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Abstract—Fuzzy C-means (FCM) is a powerful clustering

algorithm and has been introduced to overcome the crisp
definition of similarity and clusters. FCM ignores the
importance of features in the clustering process. This affects its
authenticity and accuracy. We can overcome this problem by
appropriately assigning weights to features according to their
clustering importance. This paper, proposes an improved FCM
algorithm based on the method proposed by Huang by
automated feature weighting. The simulation results on several
UCI databases show that the proposed algorithm exhibits
better performance than FCM.

Index Terms—Fuzzy Clustering, Fuzzy C-means, Feature
Weighting, Weighted Fuzzy C-means

I. INTRODUCTION

luster analysis groups data according to their
similarities.  Normally, data is described by a vector

where each of its components is one of its features. The
similarity of two vectors is based on the cumulative sum of
the distance of feature vector components. The distance
measurement can be based on Euclidian, Chess Board,
Mahalanobis and etc. There are two problems associated
with these approaches. The first belongs to the definition of
similarity; the second belongs to the importance of vector
components in distance measurement.

Traditionally, similarity is a crisp concept and, two
vectors can be similar or dissimilar. This approach is unable
to cover the similarity concept because; there is some degree
of similarity rather than a simple yes or no answer. Zadeh [1]
first articulated fuzzy set theory which gave rise to the
concept of partial membership based on membership
function. This approach opens the way to include the partial
similarity. Fuzzy clustering is an output of this approach.

This concept produces overlapped rather than fixed
cluster partitions based on the fuzzy similarity concept. FCM
proposed by Dunn [2] and extended by Bezdek [3] is one of
the most well-known algorithms in clustering analysis.
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Basically, FCM clustering depends on the measure of
distance between samples. In most situations, FCM employs
the traditional distance measurement that supposes similar
weight to each feature. This assumption seriously affects the
performance of FCM, since, in most of the real-world
problems, data features have different effects in the overall
clustering performance. Wang et al [4] employed Iris data
(Fisher,1936 [5]) to show that the different feature weight
affects the performance of FCM. However, improperly
choosing the feature weights degrades the FCM
performance. So, it is important to select suitable feature
weights to guarantee the performance. Wang et al [5]
proposed a feature-weight learning approach based on a
defined similarity measure and an evaluation function to
improve the FCM performance. However, the defined
similarity measure and the evaluation function are
complicated and difficult to interpret.

This paper, proposes a novel Weighted Fuzzy FCM
algorithm (W-FCM) that automatically assigns weights to
variables based on their clustering importance. This
approach is an extension of WK-means clustering proposed
by Huang[6]. Similar to WK-means, W-FCM adds a new
step to the basic FCM algorithm to update the weight of
features based on their current data partition. The rest of this
paper is organized as follows. Section II, reviews FCM and
K-means clustering algorithms and lists some cluster validity
functions to measure the performance. Section III
demonstrates the WK-means algorithm and introduces the
novel W-FCM algorithm based on it. Section IV presents the
experimental results based on some UCI databases. The final
section is our conclusion.

II. BACKGROUND

A. K-Means

K-means algorithm is classified as a partitional or
nonhierarchical clustering algorithm [7], where it assumes a
fixed number of clusters, and generates the clusters by the
use of an error function. This algorithm proceeds, for a given
initial k clusters, by assigning data to the nearest clusters and
then repeatedly changing the membership of the clusters
according to the error function, until the function does not
change more than a specified threshold, or the membership
of the clusters no longer changes. The conventional k-means
algorithm is briefly described as below:

Let X be the dataset of N samples with D dimensions,

Fuzzy C-means based on Automated Variable

Feature Weighting

Mousa Nazari, Jamshid Shanbehzadeh, and Abdolhossein Sarrafzadeh

C

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013



d
in RxxxxX  ),,...,,( 21 . Our goal is to assign data

points into K partitions. Assume that the K centers are

kvvv ,...,, 21 and in cluster i there exists iN instances. So

we can calculate its center by averaging its members:

 
 iN

i ii Kiforx
N

v
1

..1,
1

(1)

Based on Euclidean distance and the criteria of the within-
groups sum of squared error, (2) shows the objective
function of k-means clustering.
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Where U is a nK  partition matrix, iku , is a binary

variable, and 1, iku indicates that object i belongs to

cluster k. K-mean algorithm as follows:

Randomly initialize the position of the c cluster centers.
i. Calculate the distance between all of the samples and

each center.
ii. Each sample is assigned to a cluster based on the minimum

distance.
iii. Recalculate the center position using (1)
iv. Recalculate the distance between each sample and each

center.
v. Reassign each sample to a cluster.

vi. If no data was reassigned, then stop, otherwise repeat from
step (iii).

B. Fuzzy C-Means

FCM clustering algorithm [3, 8] allows one piece of data
to belong to more than one cluster according to a

membership function. Let ),...,,( 21 nxxxX  be a set of

numerical data in dR and c to be an integer between 1 and

n. Given X, we say that c fuzzy subsets ]}1,0[:{ Xuk

are a c-partition of X if the following conditions are
satisfied:

jku jk ,,10 ,  (3)
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Where k1),(, cxuu ikik  and ni 1 . Let

iku , satisfy the above conditions represented by a nc

matrix ][ ,ikuU  . FCM aims to determine cluster centers

),...,1( ckvk  and the fuzzy partition matrix U by

minimizing the objective function J defined as follows:





c

k

n

i
ik

m
ik duXVUJ

1

2
,,),,(

(6)

Where ikd , is the Euclidean distance from sample jx to

the cluster center iv defined as:
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The exponent m in (6) is the degree of fuzziness

associated with the partition matrix )1( m . If we consider

m to be one, the soft clustering will be changed into hard
one. Usually, we set m to 2. FCM algorithm as follows:

i.Choose an integer c and a threshold value. Let m=2. Fix and
initialize the fuzzy partition matrix U with a random value
such that it satisfies conditions (3), (4) and (5).

ii.Calculate the fuzzy centers kv using
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iii.Update the fuzzy partition matrix U with
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Where ikd , Compute  according to (7)

Compute the objective function J by using (6). If it converges
or the difference between two adjacent computed values of
objective function J is less than the given threshold e then
stops. Otherwise go to step (ii).

C. Cluster Validity Functions

Unlike hard clustering, its fuzzy version allows each data
point to be in every cluster with a different degree of
membership. Similar to hard clustering, we can define a
validity index for the fuzzy case. The objective is to seek
clustering schemes where most of the data points in the data
set exhibit a high degree of membership in one cluster.
Generally, there are two categories of fuzzy validity index.
The first one considers the membership values and the
second considers both the membership values and the data
values mentioned in [9]. Various fuzzy validity indices are
defined and discussed as follows.

The Partition Coefficient Index is the first validity index
associated with FCM and it is [3], [10] defined by:
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Where 1)(
1

 cPC
c

. In general, we find an optimal

cluster number c* by solving )(max 12 cPCnc  to

produce the best clustering performance for the data set X.
The partition entropy (PE) index is another fuzzy validity

index that involves only the membership values. It is defined
as [4], [11]:
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Where ccPE 2log)(0  . In general, we find an

optimal c* by solving )(min 12 cPEnc  to produce the

best clustering performance for the data set X. Both PC and
PE possess a monotonic evolution tendency in respect to c.
Modification of the PC index[12] presented by (12) can
reduce the monotonic tendency .
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Where 1)(0  cMPC . Note that the MPC index is

equivalent to the non-fuzziness index (NFI)[13]. In general,
an optimal cluster number c* is found by

solving )(max 12 cMPCnc  to produce the best

clustering performance for the data set X.
The above indices only use fuzzy memberships and there

is no connection to the geometrical structure of data.
Fukuyama and Sugeno [14] proposed a fuzzy validity index
based on both the membership values and the data values.

Let ),...,,( 21 nxxxX  be a data set, and )( ,ikuU  be

the membership matrix of a fuzzy c-partition of X. Then the
Fukuyama-Sugeno (FS) index is defined as:
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1
. In general, an optimal c* is found

by solving )(max 12 cFSnc  to produce the best

clustering performance for the data set X.

III. EXTENSION

A. Weighted K-Means

Weighted K-Means algorithm (abbreviated as WK-
Means) described by Chan, Huang and their collaborators
[6], [15], [16] is a modification of K-Means (2) to consider
weights to the features. Their approach relates feature
weights to a set of patterns during the process of clustering,
aligned to the wrapper approach idea for feature selection.
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According to the criterion, each feature weight should be
non-negative and their Addison should be equal to one. The
criterion has a user-defined parameter β, which expresses the
rate of impact weights on their contribution to the distance.

WK-means presents an extra step in relation to K-means,
as it updates the feature weights by:
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Where jD is the sum of within-cluster variances of

feature J weighted by clusters cardinalities:
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and h is the number of variables where 0jD . The WK-

means can be presented in detail as follow:

i. Initial setting:
Similar to k-means, this method uses an external
parameter to define the number  K of clusters.
WK-means then randomly initializes the
centroids and the feature weights, ensuring that
they add up to unity.

ii. Cluster update:
The cluster update assign each entity to their
closest centroid, using the adjusted distance
measure that takes into account the feature
weights;

iii. Stop condition:
This is as per the K-means algorithm.

iv. Centroids update:
Update centroids to the center of gravity of its
cluster. Again, as the method is based on
Euclidean distance, this is achieved by moving
the centroids to the mean of their clusters.

v. Weights update:
Update the weights according to (15),
constrained by the condition that the sum of
weights should be one.

B. Weighted-FCM

The presented method in this study (W-FCM) the FCM
method is modified by considering feature importance in
respect to (6) which can be expressed by (17).
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Minimizing (17) subject to (2), (3) and (4), then iku , and

kv are calculated as:
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The other parts of the algorithm are the same as FCM
given in Section 2.

Also, similar to WK-means, W-FCM adds an extra step to
FCM, as it updates the feature weights by (15) and (16). The
main steps of W-FCM are shown as follows:

i.Fix the number of clusters, c , where nc 2 , and
initialize the fuzzy partition  matrix U with a
random value such that it satisfies conditions (4)
and (5), and initialize the weighting vector W with
a random value such that it satisfies conditions(17)
and (18)

ii. Calculate the fuzzy centers vj using (19)
iii. update the fuzzy partition matrix U with (20)
iv. Update the weighting vector W with (15) and (16)

Repeat step (ii) to (iv) until one of the termination
criterion is satisfied.

The W-FCM algorithm follows an iterative optimization
similar to FCM, and consequently it is affected by some of
its strengths, such as its convergence in a finite number of
iterations, and its weaknesses, such as the algorithm yet it
initializes the centroids randomly, not guaranteeing an
optimal solution. Also, the same applies to the weights,
creating the possibility that these could be far from
representing the relevancy of features.

The computational complexity of the algorithm is
O(tcnd), where t is the total number of iterations required for
performing Steps ii, iii and iv, c is the number of clusters, d
is the number of attributes, and n is the number of objects.

IV. SIMULATE RESULTS AND DISCUSSION

This section compares the performance of W-FCM
against FCM on several UCI databases. The performance of
clustering is measured by the validity functions which are
descriptions in pervious section. In all the following
experiments we consider m=2, β=2 and threshold equal to
10-5. We performed experiments on four UCI databases.
Table I presents the databases and their attributes. Also, in
the follow Table II presents the clustering results of FCM
and WFCM algorithm based on the databases in Table I.

TABLE I.
THE CHARACTERS OF FOUR UCI DATABASES[17]

Database

Name

Number

of

Samples

Number

of

Feature

Category of

Feature

Number

of

Clusters

Iris 150 4 Numerical 3

Pima 768 8 Numerical 2

Statlog

(Heart)

270 13 Categorical

, Real

2

SPECT 267 22 Binary 2

Heart

TABLE II.
THE CLUSTERING RESULTS OF UCI DATABASES BY FCM AND W-FCM

VPC VPE VMPC VFS

Iris

FCM 0.783 0.571 0.674

8

-449.7148

W-FCM 0.920

8

0.206

6

0.881

2

-518.1711

Pima

FCM 0.824

2

0.428

2

0.648

5

-

2.7072e+6

W-FCM 0.929

3

0.174

2

0.858

4

-

5.1006e+6

Statlog

(Heart)

FCM 0.712

6

0.649

3

0.425

2

1.2394e+5

W-FCM 0.862

8

0.649

3

0.725

7

1.7200e+4

SPECT

Heart

FCM 0.585

3

0.868

9

0.170

6

4.9240e+5

W-FCM 0.867

9

0.324

9

0.735

8

1.1689e+5

V. CONCLUSION

This paper investigated the effect of feature weight on
FCM. W-FCM automatically calculated weights based on
the current partition in an iterative FCM clustering process.
The calculated weights of each iteration were based on the
variation of the within cluster distances. It revealed that an
appropriate assignment for feature weights could improve
the performance of FCM clustering. Experiments on some
UCI databases illustrated the outperformance of W-FCM
over FCM.

REFERENCES

[1] L. A. Zadeh, "Fuzzy sets," Inform. Contr., vol. 8, pp. 338–353, 1965.
[2] R. Fisher, "The use of multiple measurements in taxonomic

problems," Ann. Eugenics 7, pp. 179–188, 1936.
[3] J. C. Dunn, "Some recent investigations of a new fuzzy partition

algorithm and its application to pattern classification problems," J.
Cybernetics, vol. 4, pp. 1–15., 1974.

[4] X. Z. Wang, Y. D. Wang, and L. J. Wang, "Improving fuzzy c-means
clustering based on feature-weight learning," Pattern Recognition
Lett., vol. 25, pp. 1123–1132., 2004.

[5] Fisher, R.. "The use of multiple measurements in taxonomic
problems". Ann. Eugenics 7, pp. 179–188, 1936.

[6] J. Huang, M. K. Ng, H. Rong, and Z. Li, "Automated Variable
Weighting in k-Means Type Clustering," IEEE Trans. Pattern Anal.
Mach. Intell, pp. 657-668, 2005.

[7] A. Jain and R. Dubes, "Algorithms for Clustering Data," Englewood
Cliffs, NJ: Prentice–Hall, 1988.

[8] L. Bobrowski and J. Bezdek, " c-means clustering with the L1 and L∞
norms.," IEEE Transactions on Systems, Man and Cybernetics, pp.
545–554, 1991.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013



[9] M. Halkidi and M. Vazirgiannis, "Clustering validity assessment:
Finding the optimal partitioning of a data set," Proceedings of the
IEEE international conference on data mining, pp. 187-194, 2001.

[10] E. Trauwaert, "On the meaning of Dunn’s partition coefficient for
fuzzy clusters," Fuzzy Sets and Systems, pp. 217–242., 1988.

[11] J. Bezdek, "Cluster validity with fuzzy sets," Journal of Cybernetics,
pp. 58–72., 1974.

[12] R. N. Dave, "Validating fuzzy partition obtained through c-shells
clustering.," Pattern Recognition Lett., pp. 613–623, 1996.

[13] M. Robubens, "Pattern classification problems and fuzzy sets.,"
Fuzzy Sets Systems, pp. 239–253, 1978.

[14] [Y. Fukuyama and M. Sugeno, "A new method of choosing the
number of clusters for the fuzzy c-means method.," Proceeding of
fifth Fuzzy Syst., pp. 247-250, 1989.

[15] Y. Chan, W. K. Ching, N. M. K., and H. J. Z, "An optimization
algorithm for clustering using weighted dissimilarity measures,"
Pattern Recognition., pp. 943-952, 2004.

[16] J. Z. Huang, J. Xu, M. Ng, and Y. Ye. (2008). Weighting Method for
Feature Selection in K-Means. H. Liu, H. Motoda (Eds.),
Computational Methods of Feature Selection, Chapman and
Hall/CRC, pp 193-209, 2008.

[17] UCI. repository of machine learning databases and domain theories.
FTP address: www.ics.uci.edu/~mlearn

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013




