

Abstract- In this paper, we investigate and evaluate the
performance of a simple approach mult1iclass for support
vector machine (SVM) method. We present a new architecture,
named GASVM, and based en genetic algorithms, in order to
achieve high classification efficiency for multiclass problems.
The proposed paradigm builds a binary tree, for solving
multiclass problems, by genetic algorithms with the aim of
obtaining a strategy multiclass SVM with a reasonable and
practical complexity in the real problems. Our approach is
more accurate in the creation of the tree. Further, in the test
phase our contribution, due to its Log complexity, it is much
faster than other methods in problems that have big class
number. For the evaluation two corpuses are used; TIMIT
corpus, where we achieved a recognition rate of 57.54% on the
20 vowels and MNIST datasets who’s a recognition rate of
97.73% is achieved. These results are comparable with the
state of the arts. In addition, training time and number
of support vectors, which determine the duration of the tests,
are also reduced compared to other methods. However, these
results are unacceptably large for the real application tasks.

Keywords: Machine Learning; SVM; Genetic algorithms.

I. INTRODUCTION
ERNEL Methods and particularly Support Vector
Machines (SVM) [14,15,16], introduced during the last

decade in the context of statistical learning [15,17,18], have
been successfully used for the solution of a large class of
machine learning tasks [19,20] such as categorization,
prediction, novelty detection, ranking and clustering. The
SVM was originally developed for binary problems, and its
extension to multi-class problems is not straightforward.
How to effectively extend it for solving multiclass
classification problem is still an on-going research issue. The
popular methods for applying SVMs to multiclass
classification problems usually decompose the multi-class
problems into several two-class problems that can be
addressed directly using several SVMs.

The paper is organized as follows. In section 2, support
vector machine will be briefly discussed for problems
classification. In the following section, we introduce our
efficient framework for multiclass SVM using genetic
algorithms. We discuss some related successful works in
sections 4. In section 5, we give results of preliminary
experiments on the vowels sets of TIMIT data base and
digits sets of MNIST corpus. Finally, the last section is

Manuscript received October 13, 2012; revised December 30, 2012.
Boutkhil SIDAOUI is with Mathematics and Computer Science

Department, University of Tahar Moulay Saida, BP 138 ENNASR Saida
20000, Algeria, phone: 2130552967661; e-mail: b.sidaoui@gmail.com.

Kaddour SADOUNI is with Computer Science Department University
of Sciences and Technology USTO-MB, BP 1505 Elmanouar Oran 31000,
Algeria (kaddour_sadouni@hotmail.com).

devoted to conclusions and some remarks pertaining to
future work.

II. SUPPORT VECTOR MACHINE
Binary SVM, in their general form, extend an optimal

linear hypothesis, in terms of an upper bound on the expected
risk that can be interpreted as the geometrical margin , to
non linear ones by making use of kernels k(.,.). Kernels can
be interpreted as dissimilarity measures of pairs of objects in
the training set X. In standard SVM formulations, the
optimal hypothesis sought is of the form (1).

∑=Φ),()(ii xxkαξ (1)

Where iα are the components of the unique solution of a

linearly constrained quadratic programming problem, whose
size is equal to the number of training patterns. The solution
vector obtained is generally sparse and the non zero iα ’s are
called support vectors (SV’s). Clearly, the number of SV’s
determines the query time which is the time it takes to
predict novel observations and subsequently, is critical for
some real time applications such as speech recognition tasks.

It is worth noting that in contrast to connectionist methods
such as neural networks, the examples need not have a
Euclidean or fixed-length representation when used in kernel
methods. The training process is implicitly performed in a
Reproducing Kernel Hilbert Space (RKHS) in which k(x;y)
is the inner product of the images of two example x, y.
Moreover, the optimal hypothesis can be expressed in terms
of the kernel that can be defined for non Euclidean data such
biological sequences, speech utterances etc. Popular positive
kernels include the Linear, Polynomial and Gaussian kernels:

A. SVM Formulation

Given training vectors mix n
i ,...,1, =ℜ∈ , in two

classes, and a vector my ℜ∈ such that { }1,1 −∈iy ,
Support Vector Classifiers [15,16,17,18] solve the following
linearly constrained convex quadratic programming problem:

()

0
0 , : sconstraint under the

,
2
1) maximize

1

i

1,

∑

∑∑

=

=

=
≤≤∀

−=

m

i ii

m

i iji jijiji

yα
Ci

αxxkyyααW(α

α (2)

The optimal hypothesis is:

Approach Multiclass SVM Utilizing Genetic
Algorithms

Boutkhil Sidaoui, Kaddour Sadouni

K

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

bxxkyxf ii

m

i
i += ∑

=

),()(
1
α

(3)

Where the bias term b can be computed separately [19].

Clearly, the hypothesis f depends only on the non null
coefficients iα whose corresponding patterns are called
Support vectors (SV).

The QP objective function involves the problem Gram
matrix K whose entries are the similarities),(ji xxk

between the patterns ix and jx . It is important to note, on

one hand, that the pattern input dimension d, in the above
formulation, is implicit and does not affect to some extent the
complexity of training, provided that the Gram matrix K can
be efficiently computed for the learning task at hand. On the
other hand, the patterns representation is not needed and only
pair wise similarities between objects must be specified.

This feature makes SVM very attractive for high input
dimensional recognition problems and for the ones where
patterns can’t be represented as fixed dimensional real
vectors such as text, strings, DNA etc. For large scale
corpora however, the quadratic programming problem
becomes quickly computationally expensive, in terms of
storage and CPU time. It is well known that general-purpose
QP solvers scale with the cube of the problem dimension
which is, in our case, the number of training patterns m.
Specialized algorithms, typically based on gradient descent
methods, achieve impressive gains in efficiency, but still
become impractically slow for problems whose size exceeds
100,000 examples. Several attempts have been made to
overcome this shortcoming by using heuristically based
decomposition techniques such as Sequential minimal
optimization SMO [19] implemented in LibSVM package
[26].

B. Multiclass Extensions
Support Vector Machines are inherently binary classifiers

and its efficient extension to multiclass problems is still an
ongoing research issue [22, 23, 24]. Several frameworks
have been introduced to extend SVM to multiclass contexts
and a detailed account of the literature is out of the scope of
this paper. Typically multiclass classifiers are built by
combining several binary classifiers. The earliest such
method is the One-Against-All (OVA) [15, 22] which
constructs K classifiers, where K is the number of classes.

The thk classifier is trained by labeling all the examples in

the thk class as positive and the remainder as negative. The
final hypothesis is given by the formula:

())(maxarg)(,.....,1 xfxf ikiova == (4)

Another popular paradigm, called One-Against-One

(OVO), proceeds by training k(k-1)/2 binary classifiers
corresponding to all the pairs of classes. The hypothesis
consists of choosing either the class with most votes (voting)
or traversing a directed acyclic graph where each node
represents a binary classifier (DAGSVM) [23]. There was

debate on the efficiency of multiclass methods from
statistical point of view Clearly, voting and DAGSVM are
cheaper to train in terms of memory and computer speed than
OVASVM .[24] investigated the performance of several
SVM multi-class paradigms and found that the one-against-
one achieved slightly better results on some small to medium
size benchmark data sets. Other interesting works will be
discussed in section: related work and discussion.

III. BINARY TREE FOR MULTICLASS SVM
This approach uses multiple SVMs set in a binary tree

structure [40]. In each node of the tree, a binary SVM is
trained using two classes. All samples in the node are
assigned to the two subnodes derived from the current node.
This step repeats at every node until each node contains only
samples from one class. That said, until the leaves of the
tree. The main problem that should be considered seriously
here is how to construct the optimal tree? With the aim of
partitioning correctly the training samples in two groups, in
each node of the tree. In this paper we propose a genetic
algorithm for constructing a binary tree structure for
multiclass SVM.

A. Binary Tree Construction
Genetic algorithms (GA) can provide good solutions to

many optimization problems. They are based on natural
processes of evolution. The process of genetic algorithm is
defined as follows: coding, selection, genetic operators such
as mutation and crossover. The GASVM method that we
propose is based on recursively partitioning the classes in
two disjoint groups in every node of the binary tree, and
training a SVM that will decide in which of the groups the
incoming unknown sample should be assigned. The groups
are determined by genetic algorithm.

In the general case, the number of partitions into two
parts (groups) of a set of k elements is given by the following
formula [46]:

∑ = −
−

−=
2

02,)!2(!
)2()1(_

i

k
i

k ii
ipartionsN (5)

Corresponding construction of the binary tree, two cases

can be expected: the number k is small in this case;
we calculate all possible partitions and then deduce the
optimal partition. Where the number k is greater than 6
(k> 6), we determine the optimal partition by genetic
algorithms, because it is impossible to cover all possible
partitions.

B. Preliminary
Let’s take a set of training samples labeled

by { }ki cccy ,...,, 21∈ , GASVM method starts, in the first
step, with calculating k gravity centers for the k different
classes. In the second step, the goal is to find the
right partitioning of k gravity centers into two disjoint
groups. For that, a process of genetic algorithm is applied for
each node of the binary tree as follow: we start from the root
of the binary tree, we partition the k gravity centers (k

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

classes) into two groups is the most disjointed, says the
chromosome having the maximum fitness function with
genetic algorithms. Then, we continue this operation for
nodes derived until no partitioning is possible, that is to say
nodes are the leaves of the tree. After that, a function
of overall inertia is calculated for each binary
tree (individual). Indeed, this function of overall inertia is
given by the following formula:

∑=
=

nodes

irtiaoveralline ifitenessfunf
1

)(_ (6)

Where,)(_ ifitenessfun is the fitness function of the

node i .

C. Genetic algorithms for constructing optimal partition
Encoding: For genetic algorithms to build optimal

partition, partition must be encoded so that genetic operators
such as mutation and crossover can be applied. Let

{ }ki cccy ,...,, 21∈ be the label list of k gravity centers for
the k different classes. For encoding each partition,
permutation encoding is used. In permutation encoding,
every chromosome is a string of numbers. In this paper, each
number represents a vowel; therefore partition is encoded by
a string of numbers. In this paper we used the set: {aa, ae, ah,
ao, aw, ax-h, ax, axr, ay, eh, er, ey, ih, ix, iy, ow, oy, uh,
uw, ux} for datasets TIMIT vowels. The vowels are
represented by numbers 1 to 20 respectively and for MNIST
datasets each digit is represented by number.

Fitness Function: fitness function of each partition is the
Euclidean distance between the two groups that partition.

Genetic Operators: Crossover and mutation are two basic
operators of GA. Performance of GA very depend on them.
Type and implementation of operators depends on encoding
and also on a problem. The Crossover selects genes from
parent chromosomes and creates a new offspring. Whereas,
mutation operator is defined as changing the value of a

certain position in a string to one of the possible values in the
range. There are many ways how to do crossover and
mutation. In this paper, we are only interested by crossover
to a single point, Single point crossover is selected, till this
point the first part is copied from the first parent, and then
the rest is copied from the second parent. For mutation,
change in rank; two numbers are selected and exchanged.

But the problem is that some numbers are repeated

and others are missing, while all numbers are included in
each chromosome. For this, correction is applied to the
offspring to add the missing number and remove duplication.

Decoding: Decoding is the reverse operator of the

encoding process. In this paper the best individual is the tree
with the maximum overall inertia function.

D. Implementation of Tree SVM
The optimal tree (best individual) created by genetic

algorithms is implemented to obtain a multiclass approach.
Takes advantage of both the efficient computation of the tree
architecture and the high classification accuracy of SVMs
Utilizing this architecture, N-1 SVMs needed to be trained
for an N class problem. This binary tree is used to train a
SVM classifier in the root node of the tree, using the samples
of the first group as positive examples and the samples of the
second group as negative examples. The classes from the
first clustering group are being assigned to the first (left)
subtree, while the classes of the second clustering group are
being assigned to the (right) second subtree. The process
continues recursively (dividing each of the groups into two
subgroups applying the procedure explained above), until
there is only one class per group which defines a leaf in the
decision tree.

The recognition of each test sample starts at the root of the
tree. At each node of the binary tree a decision is being made
about the assignment of the input pattern into one of the two
possible groups represented by transferring the pattern to the
left or to the right sub-tree. Each of these groups may contain
multiple classes. This is repeated recursively downward the
tree until the sample reaches a leaf node that represents the
class it has been assigned to.

TABLE III: EXAMPLE OF MUTATION OPERATOR
Before mutation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
After mutation 1 2 3 4 15 6 7 8 9 10 11 12 13 14 5

Before mutation: example of chromosome representation.
After mutation: chromosome after mutation operator of a single

digit (5 by 15).

TABLE II: EXAMPLE OF CROSSOVER WITH A SINGLE POINT

Partition 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Partition 2 13 12 3 4 5 6 7 8 9 10 11 2 1 14 15

Offspring 1 1 2 3 4 5 6 7 8 9 10 11 2 1 14 15

Offspring 2 13 12 3 4 5 6 7 8 9 10 11 12 13 14 15

Partition 1, Partition 2: two fathers, after crossover with a single
point (at 9 point), we obtain the two representations: Offspring 1
and 2.

TABLE I: EXAMPLE OF CHROMOSOMES (PARTITIONS)

Chromosome 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Chromosome 2 13 12 3 4 5 6 7 8 9 10 11 2 1 14 15

Chromosome 1, Chromosome 2: two examples of chromosome
representation (digit sequence).

 {1, 2, 6, 7} vs {3, 4, 5}

{2, 6} vs {1, 7} {3, 4} vs {5}

{2}vs {6} {1}vs {7} {3} vs {4} 5

43 7 1 6 2

Fig. 1. shows an example binary tree for seven classes

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

IV. RELATED WORK AND DISCUSSION
There are different approaches for solving multi-class

problems which are not based on SVM. However, the
experimental results clearly show that their classification
accuracy is significantly smaller than the SVM based
methods.

Several multi-class approaches have been proposed
to solve the multi-class problem for SVM. SVM using the
standard formulation cannot deal directly multi-class
problems. Early implementations attempted to treat the
multiclass problem are the OVA and the OVO approaches
already discussed in Section 2. Most of the recent works are
based on the combination of classifiers binaries.

Interesting implementations of SVM multi-classes have
been developed in recent years. Such as, two
architectures proposed by [42] and [41], in the first Cha and
Tappert built the decision tree by genetic algorithms where
they are considered each tree as chromosome. While in the
second architecture Madzarov and All proposed a clustering
method to construct the binary tree. Another approach in this
direction has been presented by Lei and Venu in [43], they
use a recursive method in to build the binary tree.

In term of complexity, OVA approach needs to create k
binary classifiers; the training time is estimated empirically
by a power law [44] stating that 2MT α≈ where M is the
number of training samples and α is proportionality
constant. According to this law, the estimated training time
for OVA is:

2_ MkTimeTraining OVA α≈ (7)

Without loss of generality, let's assume that each of the k

classes has the same number of training samples. Thus, each
binary SVM of OVO approach only requires

kM /2 samples. Hence, the training time for OVO is:

22

2

2)1(2

2
2

)1(_

MM
k

k
k
MkkTimeTraining OVO

αα

α

≈
−

≈

⎟
⎠
⎞

⎜
⎝
⎛−

≈
 (8)

The training time for DAG is same as OVO. In the

training phase, our approach GASVM has k-1 binary
classifiers (k is the number of classes). The random structure
of the optimal tree complicates the calculation of the training
time. However, an approximation is defined as: Let’s assume
that each of the k classes has the same number of training
samples. The training time is summed over all k-1 nodes in

the different ⎡ ⎤)(log2 k levels of tree. In the
thi level,

there are at the most 12 −i nodes and each node uses

12 −i
M training samples. Hence, the total training time:

⎡ ⎤

⎡ ⎤
2

)(log

1
1

2

2)(log

1
1

1

2

2

2

2
2_

MM

MTimeTraining

k

i
i

k

i
i

i
SVMAG

αα

α

≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈

⎟
⎠
⎞

⎜
⎝
⎛≈

∑

∑

=
−

=
−

−

 (9)

It must be noted that the training time of our approach

does not include the time to build the hierarchy structure
(binary tree) of the k classes. In the testing phase, OVA
require k binary SVM evaluations and OVO necessitate

2
)1(−kk

 binary SVM evaluations, while DAGSVM

performs faster than OVO and OVA, since it requires only k-
1 binary SVM evaluations. The two architectures proposed
by [42] and [41] and GASVM proposed in this paper are
even fasters than DAGSVM because the depth of the binary
tree is ⎡ ⎤)(log2 k . In addition, the total number of supports
(SVs) vectors in all models will be smaller than the total
number of SVs in the others (OVA, OVO and DAGSVM).
Therefore it allows converge rapidly in the test phase.

The advantage of the approaches presented in [42], [41],
[43] and the approach shown in this paper lie mainly in the
test phase, because it uses only the models necessary for
recognition. Which make the testing phase faster.

However, in [42], [41] and [43] a problem of local minima
is clearly present. To avoid this problem, an approach
proposed in this works to find the binary tree, using the
process of genetic algorithm to each node of the tree to find
the right partitioning into two disjoint groups, the partial
optimization avoids falling into a local optimum,
the details of the algorithm is discussed in section 5 above.

V. IMPLEMENTATION AND RESULTS
In this paper, we performed our experiments on two

corpuses: TIMIT corpus [30] and MNIST corpus [47]. For
TIMIT datasets, 20 vowels used in [36] are selected to
evaluate our approach. The 20 vowels set are: {aa, aw, ae,
ah, ao, ax, ay, axr, ax-h, uw, ux, uh, oy, ow, ix, ih, iy, eh, ey,
er}. The 10 classes (handwritten digits) of MNIST corpus
are: {0, 1, 2, 3, 4, 5, 6, 7, 8, and 9}.

In all the experiments reported below, we performed 5-
fold cross validation for tuning SVM hyper parameters g and
C. The GNU SVM light [26] implementation is used for our
GASVM Machine used in this paper, and LibSVM [45] for
SVC [39] software’s to compare our results. All the
experiments were run on standard Intel (R) core™ 2 Duo
CPU 2.00 GHZ with 2.99 Go memory running the Windows
XP operating system. The following tables summarize our
preliminary results, for the classification supervised of 20
vowels listed above.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

VI. CONCLUSION
We introduced and implemented a novel efficient

approach for SVM multiclass. The Binary Tree of support
vector machine (SVM) multiclass paradigm was shown
through extensive experiments to achieve state of the art
results in terms of accuracy. The preliminary experiments of
our binary architecture indicate that the results
are comparable to those of other methods. Although the
optimization of learning parameters of SVM can improve the
results.

However, as can be seen from the results, training times
and especially testing times are still excessive preventing
SVM from being used in speech recognition at least for the
time being. We believe that in order to improve automatic
speech recognition technology, more research efforts must
take advantage of the solid mathematical basis and the power
of SVM binary, and should be invested in developing general
purpose efficient machine learning paradigms capable of
handling large scale multi-class problems.

REFERENCES
[1] K-F. Lee and H-W, “Hon. Speaker-independent phone recognition

using Hidden Markov Models”; IEEE Trans, Acoust, Speech Signal
Processing, vol ASSP-37, N° 11, 1989.

[2] Alex Grave and Jürgen Schmidhuber, “Framewise Phoneme
Classification with Bidirectional LSTM Networks”. IJCNN, 2005.

[3] Hakan Erdogan, “Regularizing Linear Discriminant Analysis for
Speech Recognition”, 2005.

[4] J. Morris and E. Fosler-Lussier, “Discriminative Phonetic
Recognition with Conditional Random Fields”; HLTNAACL, 2006.

[5] DongSuk. Yuk and James Flanagan, “Telephone Speech Recognition
Using Neural Networks and Hidden Markov Models”, ICASSP, 1999.

[6] F-Ghinwa Choueiter and R-James Glass, “A Wavelet and Filter Bank
Framework for Phonetic Classification”, ICASSP, 2005.

[7] K. Joseph, S. Shalev-Shwartz, S. Bengio, Y.Singer and D. Chazan,
“Discriminative Kernel-Based Phoneme Sequence Recognition”,
ICSLP, 2006.

[8] Simon King, Todd Stephenson, Stephan Isard, Paul Taylor and Alex
Strahan, “Speech Recognition via Phonetically Featured Syllables”,
ICSLP, 1998.

[9] Fei Sha and Lawrence K. Saul, “Large Margin Hidden Markov
Models For Automatic speech recognition”, NIPS, 2006.

[10] Fei Sha and Lawrence K. Saul, “Comparaison of Large Margin
Training To Other Discriminative Methods for Phonetic Recognition
by Hidden Markov Models”, ICASSP, 2007.

[11] M. Kamal Omar and H-J. Mark, “Non-Linear Independent
Component Analysis for Speech Recognition”, International
Conference on Computer Communication and Control Technologies,
Orlando, 2003.

[12] H. Naomi, V. Saeed and MC. Paul, “A Novel Model for Phoneme
Recognition Using Phonetically Derived features”, Proceeding
EUSIPCO, 1998.

[13] J. Salomon, k. Simon and Miles Osborne, “Framewise Phone
classification Using Support Vector Machines”, ICSLP, 2002.

[14] Boser, B. Guyon, V Vapnik, “A training algorithm for optimal margin
classifiers”. Fifth Annual Workshop on Computational Learning
Theory. ACM Press, Pittsburgh, 1992.

[15] V. Vapnik, “Statistical Learning Theory”, Wiley, New York, 1998.
[16] Guyon, I. Boser and V. Vapnik, “Automatic Capacity Tuning of Very

Large VC-Dimension Classifiers”; Advances in Neural Information
Processing Systems Vol.5 Morgan Kaufmann, San Mateo, CA, 1993.

[17] V. Vapnik and Chervonenkis, “Theory of Pattern Recognition [in
Russian]”. Nauka, Moscow, 1974. (German Translation: Wapnik,
Tscherwonenkis, Theorie der Zeichenerkennung, Akademie-Verlag,
Berlin), 1979.

[18] V. Vapnik, 1982. “Estimation of Dependences Based on Empirical
Data [in Russian]. Nauka, Moscow, (English translation, Springer
Verlag, New York), 1979.

[19] E. Osuna, R. Freund, F. Girosi, “Training Support Vector Machines,
an Application to Face Detection”, in Computer vision and Pattern
Recognition, pp.130-136, 1997.

[20] T. Joachims, “Making large-scale support vector machine learning
practical”, in Advances in Kernel Methods, B. Schölkopf, C. Burges,
A. Smola, (eds.), Cambridge, MIT Press, 1998.

[21] Daniel Hong, “Speech recognition technology: moving beyond
customer service”. Computer Business Online, March 1st, 2007.

[22] Ryan Rifkin and Aldebaro Klautau, “In defense of one-vs-all
classification”, Journal of Machine Learning Research 5, 101-141,
2004.

[23] J.C. Platt, N. Cristianini, and J. Shawe-Taylor, “Large margin DAGs
for multiclass classification”; In Advances in Neural Information
Processing Systems, volume 12, pages 547-443. MIT Press, 2000.

[24] Chih-Wei Hsu and Chih-Jen Lin. “A Comparison of Methods for
Multiclass Support Vector Machines”.

[25] S. Furui. “Speaker-Independent Isolated Word Recognition Using
Dynamic Features of Speech spectrum”; IEEE Trans, Acoustic,
Speech, and Signal Processing 34, 52-59.

[26] T. Joachims, “Making Large-Scale SVM Learning Practical”,
Software available at: http://svmlight.joachims.org/, 2001.

[27] A. Ganapathiraju, “Support vector machines for speech recognition”.
PhD Thesis, Mississipi State University, USA, 1998.

[28] N. Smith and M. Gales, “Speech recognition using SVM. Advances in
Neural Information Processing Systems”, 14, MIT Press, 2002.

[29] J.S. Garofolo, L.F. Lamel and al, “TIMIT Acoustic-Phonitic
Continuous Speech Corpus. Philadelphia, Linguistic Data
Consortium”, 1993.

[30] M. Slaney, Auditory Toolbox version 2. Tech. Report#010, Internal
Research Corporation, 1998.

[31] Ryan Rifkin and al, “Phonetic Classification Using Hierarchical,
Feed-forward, Spectro-temporal Patch-based Architectures”.
Technical Report, MIT-CSAIL-TR, 2007.

[32] R. P. Lippmann, “Speech recognition by machines and humans”,
Speech Communication 22 1-15, Elsevier, 1997.

[33] Martens J. P. Depuydt, “Broad phonetic classification and
segmentation of continuous speech by means of neural networks and

TABLE VI: RESULTS OF GASVM FOR 10 DIGITS

 T C d Test
(%)

CPU
time (s)

GASVM

1 0 2 96.83 536
0 0 - 90.86 250
1 10 2 97.38 386
1 100 2 97.38 341
1 1000 2 97.73 406

T is kernel type: Polynomial (1), linear (0).
C is a parameter of SVM, d is Polynomial kernel parameter, the

two parameters were calculated by cross validation.
Test is recognition rate and CPU time is time of test.

TABLE V: RESULTS OF GASVM FOR 20 VOWELS

 T C g Test
(%)

CPU time
(s)

GASVM

2 4 0.03 57.16 534
2 10 0.03 56.23 584
2 5 0.03 57.29 537
2 100 0.007 57.32 482
2 100 0.01 56.83 520
2 100 0.0055 57.54 424

T is kernel type: Gaussian (2).
C is a parameter of SVM, g is Gaussian kernel parameter, the

two parameters were calculated by cross validation.
Test is recognition rate and CPU time is time of test.

TABLE IV: RESULTS OF SVM (OVO) FOR 20 VOWELS

 T C g Test
(%)

CPU time
(s)

SVM
(OVO)

2 2000 0.0005 59.64 510.89
2 5000 0.0005 59.83 670.15
2 10000 0.0005 60.14 504.00
2 1000 0.005 58.11 945.65
2 200 0.005 59.82 938.34

T is kernel type: Gaussian (2).
C is a parameter of SVM, g is Gaussian kernel parameter, the

two parameters were calculated by cross validation.
Test is recognition rate and CPU time is time of test.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

dynamic programming”, Speech communication, vol. 10, no1, pp. 81-
90, 1991.

[34] L. R. Rabiner and B-H Juang, “Fundamentals of speech recognition”,
Prentice Hall, 1993.

[35] P. Moreno, “On the use of Support Vector Machines for Phonetic
Classification”; In the proceedings of ICCASP, 1999.

[36] R. Rifkin and a1, “Noise Robust Phonetic Classification with Linear
Regularized Least Squares and Second Order Featues”, ICASSP,
2007.

[37] J.C. Platt, “Fast training of support vector machines using sequential
minimal optimization”. In Adv. in Kernel Methods, Schölkopf, C.
Burges, A. Smola eds, 1998.

[38] H. Peter Graf, E. Cosatto, B. Léon, I. Dourdanovic, and V. Vapnik,
“Parallel Support Vector Machines: The Cascade SVM” in Advances
in Neural Information Processing Systems, 2005.

[39] LibCVM Toolkit of the improved Core Vector Machine (CVM),
which are fast Support Vector Machine (SVM) training algorithms
using core-set approximation on very large scale data sets available
at: http://c2inet.sce.ntu.edu.sg/ivor/cvm.html.

[40] B. Fei, J. Liu. “Binary Tree of SVM: A New Fast Multiclass Training
and Classification Algorithm” IEEE Transaction on neural networks,
Vol. 17, No. 3, May 2006

[41] Gjorgji Madzarov, Dejan Gjorgjevikj and Ivan Chorbev. “A Multi-
class SVM Classifier Utilizing Binary Decision Tree”. Informatica
33, 233-241, 2009.

[42] Sung-Hyuk Cha and Charles Tappert. “A Genetic Algorithm for
Constructing Compact Binary Decision Trees”. Journal of Pattern
Recognition Research 1, 1-13, 2009.

[43] Hansheng Lei and Venu Govindaraju. “Half-Against-Half Multi-class
Support Vector Machines”.

[44] J. Platt. Fast training of support vector machines using sequential
minimal optimization. In Advances in Kernel Methods - Support
Vector Learning.

[45] C-C. Chang and C-J. Lin, “LIBSVM Toolkit: a library for support
vector machines”, Software available at:
http://www.csie.ntu.edu.tw/cjlin/libsvm. 2001.

[46] Jain, A. and Dubes, R, “Algorithms for Clustering Data”. Prentice
Hall Advanced, Reference Series, 1988.

[47] The MNIST database of handwritten digits has a training set of
60,000 examples, and a test set of 10,000 examples. The digits have
been size-normalized and centred in a fixed-size image available at:
http://yann.lecun.com/exdb/mnist/.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

