
 
 

 

Abstract- In this paper, we investigate and evaluate the 
performance of a simple approach mult1iclass for support 
vector machine (SVM) method. We present a new architecture, 
named GASVM, and based en genetic algorithms, in order to 
achieve high classification efficiency for multiclass problems. 
The proposed paradigm builds a binary tree, for solving 
multiclass problems, by genetic algorithms with the aim of 
obtaining a strategy multiclass SVM with a reasonable and 
practical complexity in the real problems. Our approach is 
more accurate in the creation of the tree. Further, in the test 
phase our contribution, due to its Log complexity, it is much 
faster than other methods in problems that have big class 
number. For the evaluation two corpuses are used; TIMIT 
corpus, where we achieved a recognition rate of 57.54% on the 
20 vowels and MNIST datasets who’s a recognition rate of 
97.73% is achieved. These results are comparable with the 
state of the arts. In addition, training time and number 
of support vectors, which determine the duration of the tests, 
are also reduced compared to other methods. However, these 
results are unacceptably large for the real application tasks.  
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I. INTRODUCTION 
ERNEL Methods and particularly Support Vector 
Machines (SVM) [14,15,16], introduced during the last 

decade in the context of statistical learning [15,17,18], have 
been successfully used for the solution of a large class of 
machine learning tasks [19,20] such as categorization, 
prediction, novelty detection, ranking and clustering. The 
SVM was originally developed for binary problems, and its 
extension to multi-class problems is not straightforward. 
How to effectively extend it for solving multiclass 
classification problem is still an on-going research issue. The 
popular methods for applying SVMs to multiclass 
classification problems usually decompose the multi-class 
problems into several two-class problems that can be 
addressed directly using several SVMs.  

The paper is organized as follows. In section 2, support 
vector machine will be briefly discussed for problems 
classification. In the following section, we introduce our 
efficient framework for multiclass SVM using genetic 
algorithms. We discuss some related successful works in 
sections 4.  In section 5, we give results of preliminary 
experiments on the vowels sets of TIMIT data base and 
digits sets of MNIST corpus. Finally, the last section is 
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devoted to conclusions and some remarks pertaining to 
future work. 

II. SUPPORT VECTOR MACHINE  
Binary SVM, in their general form, extend an optimal 

linear hypothesis, in terms of an upper bound on the expected 
risk that can be interpreted as the geometrical margin ,  to 
non linear ones by making use of kernels k(.,.). Kernels can 
be interpreted as dissimilarity measures of pairs of objects in 
the training set X. In standard SVM formulations, the 
optimal hypothesis sought is of the form (1). 
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Where iα  are the components of the unique solution of a 

linearly constrained quadratic programming problem, whose 
size is equal to the number of training patterns. The solution 
vector obtained is generally sparse and the non zero iα ’s are 
called support vectors (SV’s). Clearly, the number of SV’s 
determines the query time which is the time it takes to 
predict novel observations and subsequently, is critical for 
some real time applications such as speech recognition tasks. 

It is worth noting that in contrast to connectionist methods 
such as neural networks, the examples need not have a 
Euclidean or fixed-length representation when used in kernel 
methods. The training process is implicitly performed in a 
Reproducing Kernel Hilbert Space (RKHS) in which k(x;y) 
is the inner product of the images of two example x, y. 
Moreover, the optimal hypothesis can be expressed in terms 
of the kernel that can be defined for non Euclidean data such 
biological sequences, speech utterances etc. Popular positive 
kernels include the Linear, Polynomial and Gaussian kernels: 

 

A. SVM Formulation 

Given training vectors mix n
i ,...,1, =ℜ∈ , in two 

classes, and a vector my ℜ∈   such that { }1,1 −∈iy , 
Support Vector Classifiers [15,16,17,18] solve  the following 
linearly constrained convex quadratic programming problem: 
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The optimal hypothesis is: 
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Where the bias term b  can be computed separately [19]. 

Clearly, the hypothesis f depends only on the non null 
coefficients iα  whose corresponding patterns are called 
Support vectors (SV). 

The QP objective function involves the problem Gram 
matrix K whose entries are the similarities ),( ji xxk  

between the patterns ix  and jx . It is important to note, on 

one hand, that the pattern input dimension d, in the above 
formulation, is implicit and does not affect to some extent the 
complexity of training, provided that the Gram matrix K can 
be efficiently computed for the learning task at hand. On the 
other hand, the patterns representation is not needed and only 
pair wise similarities between objects   must be specified. 

This feature makes SVM very attractive for high input 
dimensional recognition problems and for the ones where 
patterns can’t be represented as fixed dimensional real 
vectors such as text, strings, DNA etc. For large scale 
corpora however, the quadratic programming problem 
becomes quickly computationally expensive, in terms of 
storage and CPU time. It is well known that general-purpose 
QP solvers scale with the cube of the problem dimension 
which is, in our case, the number of training patterns m. 
Specialized algorithms, typically based on gradient descent 
methods, achieve impressive gains in efficiency, but still 
become impractically slow for problems whose size exceeds 
100,000 examples. Several attempts have been made to 
overcome this shortcoming by using heuristically based 
decomposition techniques such as Sequential minimal 
optimization SMO [19] implemented in LibSVM package 
[26]. 

 

B. Multiclass Extensions 
Support Vector Machines are inherently binary classifiers 

and its efficient extension to multiclass problems is still an 
ongoing research issue [22, 23, 24]. Several frameworks 
have been introduced to extend SVM to multiclass contexts 
and a detailed account of the literature is out of the scope of 
this paper. Typically multiclass classifiers are built by 
combining several binary classifiers. The earliest such 
method is the One-Against-All (OVA) [15, 22] which 
constructs K classifiers, where K is the number of classes. 

The thk  classifier is trained by labeling all the examples in 

the thk  class as positive and the remainder as negative. The 
final hypothesis is given by the formula: 
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Another popular paradigm, called One-Against-One 

(OVO), proceeds by training k(k-1)/2 binary classifiers 
corresponding to all the pairs of classes. The hypothesis 
consists of choosing either the class with most votes (voting) 
or traversing a directed acyclic graph where each node 
represents a binary classifier (DAGSVM) [23]. There was 

debate on the efficiency of multiclass methods from 
statistical point of view Clearly, voting and DAGSVM are 
cheaper to train in terms of memory and computer speed than 
OVASVM .[24] investigated the performance of several  
SVM multi-class paradigms and found that the one-against-
one achieved slightly better results on some small to medium 
size benchmark data sets. Other interesting works will be 
discussed in section: related work and discussion. 

III. BINARY TREE FOR MULTICLASS SVM 
This approach uses multiple SVMs set in a binary tree 

structure [40]. In each node of the tree, a binary SVM is 
trained using two classes. All samples in the node are 
assigned to the two subnodes derived from the current node. 
This step repeats at every node until each node contains only 
samples from one class. That said, until the leaves of the 
tree. The main problem that should be considered seriously 
here is how to construct the optimal tree? With the aim of 
partitioning correctly the training samples in two groups, in 
each node of the tree. In this paper we propose a genetic 
algorithm for constructing a binary tree structure for 
multiclass SVM. 

 

A. Binary Tree Construction 
Genetic algorithms (GA) can provide good solutions to 

many optimization problems. They are based on natural 
processes of evolution. The process of genetic algorithm is 
defined as follows: coding, selection, genetic operators such 
as mutation and crossover. The GASVM method that we 
propose is based on recursively partitioning the classes in 
two disjoint groups in every node of the binary tree, and 
training a SVM that will decide in which of the groups the 
incoming unknown sample should be assigned. The groups 
are determined by genetic algorithm. 

In the general case, the number of partitions into two 
parts (groups) of a set of k elements is given by the following 
formula [46]: 
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Corresponding construction of the binary tree, two cases 

can be expected: the number k is small in this case; 
we calculate all possible partitions and then deduce the 
optimal partition. Where the number k is greater than 6 
(k> 6), we determine the optimal partition by genetic 
algorithms, because it is impossible to cover all possible 
partitions. 

 

B. Preliminary 
Let’s take a set of training samples labeled 

by { }ki cccy ,...,, 21∈ , GASVM method starts, in the first 
step, with calculating k gravity centers for the k different 
classes. In the second step, the goal is to find the 
right partitioning of k gravity centers into two disjoint 
groups. For that, a process of genetic algorithm is applied for 
each node of the binary tree as follow:  we start from the root 
of the binary tree, we partition the k gravity centers (k 
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classes) into two groups is the most disjointed, says the 
chromosome having the maximum fitness function with 
genetic algorithms. Then, we continue this operation for 
nodes derived until no partitioning is possible, that is to say 
nodes are the leaves of the tree. After that, a function 
of overall inertia is calculated for each binary 
tree (individual). Indeed, this function of overall inertia is 
given by the following formula: 
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Where,  )(_ ifitenessfun  is the fitness function of the 

node i . 
 

 
 

C. Genetic algorithms for constructing optimal partition 
Encoding: For genetic algorithms to build optimal 

partition, partition must be encoded so that genetic operators 
such as mutation and crossover can be applied. Let 

{ }ki cccy ,...,, 21∈  be the label list of k gravity centers for 
the k different classes. For encoding each partition, 
permutation encoding is used. In permutation encoding, 
every chromosome is a string of numbers. In this paper, each 
number represents a vowel; therefore partition is encoded by 
a string of numbers. In this paper we used the set: {aa, ae, ah, 
ao, aw, ax-h, ax, axr, ay,  eh, er, ey, ih, ix,  iy, ow, oy, uh,  
uw, ux} for datasets TIMIT vowels. The vowels are 
represented by numbers 1 to 20 respectively and for MNIST 
datasets each digit is represented by number. 

 

 
 

Fitness Function: fitness function of each partition is the 
Euclidean distance between the two groups that partition.  

Genetic Operators: Crossover and mutation are two basic 
operators of GA. Performance of GA very depend on them. 
Type and implementation of operators depends on encoding 
and also on a problem. The Crossover selects genes from 
parent chromosomes and creates a new offspring. Whereas, 
mutation operator is defined as changing the value of a 

certain position in a string to one of the possible values in the 
range. There are many ways how to do crossover and 
mutation. In this paper, we are only interested by crossover 
to a single point, Single point crossover is selected, till this 
point the first part is copied from the first parent, and then 
the rest is copied from the second parent. For mutation, 
change in rank; two numbers are selected and exchanged. 

 

 
 
But the problem is that some numbers are repeated 

and others are missing, while all numbers are included in 
each chromosome. For this, correction is applied to the 
offspring to add the missing number and remove duplication. 

 

 
 
Decoding: Decoding is the reverse operator of the 

encoding process. In this paper the best individual is the tree 
with the maximum overall inertia function. 

D. Implementation of Tree SVM 
The optimal tree (best individual) created by genetic 

algorithms is implemented to obtain a multiclass approach. 
Takes advantage of both the efficient computation of the tree 
architecture and the high classification accuracy of SVMs 
Utilizing this architecture, N-1 SVMs needed to be trained 
for an N class problem. This binary tree is used to train a 
SVM classifier in the root node of the tree, using the samples 
of the first group as positive examples and the samples of the 
second group as negative examples. The classes from the 
first clustering group are being assigned to the first (left) 
subtree, while the classes of the second clustering group are 
being assigned to the (right) second subtree. The process 
continues recursively (dividing each of the groups into two 
subgroups applying the procedure explained above), until 
there is only one class per group which defines a leaf in the 
decision tree. 

The recognition of each test sample starts at the root of the 
tree. At each node of the binary tree a decision is being made 
about the assignment of the input pattern into one of the two 
possible groups represented by transferring the pattern to the 
left or to the right sub-tree. Each of these groups may contain 
multiple classes. This is repeated recursively downward the 
tree until the sample reaches a leaf node that represents the 
class it has been assigned to. 

TABLE III: EXAMPLE OF MUTATION OPERATOR 
Before  mutation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
After mutation 1 2 3 4 15 6 7 8 9 10 11 12 13 14 5 

Before mutation:  example of chromosome representation. 
After mutation:  chromosome after mutation operator of a single 

digit (5 by 15). 

TABLE II: EXAMPLE OF CROSSOVER WITH A SINGLE POINT 

Partition 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Partition 2 13 12 3 4 5 6 7 8 9 10 11 2 1 14 15 

Offspring 1 1 2 3 4 5 6 7 8 9 10 11 2 1 14 15 

Offspring 2 13 12 3 4 5 6 7 8 9 10 11 12 13 14 15 

Partition 1, Partition 2:  two fathers, after crossover with a single 
point (at 9 point), we obtain the two representations: Offspring 1 
and 2.

TABLE I: EXAMPLE OF CHROMOSOMES (PARTITIONS) 

Chromosome 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Chromosome 2 13 12 3 4 5 6 7 8 9 10 11 2 1 14 15 

Chromosome 1, Chromosome 2:  two examples of chromosome 
representation (digit sequence). 

  {1, 2, 6, 7} vs {3, 4, 5} 

{2, 6} vs {1, 7}  {3, 4} vs {5}

{2}vs {6}  {1}vs {7}  {3} vs {4}  5

43 7 1 6 2 

 
Fig. 1.  shows an example binary tree for seven classes 
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IV. RELATED WORK AND DISCUSSION 
There are different approaches for solving multi-class 

problems which are not based on SVM. However, the 
experimental results clearly show that their classification 
accuracy is significantly smaller than the SVM based 
methods. 

Several multi-class approaches have been proposed 
to solve the multi-class problem for SVM. SVM using the 
standard formulation cannot deal directly multi-class 
problems. Early implementations attempted to treat the 
multiclass problem are the OVA and the OVO approaches 
already discussed in Section 2. Most of the recent works are 
based on the combination of classifiers binaries. 

Interesting implementations of SVM multi-classes have 
been developed in recent years. Such as, two 
architectures proposed by [42] and [41], in the first Cha and 
Tappert built the decision tree by genetic algorithms where 
they are considered each tree as chromosome. While in the 
second architecture Madzarov and All proposed a clustering 
method to construct the binary tree. Another approach in this 
direction has been presented by Lei and Venu in [43], they 
use a recursive method in to build the binary tree. 

In term of complexity, OVA approach needs to create k 
binary classifiers; the training time is estimated empirically 
by a power law [44] stating that 2MT α≈  where M is the 
number of training samples and α  is proportionality 
constant. According to this law, the estimated training time 
for OVA is: 

 
2_ MkTimeTraining OVA α≈                             (7) 

 
Without loss of generality, let's assume that each of the k 

classes has the same number of training samples. Thus, each 
binary SVM of OVO approach only requires 

kM /2 samples. Hence, the training time for OVO is: 
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The training time for DAG is same as OVO. In the 

training phase, our approach GASVM has k-1 binary 
classifiers (k is the number of classes). The random structure 
of the optimal tree complicates the calculation of the training 
time. However, an approximation is defined as: Let’s assume 
that each of the k classes has the same number of training 
samples. The training time is summed over all k-1 nodes in 

the different ⎡ ⎤)(log2 k  levels of tree. In the  
thi  level, 

there are at the most 12 −i  nodes and each node uses  

12 −i
M  training samples. Hence, the total training time: 
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It must be noted that the training time of our approach 

does not include the time to build the hierarchy structure 
(binary tree) of the k classes. In the testing phase, OVA 
require k binary SVM evaluations and OVO necessitate 

2
)1( −kk

 binary SVM evaluations, while DAGSVM 

performs faster than OVO and OVA, since it requires only k-
1 binary SVM evaluations. The two architectures proposed 
by [42] and [41] and GASVM proposed in this paper are 
even fasters than DAGSVM because the depth of the binary 
tree is ⎡ ⎤)(log2 k  . In addition, the total number of supports 
(SVs) vectors in all models will be smaller than the total 
number of SVs in the others (OVA, OVO and DAGSVM). 
Therefore it allows converge rapidly in the test phase. 

The advantage of the approaches presented in [42], [41], 
[43] and the approach shown in this paper lie mainly in the 
test phase, because it uses only the models necessary for 
recognition. Which make the testing phase faster. 

However, in [42], [41] and [43] a problem of local minima 
is clearly present. To avoid this problem, an approach 
proposed in this works to find the binary tree, using the 
process of genetic algorithm to each node of the tree to find 
the right partitioning into two disjoint groups, the partial 
optimization avoids falling into a local optimum, 
the details of the algorithm is discussed in section 5 above. 

V. IMPLEMENTATION AND RESULTS 
In this paper, we performed our experiments on two 

corpuses: TIMIT corpus [30] and MNIST corpus [47]. For 
TIMIT datasets, 20 vowels used in [36] are selected to 
evaluate our approach. The 20 vowels set are: {aa, aw, ae, 
ah, ao, ax, ay, axr, ax-h, uw, ux, uh, oy, ow, ix, ih, iy, eh, ey, 
er}. The 10 classes (handwritten digits) of MNIST corpus 
are: {0, 1, 2, 3, 4, 5, 6, 7, 8, and 9}. 

In all the experiments reported below, we performed 5-
fold cross validation for tuning SVM hyper parameters g and 
C. The GNU SVM light [26] implementation is used for our 
GASVM Machine used in this paper, and LibSVM [45] for 
SVC [39] software’s to compare our results. All the 
experiments were run on standard Intel (R) core™ 2 Duo 
CPU 2.00 GHZ with 2.99 Go memory running the Windows 
XP operating system.  The following tables summarize our 
preliminary results, for the classification supervised of 20 
vowels listed above. 
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VI. CONCLUSION 
We introduced and implemented a novel efficient 

approach for SVM multiclass. The Binary Tree of support 
vector machine (SVM) multiclass paradigm was shown 
through extensive experiments to achieve state of the art 
results in terms of accuracy. The preliminary experiments of 
our binary architecture indicate that the results 
are comparable to those of other methods. Although the 
optimization of learning parameters of SVM can improve the 
results. 

However, as can be seen from the results, training times 
and especially testing times are still excessive preventing 
SVM from being used in speech recognition at least for the 
time being. We believe that in order to improve automatic 
speech recognition technology, more research efforts must 
take advantage of the solid mathematical basis and the power 
of SVM binary, and should be invested in developing general 
purpose efficient machine learning paradigms capable of 
handling large scale multi-class problems. 
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TABLE VI: RESULTS OF GASVM FOR 10 DIGITS 

 T C d Test 
(%) 

CPU 
time (s) 

GASVM 

1 0 2 96.83 536 
0 0 - 90.86 250 
1 10 2 97.38 386 
1 100 2 97.38 341 
1 1000 2 97.73 406 

T is kernel type: Polynomial (1), linear (0). 
C is a parameter of SVM, d is Polynomial kernel parameter, the 

two parameters were calculated by cross validation. 
Test is recognition rate and CPU time is time of test. 

TABLE V: RESULTS OF GASVM FOR 20 VOWELS 

 T C g Test 
(%) 

CPU time 
(s) 

GASVM 

2 4 0.03 57.16 534 
2 10 0.03 56.23 584 
2 5 0.03 57.29 537 
2 100 0.007 57.32 482 
2 100 0.01 56.83 520 
2 100 0.0055 57.54 424 

T is kernel type: Gaussian (2). 
C is a parameter of SVM, g is Gaussian kernel parameter, the 

two parameters were calculated by cross validation. 
Test is recognition rate and CPU time is time of test. 

TABLE IV: RESULTS OF SVM (OVO) FOR 20 VOWELS 

 T C g Test 
(%) 

CPU time 
(s) 

SVM 
(OVO) 

2 2000 0.0005 59.64 510.89 
2 5000 0.0005 59.83 670.15 
2 10000 0.0005 60.14 504.00 
2 1000 0.005 58.11 945.65 
2 200 0.005 59.82 938.34 

T is kernel type: Gaussian (2). 
C is a parameter of SVM, g is Gaussian kernel parameter, the 

two parameters were calculated by cross validation. 
Test is recognition rate and CPU time is time of test. 
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