance of our five allocation approaches.

∑
=

−=
n

i
avgisize DBDBD

1

 …(2)

∑
=

−=
n

i
avgiNoOfDBs NDBNDBN

1

 …(3)

 22









+








=

total

NoOfDBs

total

size

N
N

D
DDR …(4)

In Equation (2), Dsize denotes the total size of deviation
which accumulates the difference between the ideally average
data volume should be allocated and the actually data is
allocated to each host. Where n is the total number of
databases, DBi is the data volume allocated in the ith host and
DBavg is the ideally average data volume should be allocated
to every host.

In Equation (3), NNoOfDBs denotes the total number of
database deviation which gathers the difference between
ideally average number of databases should be allocated and
the actually number of databases are allocated to each host.
Where n is the total number of databases, NDBi is the number

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

of databases allocated in the ith host and NDBavg is the ideally
average number of databases should be allocated to every
host.

In Equation (4), DR denotes the normalized Deviation
Ratio which looks deviation ratios of size (Dsize / Dtotal) and of
the number of databases (NNoOfDBs / Ntotal) as an coordinate in
two dimensional space and computes the distance to the origin
(0, 0). Where Dtotal is the total size (volume) of all databases
and Ntotal is the total number of databases being allocated. We
normalize the Dsize and NNoOfDBs to the ratios of (Dsize / Dtotal)
and (NNoOfDBs / Ntotal), respectively, in which their values are
between 0 and 1 such that no one will overly dominate the DR
value if Dzise or NNoOfDBs is too vast.

The parameters of our experiment are presented in Table
1. Suppose that the database sizes are not uniformly
distributed. The sizes of databases are varied and can be
determined by the Zipf-like distribution as shown is Equation
(5) [17][22]. In this equation, |Bi| is the size of the ith database,
|R| is the total data volume of all databases, Zb is the database
skew, and b is the total number of databases. We note that
when Zb = 1, the equation becomes a Zipf distribution, and
when Zb = 0, it is a uniform distribution. The size distributions
for 1000 databases when Zb equals to 0, 0.5, and 1.0 are
shown in Figure 7. In addition, Sizes of the largest database
and the smallest database for Zb varied from 0.0 to 1.0 are
presented in Table 2. If Zb=1, the largest and smallest
databases consist of 13.36TB and 0.013TB data respectively.
Furthermore, databases are sorted in decreasing order
according to their sizes before allocated to hosts.

Table 1. experimental parameters

Parameter setting

Hosts (n) 100

Number of databases (b) 1000

Total data volume (|R|) 100TB

Database skew (Zb) 0.1~1.0

∑
=

= b

j
Z

Z
i

b

b

j
i

R
B

1

1
 …(5)

1

10

100

1000

10000

100000

1 63 125 187 249 311 373 435 497 559 621 683 745 807 869 931 993

Database IDs

G
B

Zb=0.0

Zb=0.5

Zb=1.0

Figure 7. DB sizes in Zip-like distributions

Table 2. The sizes of largest and smallest DBs for various Zb

Zb Largest DB (TB) Smallest DB(TB)
0.0 0.10 0.100
0.1 0.18 0.090
0.2 0.32 0.080
0.3 0.56 0.070
0.4 0.96 0.061
0.5 1.62 0.051
0.6 2.65 0.042
0.7 4.22 0.034
0.8 6.46 0.026
0.9 9.50 0.019
1.0 13.36 0.013

For easier discussion and labeling, Best Fit Decreasing
Strategy with Size First and Best Fit Decreasing Strategy with
Limited Number of Databases Allocations will be shorten as
BestFit_Size and BestFit_NDB, respectively, in this section.
The experimental results are shown in the following
subsections. Our experimentation consists of five parts:

(i) Analysis of database size deviation
(ii) Analysis of the number of database deviation
(iii) Analysis of deviation ratio
(iv) Analysis of Scalability
(v) Optimality study

B. Analysis of database size deviation

In this study, the database size deviations after databases
allocated in hosts are investigated. The Equation (2) is used
for computing the total size of deviation which accumulates
the difference between the ideally average data volume
should be allocated and the actually data is allocated to each
host. The experimental result is shown in Figure 8. There is no
doubt that the database size deviations of all allocation
approaches are increasing as rising the database skew from
0.1 to 1.0. It's due to the higher database skew the more
difficulty to distribute databases to each host evenly. In the
figure, the Quantity Ratio allocation can most evenly allocate
databases to hosts when database skew is minor such as Zb <=
0.4. However, the BestFit_Size outperforms all other
allocation schemes if Zb >= 0.5. That's because this study
considers the database sizes as the only influence factor and
BestFit_Size allocation only focuses on balancing the data
volume to every host. Since the Round-robin allocation
considers evenly distributing the number of databases to all
the hosts only and ignores the effect of data volume
distributions, it performs the worst in this study

0

10

20

30

40

50

60

70

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Zb

T
B

BestFit_Size

BestFit_NDB

Round-Robin

Z-Distribution

QuantityRatio

Figure 8. Analysis of database size deviation

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

C. Analysis of the number of database deviation

In this section, we examine the number of database
deviation. The Equation (3) is used for calculating the total
number of database deviation which gathers the difference
between the ideally the average number of databases should
be allocated and the actually number of databases are
allocated to each host. The experimental result is shown in
Figure 9. In the figure, all approaches can perfectly allocate
the even number of databases to every host except
BestFit_Size. To evenly distribute the number of databases to
all hosts is not taken into account by BestFit_Size allocation.
Therefore, the number of database deviation for BestFit_Size
grows up as increasing the database skew.

0

50

100

150

200

250

300

350

400

450

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Zb

N
o.

 o
f

D
B

s

BestFit_Size

BestFit_NDB

Round-Robin

Z-Distribution

QuantityRatio

Figure 9. Analysis of the number of database deviation

D. Analysis of Deviation Ratio
Since the studies of previous two sections considered

either database size deviation or the number of database
deviation only, both of them will be taken into account
simultaneously in this section. To prevent any one of these
two deviation factors over dominating the experimental
results, they are normalized to design the total deviation ratio
calculated by Equation (5). We use this equation to analyze
the deviation ratios of five approaches. The experimental
result is presented in Figure 10. We can find that Quantity
ratio allocation performs best in five schemes. The
BestFit_NDB almost acts as good as Quantity ratio allaction
when Zb >=0.7. Nevertheless, the BestFit_NDB performs
worse than Quantity ratio allocation and stands in the second
best if Zb < 0.7. We also note that Round-robin allocation
which considers evenly distributing the number of databases
only almost performs the worst except when Zb =1. In addition,
the Bestfit_Size is very sensitive to database skew when
increasing the skew the deviation ratios of BestFit_Size grows
most rapidly and becomes the worst when Zb =1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Zb

D
R

BestFit_Size

BestFit_NDB

Round-Robin

Z-Distribution

QuantityRatio

Figure 10. Analysis of deviation ratio

E. Analysis of Scalability

The scalability of our five allocation approaches are
examined in this section. In this study, the total number of
databases is varied from 500 to 1300. The total data volume
and the number of hosts are still fixed for 100TB and 100,
respectively. The database skew (Zb) is fixed at 0.5. The
deviation ratio by Equation (4) is used to evaluate the
performances of allocation schemes. The experimental result
is shown in Figure 11. All the deviation ratios of five
approaches are decreased as we increasing the number of
databases. It is due to that more number of databases, which
implies smaller data volume for every database, is more easily
to balance the database allocations. Moreover, the Quantity
ratio allocation still outperforms the other four approaches. It
benefited greatly by larger number of databases.

0

0.05

0.1

0.15

0.2

0.25

500 600 700 800 900 1000 1100 1200 1300

No. of DBs

D
R

BestFit_Size

BestFit_NDB

Round-Robin

Z-Distribution

QuantityRatio

Figure 11. Analysis of scalability

F. Optimality study

By deviation ratio analysis, the Quantity ratio allocation
is the best approach for database allocation. In this section, we
would like to investigate Quantity ratio allocation comparing
to optimal solution for deviation ratio to find how well
Quantity ratio allocation already be. We define that the
database allocation with the smallest deviation ratio is the
optimal solution. However, to find optimal solution for
smallest deviation ratio, there are 1000 databases and 100
hosts in our experiment which like the bin packing problem is
an NP hard problem [4] and can result in 1001000
combinations of possible database allocations. It is
impossible to be done in our PC devices. Therefore, we
narrow down the experimental scale to 20 databases and 4
hosts which still has 420 (over one trillion) combinations of
possible database allocations. The total data volume is also
decreased to 10TB. We look for the smallest deviation ratio
for the optimal solution from all the possible combinations
and compare with Quantity ratio allocation. The experimental
result is presented in Figure 12. We are glad that the deviation
ratios for Quantity ratio allocation and optimal solution are
very close. It means that Quantity ratio allocation perform
very well and is near optimal solution. Although this study is
only for small scale experimental environment, we
optimistically expect that it still can perform well in real
practical applications.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Zb

D
R

Optimal

QuantityRatio

Figure 12. Quantity ratio vs. optimal solution

V. CONCLUSION
Storage as a Services (StaaS) is one of the important

services in Cloud platform. All the essential applications and
database services are gathered here. In this Cloud platform,
databases are dispersed across a broad range of hosts to
service numerous users. A database management system
which needs storage space for data and memory for database
engine running is quite resource consumption. On the
practical application, a host often serves more than one
database application systems concurrently. Therefore,
balance allocated databases to every host can ensure the
efficiency of each application system. In this paper, we
proposed five database allocation schemes in which both data
volume and the number of databases are taken into account. A
deviation ratio, which is derived by normalized data size
deviation and the number of databases deviation, is designed
for evaluating the degree of evenly distributed databases. Our
experimental results point out that the Quantity ratio
allocation approach has the best performance and is very
close to the smallest deviation ratio of optimal solution.
Besides, if evenly distributed data volume to each host is most
concerned, the Best Fit Decreasing Strategy with Size First
approach (BestFit_Size) can perform it well. In addition, if
the limitation of CPU power and memory is serious to care for,
all proposed approaches, except BestFit_Size, can evenly
allocate the number of databases to each host.

REFERENCES
[1] S.A. Cook, “The Complexity of Theorem Proving Procedures,” In

proceedings of 3rd Annual ACM Symposium on the Theory of
Computing, New York: ACM. 1971: 151-158.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” In Proceedings of the 6th Symposium on
Operating System Design and Implementation (OSDI 04), Usenix
Assoc., pages 137–150, 2004.

[3] D.J. DeWitt, J. Gray, “Parallel Database Systems: The Future of High
Performance Database Systems,” Comm. ACM 35 (6), 85 - 98, 1992.

[4] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP Completeness, Freeman, San Francisco, 1979.

[5] D.S. Johnson, “Near-optimal bin packing algorithms,” Ph.D. Thesis,
MIT, Cambridge, MA, 1973.

[6] J.L. Johnson, “SQL in the Clouds,” Computing in Science and
Engineering, pp. 12-28, July/August, 2009.

[7] Y. Kakuda, H. Yukitomo, S. Kusumoto, and T. Kikuno, "Scientific
Computing in the Cloud, " IEEE Design & Test, Vol. 12, Issue 3, IEEE
Computer Society Press, pp. 34-43, May 2010.

[8] M. Kitsuregawa and Y. Ogawa. “Bucket spreading parallel hash: A
new, robust, parallel hash join method for data skew in the super
database computer (SDC),” In Proc. of 16th Int ’ l Conf. on VLDB,
pages 210-221, Brisbane, Australia, August 1990.

[9] G. Mackey, S. Sehrish and J. Wang, "Improving metadata management
for small files in HDFS," CLUSTER ‘09. IEEE International
Conference on Cluster Computing and Workshops, September, 2009.

[10] V. Mateljan, D. Cisic, and D. Ogrizovic, “Cloud Database-as-a-Service
(DaaS) – ROI,” proceedings of the 33rd International Convention
MIPRO, pp. 1185-1188, May 2010.

[11] Z. Mian and Z. Nong, “The Study of Multimedia Data Model
Technology Based on Cloud Computing,” The 2nd International
Conference on Signal Processing Systems (ICSPS), pp.
V3-743-V3-746, July 2010.

[12] A. Michael, F. Armando, G. Rean, A. D. Joseph, K. Randy, K. Andy, L.
Gunho, P. David, R. Ariel, S. Ion, and Z. Matei, “A View of Cloud
Computing,” Communications of the ACM, Vol.53, No. 4, pp. 50-58,
2010.

[13] J. Rogers,O. Papaemmanouil, and U. Cetintemel, "A Generic
Auto-Provisioning Framework for Cloud Databases," IEEE 26th
International Conference on Data Engineering Workshops (ICDEW),
pp. 63-68, 2010.

[14] A. Silberschatz, P. B. Galvin, and G. Gagne, " Process Scheduling,"
Operating System Concepts, John Wiley & Sons, Inc., 8th edition. pp.
194, 2010.

[15] T. Stöhr, H. Märtens, E. Rahm, “Multi-Dimensional Database
Allocation for Parallel Data Warehouses,” Proc. 26th VLDB
Conference, Cairo, Egypt, Sep. 2000.

[16] N.E. Taylor and Z.G. Ives, “Reliable Storage and Querying for
Collaborative Data Sharing Systems,” IEEE 26th International
Conference on Data Engineering (ICDE), pp. 40-51, 2010.

[17] C. Turbyfill. ”Comparative Benchmark of Relational Database
System,”. PhD thesis, Cornell University, September 1987.

[18] M.A. Vouk, “Cloud Computing- Issues, Research and
Implementations,” the 30th International Conference on Information
Technology Interfaces, pp. 31-40, June 23-26, 2008.

[19] E. Walker, W. Brisken, and J. Romney, “To Lease or Not to Lease from
Storage Clouds,” Computer, Vol. 43, Issue 4, IEEE Computer Society
Press, pp. 6-9, April 2010.

[20] J.L. Wolf, D.M. Dias, P.S. Yu, and J. Turek, “Comparative
performance of parallel join algorithms,” In Proc. of Int’l Conf. on
Parallel and Distributed Information Systems, pages 78-88, Miami,
Florida, December 1991.

[21] S. Zhang, S. Zhang, X. Chen, and X. Huo, “Cloud Computing
Research and Development Trend,” the 2nd International Conference
on Future Networks, pp. 93-97, Jan. 2010.

[22] G.K. Zipf, “Human Behavior and the Principle of Least Effort: An
Introduction to Human Ecology,” Addison-Welsey, Reading, MA.
1949.

[23] Y.F., Zheng, C., Shao, “An efficient round-robin algorithm for
combined input-crosspoint-queued switches,” In: Dini P, ed. Proc. of
the IEEE ICAS/ICNS, Papeete: IEEE Computer Society, pp. 23−28 ,
2005.

[24] Gartner Says Cloud Computing Will Be as Influential as E-business,
October 2009, http://www.gartner.com/it/page.jsp?id=707508

[25] The Hadoop architecture, http://hadoop.apache.org/

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

http://www.gartner.com/it/page.jsp?id=707508�

	I. INTRODUCTION
	II. Related Works
	A. Metadata Management for Small Files in HDFS
	B. Round-Robin Scheduling
	C. Best Fit Decreasing Strategy

	III. Load Balancing For Database Allocations
	A. Round-Robin Allocation
	B. Z-Distribution
	C. Best Fit Decreasing Strategy with Size First
	D. Best Fit Decreasing Strategy with Limited Number of Databases
	E. Quantity Ratio Allocation

	IV. Performance Study
	A. Experimental Model
	B. Analysis of database size deviation
	C. Analysis of the number of database deviation
	D. Analysis of Deviation Ratio
	E. Analysis of Scalability
	F. Optimality study

	V. Conclusion
	References

