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Abstract—We propose an explicit linear-time algorithm for
the satisfiability problem on the fraction of the CNF class whose
members correspond to 1-outerplanar graphs. Our algorithm
explicitly exploits the outerplanar structure.

Index Terms—propositional satisfiability, 1-outerplanar
graph, nested formula

I. INTRODUCTION

The propositional satisfiability problem (SAT) of conjunc-
tive normal form (CNF) formulas is an essential combina-
torial problem, namely one of the first problems that have
been proven to be NP-complete [6]. More precisely, it is
the natural NP-complete problem and thus lies at the heart
of computational complexity theory. Moreover SAT plays a
fundamental role in the theory of designing exact algorithms,
and it has a wide range of applications because many
problems can be encoded as a SAT problem via reduction
[8] due to the rich expressiveness of the CNF language.
The applicational area is pushed by the fact that meanwhile
several powerful solvers for SAT have been developed (cf.
e.g. [12], [16] and references therein).

There are known several subclasses of CNF, restricted to
which SAT behaves polynomial-time solvable. This article,
from an algorithmic point of view, studies SAT restricted
to a CNF fraction whose members are closely related to
a specific class of simple graphs. Concretely, we design a
linear-time SAT-algorithm for formulas whose formula graph
is 1-outerplanar. Recall that an embedding of a graph G is 1-
outerplanar if G is planar and all vertices lie on its outer face.
Moreover, we define the vertex set of the formula graph GC

of formula C as the union of the variable set and the clause
set of C. The edges of GC are determined by the clause-
vertex incidence, i.e., if a variable x occurs in a clause c,
then the cooresponding vertices are joined by an edge in
GC . The outerplanar formulas form a subclass of the planar
formula class where the formula graph is planar. Observe
that SAT for 3-CNF instances which in addition are planar
still remains NP-complete according to Lichtenstein [13].

In this paper we illustrate how SAT can be solved in
linear time for the outerplanar formula class. The algorithm
presented for this purpose works by exploiting the graph-
structure of outerplanar formulas which is translated into a
superstructure graph. Clearly outerplanar formulas are con-
tained in the class of nested formulas studied by Knuth who
also gives a linear-time SAT-algorithm [10]. Furthermore,
since the treewidth of an outerplanar formula is 2, one can
apply the nice tree decomposition due to Bodlaender [2],
[3], [4], [5]. A corresponding linear-time SAT-algorithm for
outerplanar formulas can be found in [15]. However, in this
paper, we are specifically interested in the structure of the
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variable-clause graphs of outerplanar formulas, which we
exploit for our algorithm explicit.

II. NOTATION AND PRELIMINARIES

Let CNF denote the set of formulas (free of dupli-
cate clauses) in conjunctive normal form over propositional
variables x ∈ {0, 1}. A positive (negative) literal is a
(negated) variable. A clause c is a disjunction of different
literals, and is represented as a set c = {l1, . . . , l|c|}. Each
formula C ∈ CNF is considered as a set of its clauses
C = {c1, . . . , c|C|} having in mind that it is a conjunction of
these clauses. As usual, k-CNF denotes the subclass of CNF,
where each member clause has length at most k, for fixed
integer k ≥ 2. The negation (or complement) of a literal l
is l. For formula C, clause c, by V (C), V (c) we denote the
variables contained (neglecting negations), correspondingly.
Given x ∈ V (c), by l(x) we denote the literal over x that
is contained in c. Furthermore, CNF+ denotes the set of
monotone formulas, i.e., every literal is positive.

The satisfiability problem (SAT) asks, whether input C ∈
CNF has a model, which is a truth value assignment t :
V (C) → {0, 1} assigning at least one literal in each clause
of C to 1. Let UNSAT denote the set of all unsatisfiable
members of CNF, and let SAT denote the set of all satisfi-
able members of CNF. Clearly, we have ∅ ∈ SAT, i.e., the
empty clause set is satisfiable.

A graph is planar if it can be embedded in the plane
without edge crossings. An embedding of a graph G is 1-
outerplanar (outerplanar for short), if it is planar, and all
vertices lie on the exterior face. A graph is called outerplanar
if it has an outerplanar embedding.

III. STRUCTURAL PROPERTIES OF OUTERPLANAR
FORMULAS

In the sequel, C is a formula with formula graph GC .
For simplicity, variables and the corresponding vertices are
identified the same holds for clauses. As usual we call an
edge inside an outerplanar circle a chord. An outerplanar
circle with q variables and q clauses, obviously has at most
q−2 chords. According to [7], a formula C is called matched
if we have |C ′| ≤ |V (C ′)|, for every subformula C ′ ⊆ C. In
[7] it is shown that matched formulas are always satisfiable
by applying the theorem of Koenig and Hall [9], [11] to the
bipartite incidence graph of the formula, where variables,
respectively clauses, form the partition of the vertex set. As
one can easily see, an outerplanar formula whose formula
graph consists of paths (each two of which are allowed
to share a vertex), disjoint circles and single vertices is a
matched formula. A model for a matched formula C of n
variables can be determined in time O(n‖C‖) where ‖C‖
denotes the size, i.e., length of C. In this paper we even
provide an algorithm for determining a model for every
outerplanar formula in linear time. Recall that a backbone
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variable x of a formula C has the same value in every
model of C. Let K be an outerplanar circle with chords.
Omitting the chords we obtain the annulus of K which
we denote by KR. Let Ks be a circle then we denote the
corresponding formula by Cs , the annulus of Ks by KR

s and
its corresponding 2-CNF formula by CR

s . By the satisfiability
of a circle Ks we mean the satisfiability of Cs. For simplicity,
we shall often identify Ks with Cs as well as KR

s with CR
s .

The next lemma states that a backbone variable of a circle
also is a backbone variable of the corresponding annulus.

Lemma 1: Let Cs be a circle of a formula graph GC that
can have chords, then any backbone variable of Cs is also a
backbone variable of CR

s .
PROOF. For every clause cR of CR

s , there is exactly one
clause c of Cs such that V (cR) ⊆ V (c), because CR

s

results from Cs by shortening clauses. Thus a model of CR
s

obviously is a model of Cs, too. Assume x is a backbone
variable of Cs but not of CR

s , then there are models of CR
s in

which x is set to 1 and models assigning x to 0. Since every
model of CR

s also satisfies Cs we obtain a contradiction. 2

A characterization of a backbone variable in an annulus is
given next.

Theorem 1: . Let Cs be a circle of GC consisting of the
variables x0, . . . , xk−1 and the clauses c0, . . . , ck−1. Then
x0 is a backbone variable of the 2-CNF formula CR

s if and
only if an implicational chain of the form

x0 → l(x1) → l(x2) → · · · → l(xk−1) → x0

or
x0 → l(x1) → l(x2) → · · · → l(xk−1) → x0

holds for CR
s . Moreover CR

s has at most one backbone
variable.
PROOF. Let x0, c0, x1, c1, . . . , xk−1, ck−1 be the vertices
of CR

s in clockwise orientation. For the clauses, we have
V (ci) = {xi, xi+1} mod k, 0 ≤ i ≤ k − 1. Clearly
{xi, xi+1} corresponds to an implication xi → xi+1 or
xi+1 → xi. If we can build a single implicational chain,
e.g. x0 → · · · → x0, of all k clause-implications, then
x0 is a backbone variable which must be set to 0. For the
reverse direction, assume that x0 is a backbone variable of
CR

s but none of the implicational chains x0 → · · · → x0 or
x0 → · · · → x0 holds for CR

s . Hence there is a variable xi

yielding chains that cannot be combined, e.g. x0 → · · · → xi

and xi → · · · → x0 to a single implicational chain. Then one
easily observes that there are models for both values of x1.

Finally, let x1 be a backbone variable of CR
s for value

0 and implicational chain x1 → · · · → x1. Suppose x
is another backbone variable of CR

s , then we have the
implicational chains x1 → · · · → x and x → · · · → x1

which cannot be combined. Hence x cannot be a backbone
variable contradicting the assumption. 2

In the following we write xi ∈+ cj (respectively xi ∈− cj)
if the vertices xi and cj form a chord and xi occurs positive
(respectively negative) in cj .

Theorem 2: Let x1 be a backbone variable of CR
s , for

which the implicational chain x1 → x2 → · · · → xn → x1

is assumed to hold. If none of the following chord criteria
holds, then x1 also is a backbone variable of the correspond-
ing Cs, otherwise it is no backbone variable of Cs.
(1) Cs has chord xi ∈+ cj , for 1 ≤ i < j ≤ n.

(2) Cs has chord xi ∈− cj , for 1 ≤ j < i ≤ n.
(3) Cs has chord x1 ∈− cj , for 1 < j ≤ n.
PROOF. By assumption, we have x1 = 1 in any model of
CR

s each of which yields a model of Cs too. In the absence
of chords we have CR

s = Cs, hence x1 also is a backbone
variable of Cs. Otherwise, if Cs has a chord of type (1)
above, we have a model of Cs where x1 = 0 and xk = 1,
for 1 < k ≤ j, xk = 0, for j < k ≤ n. Similarly one obtains
models where x1 = 0 in case of the presence of a chord of
type (2) or (3) in Cs. 2

Let C be an outerplanar formula and let C1 and C2

correspond to circles of its formula graph which are assumed
to share the variable x only. Let x be a backbone 1 variable of
CR

1 and a backbone 0 variable of CR
2 . Then C is unsatisfiable

if x remains a backbone variable of C1 as well as of C2. We
call such a situation a backbone conflict. We call a connected
component of an outerplanar graph a circle-component if the
component only consists of circles which either are pairwise
disjoint, or share a single vertex only, or are joined by a path.
For each circle-component K we can create a superstructure
graph S(K) as follows: The vertices of S(K) correspond to
the circles of K. If there is a circle which is joined to another
circle by a path in K then both circles are joined by an edge
in S(K). If two circles share a single variable (respectively
clause) vertex x (or c) then an edge in S(K) is introduced
labelled with x (or c). Note that because C is outerplanar
the superstructure graph is a tree always.

IV. THE MAIN ALGORITHM

Now we present an algorithm solving SAT for outerplanar
formulas, and shall show below that it runs in linear time.
Main Algorithm:
INPUT: An outerplanar formula C with formula graph GC .
OUTPUT: A model if C is satisfiable and
UNSATISFIABLE, else.

1) If C is a 2-CNF formula, solve C by an appropriate
linear-time algorithm [1].

2) Determine the outerplanar formula graph GC of C.
3) As long as there is a variable joined to only one clause,

set the variable such that the clause is satisfied.
4) As long as there is a clause adjacent to only one vari-

able, set the variable such that the clause is satisfied.
5) As long as GC has disjoint circles (with

possible chords), for each circle with vertices
x1, c1, x2, c2, . . . xn, cn, x1 in clockwise orientation,
assign xi satisfying ci, 1 ≤ i ≤ n.

6) If GC consists of circles K1, . . . ,Km only (there are
no paths or other outerplanar objects in GC) and each
two circles are allowed to share at most one vertex,
then C is satisfiable, and a model is determined as
follows: For each circle, do: Let x1 − c1 − x2 − c2 −
· · ·−xn−cn−x1 be its vertices in clockwise direction.
Set xk such that ck, 1 ≤ k ≤ n, is satisfied.

7) If the remaining graph GC consists of several circle-
components, solve each circle-component K by Proce-
dure Circle-Component(K).

8) If Procedure Circle-Component(K) returns a model for
every circle-component of GC , then the algorithm re-
turns the combination of these models for C. Otherwise
it returns UNSATISFIABLE.
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Next, we state in detail
Procedure Circle-Component(K):
INPUT: A circle-component K of GC .
OUTPUT: A model, if (the formula corresponding to) K is
satisfiable, UNSATISFIABLE, else.

1) Determine the superstructure tree S(K) of K.
2) For each circle in K, do:

Write each 2-clause on its annulus with variables
xi, xi+1 as the corresponding implication l(xi) →
l(xi+1) or l(xi+1) → l(xi) and check whether a single
implicational chain of all these implications can be
build. In the positive case, the backbone variable of
the annulus according to Theorem 1 is found.

3) For each circle whose annulus admits a backbone
variable, check according to Theorem 2 whether it
remains a backbone variable of the whole circle.

4) Assign all backbone variables of K appropriately.
5) If there are two circles in K with a backbone conflict

then return UNSATISFIABLE.
6) Start with considering the leaves of S(K). As soon as

all leaves are solved by Procedure Circle(), solve the
parent of every leaf by Procedure Circle(). In general,
a vertex is not solved until all its children in S(K) are
solved by Procedure Circle(). So beginning with the
leaves in S(K) and as long as the root of the tree is
not reached, apply the following steps:
• Let Ks be the current vertex in S(K). If Ks is

joined to its parent F (Ks) in S(K) by an edge
labelled with x, we proceed as follows:
If x is already assigned (e.g as a possible backbone
variable of F (Ks)), then by Procedure Circle (Ks)
check whether Ks can be satisfied by this value
of x.

(a) If Circle (Ks) returns that Ks is unsatisfiable,
then the corresponding formula of K is unsat-
isfiable and the procedure returns UNSATIS-
FIABLE.

(b) If Circle (Ks) returns a model for Ks, under
consideration of the assignment of x, then set
all variables of Ks according to that model.
After having solved all the sibling-vertices of
Ks solve F (Ks), the parent vertex of Ks.

If x is not assigned yet, by Procedure
Circle(Ks(x1 = t)) check whether Ks can
be satisfied for x1 = t, t ∈ {0, 1}:

(a) If Ks can be satisfied for x = 1 as well as for
x = 0, do not fix x directly but first consider all
the sibling-vertices of Ks before considering
the parent F (Ks) of Ks.

(b) If w.l.o.g. Ks can only be satisfied for x = 1,
assign x = 1, solve all the sibling-vertices of
Ks and afterwards solve the parent F (Ks) of
Ks. Note that x already is fixed to 1 when
F (Ks) is considered.

(c) If Ks cannot be satisfied for neither x = 1
nor x = 0, the formula corresponding to
K is unsatisfiable and the procedure returns
UNSATISFIABLE.

• Let Ks be the current vertex of S(K). If Ks is

joined to its parent vertex F (Ks) in S(K) by an
edge labelled with the clause c, then proceed as
follows: By calling Procedure Circle(Ks) check
whether Ks is satisfiable: If yes, particularly c is
satisfied, hence we label c as satisfied in F (Ks). If
not, we consider F (Ks) after having applied Pro-
cedure Circle() on all its sibling-vertices before.

• Let Ks be the current vertex of S(K). If Ks is
joined to its parent vertex F (Ks) in S(K) by an
edge corresponding to a path (of length at least 2)
in K, then proceed as follows:
– If Ks and F (Ks) are joined by the path P =

x1 − c1 − x2 − c2 − · · · − xn − cn sharing x1

with Ks and cn with F (Ks), then proceed as
follows:
By Procedure Circle(Ks(x1 = t)) check
whether Ks can be satisfied for x1 = t, t ∈
{0, 1}. If Ks can be satisfied for x1 = 1 as well
as for x1 = 0, set x1 such that c1 is satisfied.
Further set x2 such that c2 is satisfied. In gen-
eral, set xi according to satisfy ci, 1 ≤ i ≤ n. It
follows that cn now can be labelled as satisfied
in F (Ks).
If w.l.o.g. Ks is satisfiable only for x1 = 1,
check whether x1 = 1 also satisfies c1. If so,
assign xi according to satisfy ci of path P ,
2 ≤ i ≤ n. Therefore, cn can be labelled as
satisfied in F (Ks). Otherwise, i.e., c1 cannot be
satisfied by x1 = 1, then assign xi+1 according
to satisfy ci, 1 ≤ i ≤ n− 1. If xn occurs with
the same polarity in cn as in cn−1, then label
cn as satisfied in F (Ks).
Finally, if Ks cannot be satisfied for neither
x1 = 0 nor x1 = 1, then the procedure returns
UNSATISFIABLE.

– If Ks and F (Ks) are joined by a path P =
x1 − c1 − x2 − c2 − · · · − xn−1 − cn−1 − xn

such that P shares x1 with Ks and xn with
F (Ks), then proceed as follows:
By calling Procedure Circle(Ks(x1 = t)) check
whether Ks can be satisfied for x1 = t, t ∈
{0, 1}. If Ks can be satisfied for x1 = 1 as
well as for x1 = 0, set x1 such that it satisfies
c1. Furthermore, set xi such that it satisfies ci,
1 ≤ i ≤ n−1. Note that xn remains unassigned.
If w.l.o.g. Ks is only satisfiable for x1 = 1,
set x1 = 1 and check whether x1 = 1 also
satisfies c1. If so, set xi such that it satisfies ci,
2 ≤ i ≤ n−1. But if x1 = 1 does not satisfy c1,
set xi+1 such that it satisfies ci, 1 ≤ i ≤ n− 1.
Now xn has a fixed value in F (Ks).
If Ks cannot be satisfied for neither x1 = 1
nor x1 = 0, the formula corresponding to
K is unsatisfiable and the procedure returns
UNSATISFIABLE.

– If Ks and F (Ks) are joined by the path P =
c1 − x1 − · · · − cn−1 − xn−1 − cn which
shares clause c1 with Ks and the clause cn with
F (Ks), we proceed as follows:
By Procedure Circle(Ks) check whether a
model for Ks exists. If Ks is satisfiable, set
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all the variables of Ks according to the model.
Further set x1 such c2 is satisfied. In general, set
xi such that ci+1, is satisfied 1 ≤ i ≤ n−1. As
a consequence label cn as satisfied in F (Ks).
If Procedure Circle(Ks) returns UNSATISFI-
ABLE, set x1 such that it satisfies c1. Further
check whether this assignment satisfies c2. If
so, further set xi such that it satisfies ci+1, for
2 ≤ i ≤ n− 1. Otherwise set x2 appropriately.
Next, check whether this assignment of x2 also
satisfies c3. If so, then set xi such that ci+1,
is satisfied for 3 ≤ i ≤ n − 1. Otherwise, set
x3 satisfying c3 and so forth. If xn−1 occurs
with the same polarity in cn as in cn−1 then
cn is also satisfied by the assignment of xn−1

and label cn as satisfied in F (Ks). Otherwise
F (Ks) remains unmodified by the path.

– If Ks and F (Ks) are joined by the path P =
c1 − x1 − c2 − x2 − · · · − cn − xn sharing c1

with Ks and xn with F (Ks) then proceed as
follows:
By Procedure Circle(Ks) check whether Ks

is satisfiable. If so, determine a model for
Ks and set all variables of Ks according to
this model. Further set x1 according to satisfy
c2. Afterwards set x2 such that it satisfies c3

and generally set xi such that it satisfies ci+1,
1 ≤ i ≤ n−1. Note that this does not influence
xn which P shares with F (Ks) and so xn

remains unassigned.
If Circle(Ks) returns UNSATISFIABLE, set x1

such that c1 is satisfied. Next check whether c2

also is satisfied by this assignment. If so, further
set xi such that it satisfies ci+1, for 2 ≤ i ≤ n.
Otherwise, set x2 such that c2 is satisfied, and
check whether this assignment also satisfies c3.
If so, further set xi such that it satisfies ci+1,
3 ≤ i ≤ n − 1. Else, set x3 such that c3 is
satisfied and so forth until cn is satisfied.

• As soon as the root vertex RK of S(K) is reached,
by Procedure Circle(RK) check whether RK is
satisfiable.

– If RK is unsatisfiable, the formula correspond-
ing to K is not satisfiable, either, and the
procedure returns UNSATISFIABLE.

– If RK is satisfiable, set all its variables accord-
ingly. If all other vertices of S(K) are satisfiable
and a model for each is found, the procedure
returns the model for K.

– If RK is satisfiable and there is a vertex Kt

in S(K) for which a model is not found yet,
proceed as follows for all these vertices: (Note
that we only have to solve those vertices Kt

for which we have not fixed a model yet in the
first passage through the tree from the leaves
up to the root of the tree) Beginning with the
root vertex, traverse S(K) until all vertices are
solved or a vertex in S(K) is found that cannot
be satisfied. In the latter case the procedure
returns UNSATISFIABLE. Here, a vertex Kt is

treated not before a model for its parent F (Kt)
is found according to the following cases:
If Kt is joined to F (Kt) by an edge labelled
with a variable x, then x now is fixed in Kt

because of F (Kt), w.l.o.g. let x = 0. As Kt can
be satisfied for x = 0 as well as for x = 1, we
set all variables of Kt according to the model
which fixes x = 0.
If Kt is joined to F (Kt) by an edge labelled
with c, call Procedure Circle(Kt \ {c}), check-
ing for a model of Kt \ {c}. Consider the next
vertex in S(K) which has not been treated so
far.

Finally, it remains to formulate
Procedure Circle(Ks):
INPUT: A circle Ks with possible chords and possibly fixed
variables.
OUTPUT: A model if the formula corresponding to Ks is
satisfiable and UNSATISFIABLE, else.

1) All clauses which are labelled as satisfied are invisible
for the procedure and not considered here.

2) As long as there is a variable xi in Ks which is
contained in only one clause cj , set xi such that it
satisfies cj .

3) As long as there is a clause cj in Ks containing only
one variable xi, set xi such that it satisfies cj .

4) If the 2-CNF formula corresponding to the annulus KR
s

of Ks is satisfiable, then Ks is also satisfiable, and a
model of the annulus is returned.

5) First, fix an order for the vertices of KR
s and ini-

tialize an appropriate container M(S) for each chord
S = xi ∈± cj for which xi is not assigned yet.
This container stores the following information: Let
xm → · · · → l(xi) resp. l(xi) → · · · → xp be the two
possible implicational chains for xi, then the container
holds whether there is a variable fixed to 1 in the first,
respectively fixed to 0 in the second chain.

6) If the 2-CNF formula corresponding to KR
s is unsat-

isfiable, for KR
s one of the two following cases holds

true:
(a) The 2-CNF formula contains a smallest false

implicational chain e.g. xk → · · · → xk+l where
xk = 1, xk+l = 0 is already fixed and xk+l 6= xk.
In order to test whether Ki can be satisfied
when taking the chords into consideration, the
following cases have to be distinguished (for
more than one chains like this, the procedure can
be adapted easily):
(i) There is no chord of the form xi ∈± cj , with

k ≤ j ≤ k+ l. In this case Ks is unsatisfiable
and the procedure returns UNSATISFIABLE.

(ii) There is a chord of the form xi ∈+ cj , with
k ≤ i < j ≤ k + l. In this case the following
assignment enables a model for Ks: xk =
. . . = xj = 1 and xj+1 = . . . = xk+l = 0.

(iii) There is a chord of the form xi ∈− cj , with
k ≤ j < i ≤ k + l. In this case the following
assignment enables a model for Ks : xk =
. . . = xj = 1 and xj+1 = . . . = xk+l = 0
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(iv) There is a chord of the form xi ∈± cj , with
i < k or i > k + l and k ≤ j ≤ k + l
and xi is already set to 1 (resp. to 0). Then
the following assignment enables a model for
Ks: xk = . . . = xj = 1 and xj+1 = . . . =
xk+l = 0.

(v) There is a chord of the form S = xi ∈± cj ,
with i < k or i > k + l and k ≤ j ≤ k + l
and xi is not assigned yet. Then we proceed
as follows:
• If there is only one such chord, we set

xi such that cj is satisfied, then xk =
. . . = xj = 1, xj+1 = . . . = xk+l = 0
satisfies the clauses ck, . . . , ck+l. Next we
check with help of the container M(S)
whether the current assignment of xi yields
a false implicational chain 1 → 0 due to the
following cases:
The implicational chain xm → · · · → l(xi)
already contains a variable set to 1, l(xi) =
xi and xi = 0.
The implicational chain xm → · · · → l(xi)
already contains a variable set to 1, l(xi) =
xi and xi = 1.
The implicational chain l(xi) → · · · → xp

already contains a variable set to 0, l(xi) =
xi and xi = 1.
The implicational chain l(xi) → · · · → xp

already contains a variable set to 0, l(xi) =
xi and xi = 0.
If one of the four cases above occurs, the
remaining 2-CNF formula cannot be satis-
fied apart from xk → · · · → xk+l because
with the current assignment of xi we obtain
an additional false implicational chain. If
we can satisfy this chain applying 6(a), then
Ks is satisfiable, else unsatisfiable.

• If there are several chords S = xi ∈± cj

for which holds i < k resp. i > k + l,
k ≤ j ≤ k + l and xi is not fixed yet, we
perform the following for each such chord
S as long as we have not found a model for
Ks:
Set xi = 1 (resp. xi = 0) and xk = . . . =
xj = 1, xj+1 = . . . = xk+l = 0. Then
by means of the container M(S) check
whether we obtain a false implicational
chain 1 → 0 by the assignment of xi,
similarly, as above:
The implicational chain xm → · · · → l(xi)
already contains a variable set to 1, l(xi) =
xi and xi = 0.
The implicational chain xm → · · · → l(xi)
already contains a variable set to 1, l(xi) =
xi and xi = 1.
The implicational chain l(xi) → · · · → xp

already contains a variable set to 0, l(xi) =
xi and xi = 1.
The implicational chain l(xi) → · · · → xp

already contains a variable set to 0, l(xi) =
xi and xi = 0.

If one of these cases occurs, the current as-
signment of xi yields a false implicational
chain. If this can be satisfied by applying
6(a), then Ks is satisfiable. If not, undo
(release) the assignment of xk, . . . , xk+l

and test whether there is another chord
xi ∈± cj , with i < k resp. i > k + l and
k ≤ j ≤ k + l where xi is not fixed yet,
yielding a model for Ks.

• If we have considered all the chords xi ∈±
cj with i < k resp. i > k + l and k ≤
j ≤ k + l, where xi is not fixed yet, and
have not found a model for Ks, then Ks

is unsatisfiable and the procedure returns
UNSATISFIABLE.

(b) If KR
s corresponds to x1 → · · · → x1 (resp.

x1 → · · · → x1), x1 = 0 (resp. x1 = 1) is already
fixed and there are no other smaller false impli-
cational chains on KR

s , then solve Ks as follows
(w.l.o.g. let x1 → · · · → x1 and x1 = 0 be fixed):
If Ks has no chords, it is unsatisfiable and the
procedure returns UNSATISFIABLE. Else, check
whether there is a chord of the form xi ∈± cj in
Ks:

(i) Let xi ∈+ cj be a chord of Ks, with i < j,
where xi = 1 is already fixed. Then cj

is satisfied by xi and as there are no false
implicational chains valid for KR

s \ {cj},
the remaining 2-CNF formula KR

s \ {cj} is
satisfiable. Solve this 2-CNF formula by a
linear-time algorithm.

(ii) Let xi ∈− cj be a chord, with i > j and
xi = 0 is already fixed. Then cj is satisfied
according to the assignment of xi and as there
are no false implicational chains for KR

s \{cj}
the remaining 2-CNF formula KR

s \ {cj} is
satisfiable. Solve the corresponding 2-CNF
formula by a linear-time algorithm.

(iii) Let x1 ∈− cj be the chord, with j > 1. Then
cj is satisfied by the assignment of x1 and
as there are no false implicational chains for
KR

s \{cj} the remaining 2-CNF formula KR
s \

{cj} is satisfiable. Solve the corresponding 2-
CNF formula by a linear-time algorithm.

(iv) If there is only one chord xi ∈± cj with i < j
(i > j) where xi is not fixed, set xi such that
cj is satisfied. If there are several chords of
this form, perform the following for each such
chord:
Assign xi according to satisfy cj and check
whether this assignment satisfies the remain-
ing 2-CNF formula KR

s \{cj}. If so, a model
for Ks is found. Otherwise, there is a false
implicational chain, e.g. xi → · · · → xk,
with xi = 1, xk = 0 or xk → · · · → xi,
with xi = 1, xk = 1. Check whether it
can be solved by applying 6(a). If so, a
model is found. Else, consider the next chord
which satisfies (iv). If all such chords are
considered and still no model is found, then
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Ks is unsatisfiable and the procedure returns
UNSATISFIABLE.

The correctness of our algorithm follows from the presen-
tation above.

V. ANALYSIS OF THE RUNNING TIME

The running time of our algorithm in fact is linear, which
is proved according to the following argumentation. If GC

consists of disjoint circles, circles which share a clause vertex
only, or paths which may have a vertex in common (we
assume that C has no unit clauses), then C is a matched
formula and thus satisfiable. Steps 1) to 6) can obviously be
performed in linear time.

Next consider Procedure Circle(Ks): Let Ks be a circle
with q clauses and q variables. Then Ks has at most q − 2
chords. For solving the 2-CNF formula corresponding to the
annulus, we need O(q) time. If this 2-CNF is satisfiable,
a model for it also is a model for the formula of Ks. If
the 2-CNF formula is unsatisfiable as a result of a false
implicational chain, e.g., xk → · · · → xk+l on the annulus
KR

s with xk = 1, xk+l = 0 already fixed and xk+l 6= xk,
then check whether there is a chord for which one of the
cases (ii)-(iv) of 6(a) in Circle(Ks) is valid. If not, check
for all chords xi ∈± cj with the property of case (v) in
6(a) whether by setting xi = 1 (resp. xi = 0) a model for
Ks can be provided. As soon as such a chord providing a
model for Ks is found, the procedure outputs this model.
If Ks is unsatisfiable, perform this process recursively until
we have considered all the chords with the property of
case (v) in 6(a) and have ascertained that none of them
provides a model for Ks. Then the procedure stops with
output UNSATISFIABLE. Hence every chord is considered
at most once. Using containers constant time is consumed
to check for each chord whether by the assignment of the
chord variable a false implicational chain on the annulus is
obtained. Since Ks has at most q − 2 chords we need O(q)
running time to solve a circle with q variables and q clauses.
Case 6(b) of Procedure Circle() also yields a running time
of O(q) because in worst-case we have to check all chords.

Regarding Procedure Circle-Component(), observe that for
each circle-component K the superstructure tree S(K) is
traversed at most twice: first bottom-up from the leaves to
the root. In case the root circle is satisfiable and but there
are still vertices in S(K) for which no model is determined,
we traverse top-down from the root to the leaves until either
models are found for all circles of K or an unsatisfiable
vertex in S(K) is determined. It follows that Procedure
Circle() is called at most twice for every vertex of S(K).
As a circle of q variables and q clauses can be solved in
time O(q) time, the time complexity of our algorithm for an
outerplanar formula C of n variables is O(n).

VI. CONCLUDING REMARKS

We proposed a linear-time algorithm for outerplanar for-
mulas that explicitly exploits the outerplanar structure of the
underlying formula graph. Also the counting problem #SAT
can be solved for this class in polynomial-time, which shows
an algorithm that is based on the separator theorem by Lipton
and Tarjan [14] and that is described in [15]. In [15] also a
treatment using the nice tree decomposition [2], [3], [4], [5]
is provided, for both the search and counting versions.
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