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Abstract—Data classification has been widely studied in en-
gineering, market and financial analysis, medicine and biology,
and other areas. In particular, there exists a large body of
literature concerning classification algorithms. However, many
classification algorithms are data dependent. For example, while
the k-nearest neighbors algorithm (k-NN) is quite versatile in its
application, most parametric classifiers are limited in their use
by assumptions. Using data from Sportvision’s PITCHf/x, we
apply several generic classification methods to the problem of
pitch classification. We place a particular emphasis on improv-
ing the accuracy of Bayesian classifiers through feature selection
and dimension reduction via principal component analysis
(PCA) and linear discriminant analysis (LDA), respectively. The
accuracy and speed of these classification algorithms are then
analyzed and compared.

Index Terms—feature selection, Bayesian classifiers, principal
component analysis, linear discriminant analysis, Sportvision’s
PITCHf/x.

I. INTRODUCTION

DURING televised baseball games, color commentators
often classify pitches based on various observable fea-

tures such as speed, horizontal/vertical movement, rotation,
etc. Yet even for the experienced commentator, this process is
extremely subjective due to pitch idiosyncrasies; for example,
the difference between a curveball and a slider may be
more apparent for one pitcher than for another due to a
pitcher’s unique tendencies and abilities. Using machine
learning techniques to consistently assign class membership
can greatly reduce such human error in classification.

Data classification refers to the problem of assigning class
membership to unlabeled observations. In this paper, we
apply generic classification techniques to baseball pitch data
from ten major league baseball (MLB) pitchers in the 2011
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season. We begin with a survey of commonly used classifica-
tion algorithms. In Section 2, our focus is on Bayesian classi-
fiers, that is, those that assign class membership based on an
estimated probability density function. Section 3 provides an
overview of linear discriminant analysis (LDA) and principal
component analysis (PCA). In Section 4, we provide a
description of the PITCHf/x data set. PITCHf/x, which is
created and maintained by Sportvision, is a pitch tracking
system and is installed in every major league baseball (MLB)
stadium since circa 2006. The system allows pitches to be
analyzed and compared with unprecedented precision. In
Section 5, we apply Bayesian classifiers to the problem
of pitch classification using data set from PITCHf/x with
a particular emphasis on improving classification accuracy
with feature selection and dimension reduction via PCA and
LDA, respectively. Finally, concluding remarks are provided
in Section 6.

II. BAYESIAN CLASSIFIERS

A classifier is a function f that maps an unlabeled data
observation x = [x1, x2, . . . , xl] consisting of l feature
values to one of c classes denoted by ω1, ω2, . . . , ωc. Prior
to classification, f is learned from a training set T =
{t1, t2, . . . , tN} of N input-output pairs (ti, ωi) [1].

Bayesian classifiers assign class membership to an un-
labeled observation through maximization of a posterior
probability density function. These density functions are
calculated via the Bayes Rule:

P (Ω|x) =
P (x|Ω)P (Ω)

P (x)
, (1)

where Ω denotes the set of classes, P (x|Ω) is the likelihood,
P (Ω) is the prior, and P (x) is a normalizing factor [2]. We
describe two supervised Bayesian Classifiers, the k-Nearest
Neighbors algorithm (k-NN) and the Naive Bayes classifier.

A. k-Nearest Neighbors (k-NN)
The k-nearest neighbors algorithm is a simple and intuitive

classification method yet often outperforms more sophisti-
cated learners. The method can be summarized as follows
([3]):

k-NN Algorithm:
• User chooses a value for k
• Calculate the distance between x and all training points

ti for i = 1, 2, . . . , N (using user defined metric)
• Find the k nearest points to x
• Classify x based on the class membership of the training

points by majority vote
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The output of this algorithm is clearly dependent on both
the user defined metric and the value of k. Although a
common heuristic is to set k equal to

√
N [3], metric choice

is data dependent. While squared Euclidean distance

l∑
i=1

(xi − ti)2 (2)

is a standard choice, statistical regularities may often be bet-
ter estimated by other metrics such as Mahalanobis distance,
which accounts for nonzero covariances between features,
and Manhattan distance, a generalization of the Minkowski
function [3]. These metrics are defined as follows:

Mahalanobis distance:

Di
Mahal(x) =

√
(x− µi)T Σ−1

i (x− µi).

where µi and Σi, i = 1, 2, . . . , c are the mean and covariance
of the ith class.

Manhattan distance:

DMan(x, t) =
l∑

i=1

|xi − ti|.

It is important to note that while k-NN does not explicitly
involve the computation of pdf’s, it is often grouped with
Bayesian classifiers because of its ties to Bayes Decision
Theory [4].

B. Naive Bayes

The Naive Bayes classifier computes the posterior proba-
bility that a feature vector x is in class ωi for i = 1, 2, . . . , c
given its particular set of features via Bayes rule. The main
assumption of the Naive Bayes classifier is that the presence
(or absence) of a particular feature of a class is unrelated to
the presence (or absence) of any other feature, given the class
variable; that is, the features are conditionally independent
given the class label. Therefore, equation (1) becomes

P (Ω|x1, x2, . . . , xl) =

∏l
i=1 P (xi|Ω)P (Ω)∏l

i=1 P (xi)
. (3)

As the denominator in equation (3) is simply a normalizing
factor, the class membership of x may be calculated accord-
ing to the following rule

arg max
Ω

l∏
i=1

P (xi|Ω)P (Ω).

Although the independence assumption of the Naive Bayes
classifier is most often false since the features are usually
dependent, the resulting model is easy to fit and works
surprisingly well in practice [2].

III. DIMENSION REDUCTION AND FEATURE SELECTION

A. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) can be used to reduce
data dimensionality while preserving as much class discrim-
inatory information as possible. Intuitively, for the two-class
problem, this amounts to finding the optimal linear projection
of the data y = wTx that maximizes class separability.
While it would seem natural to choose the distance between
the projected means as a measure of separation, this distance

does not account for within-class variance [2]. Fisher’s sepa-
ration criteria provides a much better indicator of separation
and is given as follows.

For each class, define the scatter as

Si =
∑
x∈ωi

(x− µi) (x− µi)
T
,

where µi is the mean of the ith class. Also define the quantity
(S1 + S2) as the within-class scatter matrix Sw of the
projected examples, the quantity w (µ1 − µ2) (µ1 − µ2)

T as
the between-class scatter matrix Sb and the criterion function
J(w) as

J(w) =
wTSbw

wTSww
. (4)

Maximizing equation (4) effectively yields an optimal pro-
jection where data points from the same class are projected
close to each other while the projected means remain as far
apart as possible. A solution to arg max [J(w)] is then given
by solving

S−1
w Sbw = λw,

where λ = J(w) is a generalized eigenvalue problem.
LDA can be readily extended to the c-class problem and

used to reduce data dimension to c − 1 [2]. For a multi-
class classification problem, the within-class and between-
class scatter are defined as follows:

Sw =
c∑

i=1

Si,

Sb =

c∑
i=1

Ni (µi − µ) (µi − µ)
T
,

where Si =
∑

x∈ωi
(x− µi) (x− µi)

T , µi and Ni are the
mean and sample size of the ith class, and µ is the global
mean. As the projection matrix w we are looking for is no
longer a scalar (rather, it has dimension c − 1), the ratio in
equation (4) is instead maximized by taking the determinant
of both the numerator and the denominator. Similar to the
two-class case, the solution to this expression may be solved
by the generalized eigenvalue problem (Sb − λiSw)wi = 0.

B. Principal Component Analysis

Principal component analysis (PCA) is a widely used
dimension reduction technique that performs a linear trans-
formation on a set of data using the so called principal
components that best depict the variance within the data set.
If we let X be our data (consisting of n observations and l
features), P represent an orthonormal matrix where each row
corresponds to a principal component and Y be the matrix
of transformed data, PCA can be represented as:

PX = Y. (5)

More specifically, our goal in using PCA is to compute
an orthonormal basis that will (i) reduce the dimension of
our data and (ii) capture the variance of our data. This is ac-
complished by transforming our data so that the covariances
between the distinct features are zero. Mathematically, our
problem becomes solving for an orthonormal matrix P such
that Cov(Y ) is diagonal.
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By definition,

Cov(Y ) =
1

n− 1
Y Y T . (6)

Substituting in equation (5), equation (6) becomes

Cov(Y ) =
1

n− 1
PX(PX)T

=
1

n− 1
PGPT ,

where G = XXT . Since G is symmetric,

G = EDET ,

where D is diagonal and the columns of E contain the
eigenvectors of G. Letting P = ET , ie. letting the rows of
P be the eigenvectors of Cov(X), we get the desired result

Cov(Y ) =
1

n− 1
PPTDPPT

=
1

n− 1
D

since P is an orthogonal matrix and therefore PT = P−1.
Intuitively, we are calculating the first principal component

to account for the most variance within our data, the second
component to capture the second most variance and also be
orthonormal to the first principal component and so on. This
process is repeated until we obtain l principal components.
Our hope is to solve for r < l principal components
that capture most of the variance so that we can reduce
the dimensionality of our data set from l to r. This is
achieved by multiplying X by an r × l matrix comprised
of the eigenvectors of Cov(X) associated with the r largest
eigenvalues, i.e. the r most dominant principal components
[5].

While the above implementation provides us with a trans-
formed set of data, it is often not useful in classification tasks.
Unlike LDA, PCA is an unsupervised dimension reduction
technique and thus class separation is often lost in the
transformation [6]. It is therefore more useful for us to use
PCA for feature selection. The most dominant features can
be identified via a QR decomposition of Cov(X),

Cov(X)E = QR,

where Q is unitary, R is upper triangular, and E is a
permutation matrix such that the column permutation of E
is chosen so that the values along the diagonal of R are
decreasing and thus indicate the most dominant features of
our data set.

IV. PITCH DATA

The datasets used in this paper are from Sportsvision’s
PITCHf/x tool, which tracks and records pitch data from
Major League Baseball (MLB) games. Each MLB stadium
is equipped with three tracking cameras. The cameras use
sensors to follow the baseball from when it leaves the hand
of the pitcher until it crosses home plate, recording and
registering characteristics in the system [7]. Overall, there
are 41 qualitative and quantitative features that the PITCHf/x
tool records [8] (see Appendix A for the complete list).
Among them are 16 quantitative features including horizontal
movement, vertical movement, spin rate, spin direction, break
angle, and start speed, etc.

We randomly selected ten starting pitchers to examine
from the 2011 MLB regular season. We then divided their
total number of pitches into two halves; the first half of the
pitches were used for the training set and the second half
of pitches were used as the test set. Table I describes the
size of the training and test sets, as well as the number of
pitch types (fastball, cut fastball, change up, slider, curve,
split-finger, etc.).

TABLE I
DATA FOR EACH PITCHER

Pitcher Training Size Test Size Pitch Types
Dickey 1473 1472 2
Hamels 1565 1564 4
Kershaw 1689 1688 4
Lester 1593 1593 5
Duke 607 606 4
Price 1728 1727 4
Sabathia 1745 1744 5
Verlander 1905 1905 4
Weaver 1878 1877 5
Buehrle 1571 1570 4

V. METHODS

Six subsets of data from the ten pitchers were analyzed us-
ing four supervised learning algorithms: the k-NN classifier
with squared Euclidean distance, the k-NN classifier with
Mahalanobis distance, the k-NN classifier with Manhattan
distance, and the Naive Bayes classifier. The first three sub-
sets of data investigated used two quantitative features from
the PITCHf/x website: horizontal and vertical movement,
horizontal movement and start speed, and vertical movement
and start speed. PCA was then used to identify the most
dominant features across all ten pitchers and classification
was performed using the four and two most dominant fea-
tures from this analysis. LDA was also used as a dimension
reduction technique to obtain a c−1 dimensional transformed
data set. These six subsets, as depicted in Table II, are
compared to the data set comprised of all 16 quantitative
valued features.

TABLE II
DATA SUBSET LEGEND

Data Subset Description
HV Using horizontal movement and vertical movement
VS Using vertical movement and start speed
HS Using horizontal movement and start speed
PCA2 Two most important features determined by PCA
PCA4 Four most important features determined by PCA
LDA Data reduced by LDA (to c− 1)

VI. RESULTS

To get a baseline for accuracy and speed improvement,
we first ran all four classification algorithms on the data
consisting of the 16 quantitative features from the PITCHf/x
data set (see appendix for a complete list of all features).
With this data, k-NN with Manhattan distance performed best
(on average of all ten pitchers, 93.63% of pitches classified
correctly by the k-NN with Manhattan distance classifier),
more than 4% better accuracy as compared to the Naive
Bayes classifier (see Table III). However, the Naive Bayes
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TABLE III
ACCURACY COMPARISON USING ALL 16 QUANTITATIVE FEATURES. SYMBOLS: k-NN WITH EUCLIDEAN DISTANCE (k-NN), k-NN WITH

MANHATTAN DISTANCE (k-NN MAN), k-NN WITH MAHALANOBIS DISTANCE (k-NN MAHAL),AND NAIVE BAYES (NB)

Classifier Dickey Hamels Kershaw Lester Duke Price Sabathia Verlander Weaver Buehrle Average
k-NN 99.3886 96.2916 97.9858 82.5487 91.2541 89.3457 95.2982 89.7638 87.7997 89.9363 91.9613
k-NN Man 98.9810 94.4373 96.2678 81.9209 87.4587 85.2924 94.2661 89.0814 87.2136 88.4713 93.6295
k-NN Mahal 99.4564 97.7621 98.519 85.2725 93.0693 93.6303 96.4450 90.2887 89.8775 91.9745 90.3391
NB 99.7962 93.4142 98.3412 88.8890 92.0792 64.9102 92.8326 88.8714 85.8817 88.8714 89.3887

TABLE IV
CPU TIMES (SECONDS)

CPU Time Dickey Hamels Kershaw Lester Duke Price Sabathia Verlander Weaver Buehrle
k-NN 1.29 1.87 1.61 2.04 0.57 1.68 2.36 2.06 2.24 2.28
k-NN Man 0.28 1.38 1.54 1.5 0.66 1.57 1.65 1.8 1.81 1.36
k-NN Mahal 0.52 0.63 0.67 0.71 0.13 0.73 0.79 0.89 0.92 0.66
NB 0.02 0.09 0 0.01 0.01 0.02 0.03 0.03 0.04 0.04

classifier was the most computationally efficient algorithm
as depicted in Table IV.

Table V depicts the average accuracies among all ten pitch-
ers as compared across various combinations of features and
data reduction. Results using two features, namely, horizontal
movement and start speed, produce the best accuracies with
all four classification algorithms. It is noted that applying
LDA to reduce data dimension (to size c− 1) show consid-
erable decrease in accuracy (average classification accuracy
with LDA - 72.18%; and without - 86.36%). This is due in
most part to low accuracy readings from four pitchers (Duke,
Price, Verlander and Weaver) whose classification accuracy
decreased considerably. For this reason, it is interesting to
remove these pitchers from all calculations of accuracy, both
pitcher specific accuracies and algorithm specific accuracies.
Doing so shows that LDA can be applied to greatly improve
classification performance; that is, results for pitchers Dickey,
Hamels, Kershaw, Lester, Sabathia, and Weaver show indi-
vidual improvement with LDA (see Table VI).

TABLE V
TABLE OF ACCURACIES: FEATURE SELECTION AND DATA REDUCTION

Features k-NN k-NN Mahal k-NN Man NB
HS 94.2207 93.9591 94.1055 89.9257
HV 85.2484 85.0569 85.1084 78.978
VS 82.0438 81.1194 81.8329 79.4
LDA 72.2211 71.5969 72.1757 72.7302
PCA2 85.3128 83.5532 83.5827 77.6029
PCA4 92.894 92.0231 93.0323 88.2861

TABLE VI
PITCHER ACCURACY IMPROVEMENT (AVERAGED OVER THE 4

BAYESIAN CLASSIFIER ALGORITHMS) WITH LDA

Pitcher Accuracy Improvement
Dickey 2.27098571
Hamels 0.52068571
Kershaw 1.15972857
Lester 1.76307143
Sabathia 0.9993
Weaver 3.88151429
Average 1.76588095

Compared to LDA’s improvement, the added improvement
of classifying pitches based on the four most dominant
features—spin rate, spin direction, break angle, and start
speed—was rather minute and in some cases diminished

classification accuracy. For example, for k-NN with Ma-
halanobis distance PCA4 improves classification accuracy
by 1.68% (when compared with the average accuracy over
all ten pitchers as shown in the last column of Table III).
However, the Naive Bayes classifier decreases the accuracy
from 89.39% (with all 16 quantitative features) to 88.29%
(with 4 most dominant features). It also noted that there was
no accuracy improvement when taking the two most domi-
nant features determined by PCA; compared to classification
algorithms applied to data using all 16 quantitative features,
PCA2 yielded a loss of 8.82% classification accuracy on
average.

VII. CONCLUSION

While we obtained a relatively low misclassification rate
overall with our generic classification methods, we had
significantly less accurate results with four of the ten pitchers
using LDA. LDA is a good starting point for dimension
reduction but is subject to data specifics. Namely, LDA
performs best when the discriminatory information is con-
tained within the mean rather than the variance and can
therefore fail on data sets whose classes are separated by
variance rather than mean. Because of this, overlapping
and tightly clustered classes can greatly reduce the efficacy
of LDA. As discussed below, the PITCHf/x classification
scheme is subject to this issue and therefore LDA was not
the best choice for dimension reduction on our particular data
set. Accessing in-between and within-class scatter matrices
before and after performing LDA would address this issue.

Being a supervised learning task, we used the classification
scheme provided by PITCHf/x. This scheme, however, has
significant overlap between different classes due to the
subjectivity involved in pitch classification. It would be
beneficial to use an unsupervised technique to come up with a
classification scheme that provides better separation between
classes and perhaps more uniform guidelines for pitch classi-
fication. The k-means algorithm, for example, could be used
to find new class labels. The Gaussian Mixture Model would
also be a good choice for this task, that is, fitting multiple
GMMs by varying the number of components using different
subsets of features to find what best encapsulates our data.

Creating multi-dimensional classification algorithms
would further improve robustness. Multi-layer algorithms
could be created that access the separation of classes with
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different combinations of features and perform classification
using the features that provide the most discriminatory
information at each layer.

Lastly, while pitch classification is useful for statistical
records, pitch prediction is more useful in practice. Although
classification algorithms cannot provide us with the ability
to predict the next pitch, we can alter our generic classifiers
to see how accuracies change across different game settings,
i.e. ball park locations, score differentials, pitch count. For
example, we can add additional features when performing
linear classification to see if a specific game setting has
bearing on the accuracy of classification. We could access
whether a 3-0 pitch count affects our classification rate by
creating a new binary variable that takes on the value of 1
when we are at a 3-0 count and a zero otherwise. Thus, the
pitch count affect is only taken into account when it is 3-0
and can be compared to a linear classifier that excludes this
binary variable.

APPENDIX A
RECORDED FEATURES BY SPORTSVISION’S PITCHF/X

The following 41 features are recorded by Sportsvision’s
Pitchf/x tool [9]:

1) Pitcher: name of pitcher
2) Pitcher Handedness: pitching hand of pitcher
3) gid: unique identification number per pitch within a

specific game
4) Stadium: stadium at which game is being played
5) Umpire: home-plate umpire calling balls and strikes
6) Pitching Team: team of the pitcher
7) Batting Team: team of the batter
8) Pitch Count: number of pitches thrown at particular

point in a game
9) Pitch Results: outcome of pitch, i.e. ball, strike, in play,

etc
10) Result Type: abbreviated pitch result, i.e. B=Ball,

S=Strike
11) Batters Faced: number of batters faced in a specific

game
12) Atbat pitch num: number of pitches recorded against

a specific batter
13) Pitch type: classification of pitch type, i.e.

FF=Fourseam Fastball, SL= Slider, etc
14) Type Confidence: the value of the weight at the classi-

fication algorithm’s output node corresponding to the
most probable pitch type

15) Atbat Result: outcome of at-bat, i.e. pop out, strikeout,
single, double, etc

16) Batted Ball Type: abbreviated at-bat Result for balls
put in play

17) Batter: name of batter
18) Batter Handedness: batting hand of batter
19) Balls: number of balls in the count
20) Strikes: number of strikes in the count
21) Outs: number of outs during an at-bat
22) On first: binary column; display 1 if runner on first, 0

otherwise
23) On second: binary column; display 1 if runner on

second, 0 otherwise
24) On third: binary column; display 1 if runner on third,

0 otherwise

25) Inning: inning during a particular pitch
26) Start speed: pitch speed, in miles per hours, measured

from the initial position, y0.
27) End speed: pitch speed when the ball crosses home

plate.
28) sz top: the distance in feet from the ground to the top

of the current batter’s rulebook strike zone
29) sz bot: the distance in feet from the ground to the

bottom of the current batter’s rulebook strike zone
30) px: the left/right distance, in feet, of the pitch from the

middle of the plate as it crosses home plate
31) pz: the height of the pitch in feet as it crosses the front

of home plate
32) x0: the left/right distance, in feet, of the pitch, mea-

sured at the initial point
33) z0: the height, in feet, of the pitch, measured at the

initial point
34) pfx x: the horizontal movement of the pitch, in inches,

from release point to home plate
35) pfx z: the vertical movement of the pitch, in inches,

from release point to home plate
36) Break y: the distance in feet from home plate to the

point in the pitch trajectory where the pitch achieved its
greatest deviation from the straight line path between
the release point and the front of home plate

37) Break angle: the angle, in degrees, from vertical to the
straight line path from the release point to where the
pitch crossed the front of home plate, as seen from the
catcher’s/umpire’s perspective

38) Break length: the measurement of the greatest dis-
tance, in inches, between the trajectory of the pitch
at any point between the release point and the front of
home plate, and the straight line path from the release
point and the front of home plate

39) Spin dir: direction of spin of the baseball measured in
degrees

40) Spin rate: measured as the number of rotations the ball
makes per minute

41) sv id: a date/time stamp of when the PITCHf/x track-
ing system first detected the pitch in the air; it is in
the format YYMMDD hhmmss
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