
 
 

 

  
Abstract—In membrane filtration, the formation of the cake 

occurs on the surface of the membrane as well as the pore when 
compared to a controlled sample, but the complete information 
on the status of the membrane is not given. In this research, the 
ultrasonic detection of the local region of the membrane is 
proposed. The wavelet packet transform is used for feature 
extraction of the reflection signal. Principal component analysis 
with Gaussian smoothing is then used to classify the data and 
C4.5 is used to construct the diagnosis system for filtration 
processes. The proposed method applied to a degummed process 
of vegetable oil shows a good performance. 
 

Index Terms —classification, membrane fouling, monitoring, 
ultrasound 

I. INTRODUCTION 
The continuous operation of the cross-membrane 

technology has been used in purification of beverage and 
pharmaceutical industries. While the technology is relatively 
simple, the inevitable formation of cake has led to 
deterioration of performance. This performance is dependent 
on the flux and the removal rate of the process, but the 
materials, the structure of the membrane, the feed flow and the 
pressure will affect the formation of the cake [1], lowering the 
performance of filtration. 

The formation of the cake occurs on the surface of the 
membrane as well as the pore when compared to a controlled 
sample, but the complete information on the status of the 
membrane is not given. The methods for cake formation 
monitoring are usually classified as optical and non-optical. 
Optical methods include cameras, video recorders, 
microscopes as well as lasers. Altmann and Ripperger 
proposed the use of lasers on the membrane surface [2]. From 
different extent of reflection from the membrane surface, the 
thickness of the cake can be known. Chang et al. used an 
optical microscope to film the formation of the cake while 
Hughes et al. used infra-red on cross-flow filtration to obtain 
the optical image [3,4]. The non-optical ultrasonic wave 
detection does not depend on the permeability. It is capable of 
measuring more complicated structure, so it is chosen for this 
research. In process monitoring, Mairal et al. applied 
ultra-sonic detection to the reverse osmosis system to check 
the cake formation and the cleaning while Li et al. monitored 
the change in cake and signals with time in a paper factory for 
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the waste water treatment [5,6]. 
In membrane filtration, real-time monitoring is important, 

because water quality has to be collected and analyzed off site, 
so it is not possible to measure water quality in a timely 
manner. Ultrasonic time domain reflectometry (UTDR) as a 
non-invasive, real-time technique has also been utilized to 
detect and quantify the materials on the inside surfaces of the 
membranes. However, it is difficult to quantify the deposition 
on the membrane surface merely using an ultrasonic 
technique because the outside surface of the membrane yields 
increased signal attenuation. The main objective of this work 
is to use the ultrasonic signal for real-time monitoring. The 
ultrasonic signal is a time varying signal and its reflection 
represents the depth of the sample. Wavelet packets transform 
and 2D Gaussian smoothing are used to process the signal to 
obtain the characteristic of the membrane. The characteristic 
fault pattern is then used to build IF-THEN rules for diagnosis 
using C4.5. The cross-flow filtration system with UTDR and 
the observation data structure is described in the next section. 
The wavelet packet transform for feature extraction is 
discussed in Section III. Section IV contains the principal 
component analysis (PCA) with 2D Gaussian smoothing for 
qualitative classification. The qualitative classification is 
done for the diagnosis system using C4.5. Section V details 
and discusses the experimental implementation of the 
proposed method. The results and finally concluding remarks 
are made. 

II. EXPERIMENT SYSTEM DESCRIPTION 
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Fig. 1. Membrane cross-flow filtration with UTDR set-up 

 
Fig. 1 shows the equipment set-up in the current research 

for the ultrasonic measurement of cross-flow filtration. The 
stirring feed tank contains the vegetable oil to be separated. 
To ensure isothermal operation of the feed tank, a chiller is 
used. The feed tank outlet is connected to an oil pump which 
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in turns is connected to the filter module via a valve. The filter 
module contains two sections. The upper section is a single-in, 
single-out system with the feed at the inlet, and the outlet 
contains the retentate. The inlet is placed to the side of the 
filter module while the outlet is above the filter module. This 
will ensure that the section will be filled with fluid for 
ultrasonic scan. The lower section is only an outlet which is 
the permeate side. The membrane is placed between the upper 
and the lower section. With the diameter of 90 mm, the MF 
Millipore membrane of  is used in the experiment. 
The permeate is collected at a connected tank which is kept at 
a pressure less than 1 atm by the use of a vacuum pump. The 
oil is at the permeate side while the retentate side consists of 
impure oil that needs to be recycled to the feed tank. There is 
a small water tank above the filter module which facilitates 
the movement of the transducer when scanning and the 
transducer are linked to a computer. The feed is  
oil and phosphate and hexane are added at a ratio of 1:3 to 
lower the energy consumption during filtration [7]. The feed 
tank temperature is kept at  and the feed flow rate at 

. In situ monitoring by ultrasonic wave is carried out 
for the duration of the filtration. 

III. ULTRASONIC DATA 

A. Data Structure 
 

 
Fig. 2. Data structure of UDTR 

 
During the cross flow filtration, at time , ultrasonic scan 

is carried out on each section of the membrane of 
. The time taken for one scan is about 10s. 

Compared with the total time of the operation of the filtration, 
it is considered short enough for the error due to time 
difference in scanning, so the time difference is insignificant. 

Under such assumptions, the data in each area of scan of the 
cross-flow filtration can be represented as shown in Fig. 2. At 
each sampling time ,  and  represent the positions of 
the scan with  representing the reflected signal at position 

. The graph on the right side of Fig. 2 shows the signal 
obtained at time point  at a certain point with the vertical 
representing the reflection time and the horizontal, the 
amplitude (mV). When the transducer is fixed at a certain 
position, the echo signal set collected at the fixed point  
upon the observed zone can be expressed as 
 

  (1) 

 
Thus, the data at  sampling is  and the 

complete data , forming a 

4-dimensional observation data whose size is .  
 

B. Wavelet Based Ultrasonic Data 
To enrich the frequency resolution from ultrasonic 

transient signals, a discrete wavelet packet transform (DWPT) 
is applied here [8]. The basic idea of DWPT is to decompose 
a time series as a weighted sum of shifted and scaled versions 
of the wavelets that are suited for capturing the local behavior 
of non-stationary series, such as sharp changes with different 
characteristics of frequency at the same time intervals. To do 
this, the family of discrete wavelets with different scales and 
time parameters is given by , 

where  are integer. The wavelet coefficients are obtained 
by computing the correlation between the scaled and time 
shifted version of the wavelets and the analyzed part of the 
series from the ultrasonic signals. The coefficients in the 
linear combinations are computed by a factored or recursive 
algorithm. As a result, expansions in wavelet packet base have 
low computational complexity. The vector of coefficients at 
scale  is represented by 
 

  
 

(2) 

 
where  and  are the orthonormal wavelet transform 
matrix for a low pass filter and a high pass filter respectively. 
They are gotten from a sequence of linear filtering operations. 

.  is the collections of the measured signals at 

equal space points.  and  are the projections on 
the high-pass and the low-pass components respectively at 
scale . For notational simplicity, we drop the index  of 
the signal set ( ) here. 

To reduce the dimensionality of the feature vectors and 
provide good class separation, the energies of the wavelet 
coefficients at scale  are used 
 

 ,   
(3) 
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which is obtained by calculating the root mean square value of 
the wavelet coefficients [9]. 

Thus, each echo signal at the fixed location ( , )x y  consists 
of all the wavelet energy features at different frequencies,  
 

0 1 2 1J

T
s s s

−
 =  s    

(4) 
 

These energies are employed as elements of the feature 
vector. Eq.(4) is calculated only for the fixed location ( , )x y  

in the xy -plane. For the whole plane, the average of ,x y
ns  

among all the locations is applied, 
 

 ,

1 1

1 X Y
x y

n n
x y

s s
XY = =

= ∑∑  
 

(5) 

 
where X  and Y  are the number of measured locations in the 
xy -plane. Thus, the average value for the whole space signal 

at time k  can be written as 0 1 2 1J

Tk k k ks s s
−

 =  s   , 

which can be regarded as a feature pattern that contains both 
spatial and frequency domain information. For notational 
simplicity, in the following discussion, the hat at the top of the 
notations s  and s  is neglected. 
 

IV. DYNAMIC TRANSIENT FEATURE EXTRACTION 

A. Classifications 
The data are obtained when the cross-flow filtration starts 

till the blockage occurs, so Eq.(5) yields 

( ) ( ) ( )1 , , , ,
T T Tk K =   

S s s s   and  1 , , , ,k k k k
n Ns s s =  s    

for K  sampling time points on N  band. If I  batch 
operations are carried out, the data containing the normal as 
well as abnormal operations are ( )I N K× ×S .  The normal 
and the abnormal operation data represent the accepted and 
the unaccepted filtration quality respectively. The 
normalization of S  ensures the data is of the same scale value 
for different bandwidth. The bandwidth attribute is a 
numerical value. It implies a large decision tree in the binary 
tree of C4.5. To reduce the computation load, the observed 
data is classified qualitatively for different regions using the 
Gaussian smoothing [10]. 
 

The data for different bandwidth ( )n I K×S  is  
 

1, , ,
T

n n i n I n=   S s s s    
(6) 

 
where ,i ns  represents the data i  of band n , 
 

1
, , , ,, , , ,

Tk K
i n i n i n i ns s s =  s     

(7) 
 
Since ( )n I K×S  is of high dimension, PCA is used to 

decompose nS  
 

( ) ( )1 1 2 2T T

n n n n n= + +S t p t p    
(8) 

  
1 2, ,n np p   are the load vectors and 1 2, ,n nt t   are the scores. 

The first 2 components ( 1
nt  and 2

nt ) are used for analysis 
because the first two components explain more than 90% of 
the total variance. Using Haar wavelet as the template and the 
aforementioned experiment, three-level wavelet packet 
decomposition and feature extraction is carried out on the 
obtained data and normalization is done on one bandwidth 
data of 1S .  The scores of the first 2 loadings are illustrated in 
Fig. 3.  
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To identify the group within band n , Gaussian smoothing is 
used to construct the surface distribution. The effectiveness 
and feasibility of the proposed auto-clustering method are 
presented with one frequency which contains all the 
experimental data in all the operation conditions. Fig. 4(a) 
shows the exact number of clusters is not clear in the original 
intensity energy histogram.  It is the Gaussian smoothing 
result at initial 7.51σ = . In the figure, the solid circle points 
denote the center of each cluster. In Fig. 4(b), after the first 
iteration, there are 40 peaks which are reduced subsequently. 
The spread parameters of smoothing are iteratively updated in 
Fig. 4(c), in which the input signal is smoothed. Eventually 
only 8 peaks are obtained, which means that there are 8 
clusters at the current band.  According to this auto-clustering 
algorithm, the cluster center ,n cc  can be computed. The 

collection of the energy data ,n is , 1,2, ,2 1Jn = − , 
1,2,i I=   is partitioned into these clusters. Due to the 

length limitation, the detailed procedures are not explained 
here, but they will be published in another paper.   

The resulting 8 clusters for bandwidth 1n =  are 
1 1 1, , ,A B H  as shown in Fig. 5. Fig. 6 shows 8 clusters for 

bandwidth 2n = . Thus, the original data for each band can be 
represented by an array as shown in Fig. 7. At band n , the 
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numerical value of the original data in ( )n I K×S  is changed 

to vector ( )1I ×  of cluster symbols. This is done for all N  

band and the data is transformed from ( )I N K× ×S  to 

( )I N×S . 
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Fig. 4. Gaussian smoothing extracts the proper number of clusters from (a) at 
σ = 7.51 to (c)  at σ = 7.27. 
 

A. Rule Extraction Using Decision Tree 
After the frequency energies are characterized and the 
different operation states are identified, it is necessary to find 
out how to generate knowledge which correlates the 
frequency energy scales with operational states. To do this, 
the data structure for the above clustering of all the study 
classes is shown in Fig. 7. In Fig. 1, given a number of 
samples, each row is described by a set of attributes. 
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Fig. 5. Clusters in bandwidth 1n =  
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Fig. 6. Clusters in bandwidth 2n =  
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(b) 

 
Fig. 7. I  batches of S  training data with N  attributes and C  classes. 
The data structure (a) with numerical values and (b) with the attributes of the 
membrane filtration for knowledge clustering. The rows represent 
observations from UTDR; the columns represent frequency scales. 
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I  batches of C  class array is used to construct the rules. 
C4.5 is chosen because it allows different number of branches 
at each node. The algorithm uses the greatest information gain 
for partition and consists of two phases, the growth and the 
pruning of the tree respectively.  A classification scheme is 
designed for grouping the quantitative numbers (shown in Fig. 
7(a)) into a number of classes (shown in Fig. 7(b)) so that 
instances within a class are similar in some respect, but they 
are distinct from other classes. The frequencies around the 
operation of a certain membrane filtration process may cover 
different frequency regions. DT can be built from given 
attribute sets. The tree can be converted into a set of IF-THEN 
rules. In contrast to the data-driven models (such as neural 
networks), one can understand the set of rules while numerical 
weights of neural networks cannot be easily deciphered.  

 

B. Real-time Fault Monitoring 
In this research an real-time monitoring method is proposed. 

It can promptly detect the error in the operation. The 
difference here lies with the incomplete data set at a particular 
time in the operation. At time k , the data collected from the 
start of the operation is 
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To complete the data set, the average values from the past 

operation, 1
, , ,[ , , , , ]k K

c n c n c nm m m  ,  is inserted for the future 
duration.  
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With this data, the trained decision tree is used to classify 

the data +new cS . Thus, the status of the current operation can 
be induced. In the event that none fall into the class, then new 
error has occurred and training has to be carried out again. 
This is repeated for the duration of the operation. 

 

V. EXAMPLES 
The proposed method is applied to the cross-flow filtration 

system to verify its performance. In this system, the feed rate 
is the most prominent affection of the formation of cake. Too 
fast a feed flow means the particle will not deposit as readily 
on the membrane, so the cake growth would be slowed down 
and the flow has the cleansing effect on the membrane, but the 
filtrate is more resistant to passing through the membrane. On 
the other hand, too slow a flow rate means that filtration 

performance will be lowered. Concentration of the feed also 
affects the filtration. If the concentration is too high, cake 
growth is accelerated and longer filtration time is needed.  On 
the contrary, if the concentration is too low, cake growth is 
slowed down. The status of the operation is listed in Table 1. 
 

Table 1.  Types of operation 

Fault Type Fault description Symbol 
Normal  Normal operation condition 1c  
Fault 1 High inlet flow rate 2c  
Fault 2 Low input flow rate 3c  
Fault 3 High inlet concentration 4c  
Fault 4 Low inlet concentration 5c  
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Fig. 8.  Six different operations at 4 time points, (a) 1k =   and (b) 25k =  

 
.Fig. 8 shows the RF signals for 2 different time points in 6 
different operations. It is difficult to deduce the error from 
simply looking at these signals. In this experiment, the sample 
size ( )X Y×  is ( )5 5×  with 1,200 observation data. The 
detailed training procedures are not further discussed due to 
the space limitation of the paper, and only results in the testing 
condition are shown here.   
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With complete training, new cross-flow operation is carried 
out and data collected. As for real-time diagnosis, the 
currently unavailable data of the data set is filled with average 
value as outlined in the previous section. The data are 
partitioned based on the shortest distance between the training 
data and the classified centers. Fig. 9 shows monitoring of 1c  
type data. It shows the type classification against the sampling 
time. At 1k = , 1c , 2c , 4c  and 5c  are the possible types. 
From 2 ~ 4k = , 1c  and 4c  are the possible types. 2c  and 5c  
types have been eliminated because the additional data do not 
conform to the prediction. At 5 ~ 25k = , the system is 
deduced to be 1c , which is in accordance with the actual 
operation. The monitoring system, therefore, can be achieved 
successful classification after 5 samplings. Fig. 10 shows the 
experimental result of 4C  type. The method takes 8 
samplings to replace most types with only type 1C  and 4C  as 
the possible types. After 12k = , the method has been able to 
deduce the correct mode of the operation. From the 
experimental study, it is found that the proposed method is 
good at monitoring the cross-flow filtration. The insufficient 
data at the beginning implies that the classification can only 
be reliable after certain time and generally the time required is 
about 1/3 of the operation time. This prompt detection of any 
error can be beneficial to the operation. 
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Fig. 9.  Real-time monitoring of 1C  type 
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Fig. 10.  Real-time monitoring of 4C  type 

VI. CONCLUSION 
Past research on monitoring of membrane filtration focused 

on cake formation. There was little diagnosis system 
developed to detect system anomaly. UTDR technique is 
capable of membrane fouling noninvasively under realistic 

operating conditions. The ultrasonic technique can measure 
the changes on the membrane surface in a flat-sheet geometry. 
In this research the data mining technique which is the 
combination WT and DT from the UTDR signals of the 
fouling membranes is evaluated. The method is applied to a 
filtration system with observation carried out on a sample of 
size 5 5×  to obtain the information for the operation. With 
Haar wavelet as a basis wavelet, packet transform is carried 
out on the RF signal and feature extracted for different 
operation modes. PCA and Gaussian smoothing applied to the 
data lower the classification load using C4.5. It is believed 
that the problem addressed here has not been fully studied 
before although it is important in membrane fouling diagnosis. 
Experimental results show that the proposed method can 
detect the fault early without waiting till the end point of the 
whole filtration stage. 
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