



Abstract—Research in the area of sequential pattern mining

has resulted in the proposal of numerous algorithms. However,

there is a lack of research in the field of multidimensional

sequential pattern mining which can be used in cloud services

for service recommendation. This paper presents algorithms

that process a sequential pattern of services in multidimensional

space. Beyond mining single-dimensional sequences, we take

into account multidimensional information associated with

sequential data such as time series patterns, which can have a

great impact for many potential service users. Thus, we propose

a time based multidimensional sequential pattern mining

algorithm. This algorithm constructs sequences by finding the

service usage pattern and then characterizes each set of

sequences using multidimensional properties based on user id,

time series, and usage frequencies that define the

multidimensional sequences. These sets of sequences are built

around frequent sequential patterns that consider multiple

dimensions. Thus, the whole process results in constructing a

multidimensional array of sets and characterizing sequential

patterns using multidimensional information. This algorithm

has implemented in the Jyaguchi cloud system, in which the

daily activities of the users and services are mined by

considering the time factor in order to analyze the behavior of

users.

Index Terms—Service Mining, Multidimensional Pattern

Mining, Jyaguchi Service Cloud, Relative and Absolute Service

Weight

I. INTRODUCTION

n the last couple of decades, we have witnessed an

extensive growth of the information available on the

Internet. One of the reasons for this growth is the addition of

social network applications to the web. However, this growth

of information has created a great deal of complexity for the

user. In this context, information filtering functionalities,

which can provide tools that support users information

acquisition. The objectives of these tools are to rank

information according to partly revealed preferences, which

are encapsulated in previously undertaken surveys done by

S. K. Shrestha is studying on Master Course in Muroran Institute of

Technology, Muroran, Hokkaido, Japan (e-mail: sthashree@gmail.com).

Y. Kudo is Assoc. Prof. in Muroran Institute of Technology, Muroran,

Hokkaido, Japan (e-mail: kudo@csse.muroran-it.ac.jp).

B.P. Gautam is Asst. Prof. in Wakkanai Hokusei Gakuen University,

wakkanai, Hokkaido, Japan. (e-mail: gautam@wakhok.ac.jp).

D. Shrestha was affiliated with Wakkanai Hokusei Gakuen University,

Wakkanani, Hokkaido, Japan. He is now working as a System Engineer with

DynaSystem Co., Ltd., 1-14, North 6, West 6, Kita-ku, Sapporo, Hokkaido,

Japan (e-mail: d_shre@dynasystem.co.jp)

marking users' provided information and properties itself.

Nonetheless, the presented rank might not satisfy users'

expectation.

Generally, frequency of access of an item or duration of its

use are considered when mining an item. However, we believe

service mining in a cloud environment requires parameters of

service usage for high precision in finding frequent patterns.

In this research, we propose an algorithm, Time Weight

Sequence Mining Algorithm (TWSMA), for mining

multidimensional sequences considering service usage time

as a service weight parameter.

II. JYAGUCHI CLOUD SYSTEM AND ITS OVERVIEW

In order to perform our experiment, we utilize the Jyaguchi

cloud [7],[12],[14] system. The term Jyaguchi was introduced

by the author [7] and was derived from the Japanese language,

in which the term means “an outlet portion of a tube or tap,

which has opening and closing valves to regulate the rate of

water flow.” Accordingly, such a behavior of regulating

resources is incorporated in the field of service usage, which

was introduced in the Jyaguchi architecture. Jyaguchi

proposed a hybrid architectural model because no single

architectural model sufficiently provides a solution that is

capable of regulating services on a pay per use basis, thereby

providing features of SaaS. Furthermore, Jyaguchi is an

architectural model for the development of distributed

applications that can be extended to an architecture for cloud

services and demonstrates how this style can be used to

enhance the architectural design of a next-generation service

cloud [1]. Fig. 1 below portrays the interaction between

service provider and client.

Fig. 1. Jyaguchi Architecture

Multidimensional Service Weight Sequence

Mining based on Cloud Service Utilization in

Jyaguchi

Shree Krishna Shrestha, Member, IAENG, Yasuo Kudo, Bishnu Prasad Gautam, Member, IAENG, and

Dipesh Shrestha, Member, IAENG

I

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

We chose to use Jyaguchi in our experiment because there

is a rapid development of cloud computing technology as well

as diverse methods of obtaining data. Consequently, the

requirement for data mining in this infrastructural

environment has dramatically increased. At present, however,

there are few data analysis tools to process large-scale data

that float in the cloud service environment. Also, data mining

technology is gradually emerging in the backdrop of such

circumstances. In fact, massive data mining over cloud

services could be a very important guide to scientific research

and business decision making. In order to propose a prototype

data mining technique in cloud services utilizing sequential

pattern mining, we have made use of the Jyaguchi architecture,

in which the authors have substantial experiences.

III. BACKGROUND AND RELATED WORKS

The problem of sequential pattern mining was first

introduced by Srikant and Agrawal in [1]. Since then,

numerous studies have addressed the issue of efficient mining

of sequential patterns [6], [9], [16], [18], [19], [20], [21], [22].

Gu et al. [15] were the first to come up with the notion of time

interval in sequential pattern mining and proposing

time-interval sequential pattern mining, which reveals the

order of items as well as time intervals between successive

items. Han et al.[17] have further enhanced this concept with

partial periodic patterns in time series databases for mining

multiple periods. Chang [11] proposed the framework of

TiWS pattern mining, in which the weight of each sequence is

first obtained from the time intervals of elements in sequence,

and subsequently TiWS patterns are found using this weight.

Yun et al. [3], Ahmed et al. [5], have used weighted frequent

pattern mining techniques for efficient mining. Yun et al. [3]

developed an algorithm with maximal weight and

experimentally showed the technique to be superior to earlier

methodology that did not consider weights. Multidimensional

sequence mining was introduced by Pint et al. [2] who

suggested three methods for mining: uniseq, seq-dim and

dim-seq. Songram et al. [8] also discussed the mining of

closed multidimensional sequences. None of them considered

service usage time, which makes all these algorithms difficult

to use for the purpose of service mining.

Similarly, the techniques used in pattern mining for items

by Ahmed et al. [5] can be used for service mining; however,

while mining services, an additional dimension of data should

be considered, i.e., the time of service usage. This is the

time-duration difference between two consecutive services,

provided that the user does not sign out from the vendor’s

system. Service usage, generally, is directly proportional to

the popularity of the service. In our proposed algorithm, we

consider this factor of time series pattern usages for service

mining of cloud services. Experiments similar to those in this

paper are performed by Zhou et al. [23] and Yap et al. [13] in

which a sequential pattern mining algorithm showed evidence

of a sufficient solution for data mining but ignored the time

series pattern of usages.

The following are reasons why this area is less studied:

 -- Despite of maturity, services provided on the cloud

platform are less comparable than the web based services.

 -- The availability of user data is rare because vendors

try to consolidate their user’s transaction for their own

purpose.

-- Service mining is an emerging concept and hence more

research is yet to be done.

IV. ALGORITHM: SERVICE MINING FOR CLOUD USERS

A. Problem Definition

Multidimensional sequential pattern mining is the process

of mining sequential patterns along with one or more

dimensions of information in which the order of dimension

values is not important.

Let I = {i1,i2,i3,….,in} be a set of services. A service-set X is

a subset of services, i.e., X I . A sequence S is denoted by

(s1,s2,s3..sl) where sj is a service-set, i.e.,
j

s I for 1 j l  .

sj is also called an element of the sequence. A service usage

time sequence ST is denoted by (st1,st2,..stk), where stm is a set

of pairs of service (sj) and service usage time (, ,js o pt) in

sequence o and position p, i.e., stm=(sj, , ,js o pt)

Definition 1 (Unit Time): Unit time is a unit for measuring

service usage time periods. In this algorithm, unit time is

manually set.

Definition 2 (Service Usage Time): Service usage time

(, ,js o pt) in a sequence ST = (st1, st2, …, stk) where stm=

(sj, , ,js o pt) is a usage time of service sj in sequence o and

position p.

Definition 3 (Absolute Service Weight): Absolute Service

Weight (,i ju sASW) is a weight of service sj for user i. Absolute

Service Weight is the quotient of total service time usage of

services sj by user i to total service usage time of user i in the

system.
,

, ,

1, 1

, , ,

, ,

1, 1, 1

j

i j

a

z y

s q r

q r

u s n z y

s q r

a q r

ASW

t

t

 

  






 , (1)

where n = total no. of service used by user i,
z = total no. of sequences

 y = total no. of positions in sequence

Definition 4 (Service Used Count): Service Used Count

(, ,js o pSC) of service sj in sequence o and position p is the

Service Usage Time (, ,js o pt) per unit time (u).

, ,

, ,

j

j

s o p

s o pSC

t

u
 (2)

 Definition 5 (Relative Service Weight): Relative Service

Weight (, ,js o pRSW) is defined as the weight of service in each

position of each sequence. Relative Service Weight in each

position of each sequence is calculated by multiplying Service

Used Count (, ,js o pSC) by Absolute Service Weight

(,i ju sASW).

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

, , , , ,*
j j i js o p s o p u sRSW SC ASW (3)

 Definition 6 (Sequence Database Weight): Sequence

Database Weight (SDW) is the sum of all Relative Service

Weights along the whole sequence database.

, ,

, ,

1, 1, 1
j

n z y

s o p

j q r

SDW RSW

  

  (4)

Definition 7 (Minimum Weight): Minimum Weight (Wm) is

the minimum weight that a service should have in order to be a

frequent service and is the minimum support percentage of the

sequence database weight.

Wm = SDW * min_support (5)

Definition 8 (Mean Weight): Mean Weight (MW) of a subset

or subsequence or sequence is the mean of the weights of each

service in the sequence.

, ,

1
j

n

s o p

i

RSW

MW
n




, (6)

where n = total no. of services in the sequence

A sequence database S is a set of tuples <sid,sw>, where sid

is a sequence id and sw is a set of pairs of service id and

relative service weight i.e., sw = (sj, , ,js o pRSW). The relative

service weight differs with time of service usage in that

sequence and service user.

Further, the dimension of user_id with service weight

sequence SW forms a multidimensional database with schema

like (SID, Ui,SW), where SID is the unique sequence id, Ui is

the User Id dimension and SW is in the domain of sequences.

The multidimensional sequence will be of the form (ui,sw),

where ui({*}
i

U ) for (1 i m ) and sw is a sequence. A

multidimensional sequence Q = (ui, sw) is said to match tuple

t = (xi,swt) in the multidimensional sequence database if and

only if, for(1 i m ), either ui=xi or ui =*, and swt lies

entirely within sw. The support of Q is the number of tuples in

the database matching multidimensional sequence Q and is

denoted by support (Q). The multidimensional sequence Q is

called a multidimensional sequential pattern if and only if

support (Q) min_support, where min_support is the given

minimum support threshold.

B. Algorithm description

A complete set of algorithms for making a

multidimensional sequential input file and mining for frequent

patterns is proposed here. The whole algorithm will be

described in two parts: the first one covers creation of

multidimensional service weight sequences and the second

one covers mining multidimensional sequences. In a later part

of this section, the algorithm will be explained with an

example.

1) Create Multidimensional service-weight sequence

In this section of algorithm, whole log database is read and

relative service weight is calculated for each service in each

position to generate sequences of pairs of services and relative

service weights are created from the log database.

Input: (1) Service Log database D

(2) Unit time

Output: (1) Multidimensional service-weight sequence

begin

 , ,t
js o p = 0, ,i ju sASW =0, , ,js o pRSW =0, unit_time=u,

 , ,js o pSC =0, SW = ‘’, S= ‘’;

 for i< size(S);

 if in_array(session_id,exists_session_id) then

 p=p+1

 else

 exists_session_id.add(session_id)

 o=o+1;

 end if

 serviceUsedByUserPerService[ui][sj] += , ,js o pt

 , ,js o pSC = , ,js o pt /u

 serviceUsedByUser[ui]+= , ,js o pt ;

 end for

 foreach(serviceUsed =

size(serviceUsedByUserPerService))

 for (j<size(serviceUsed))

 ,i ju sASW = round(serviceUsedByUserPerService[ui]

[sj]/serviceUsedByUser[ui],3);

 end for

 end for

 foreach j=size(o)

 foreach k=size(p)

 , , , , ,*
j j i js o p s o p u sRSW SC ASW

 SW=(sj, , ,js o pRSW)

 S=(session_id, SW)

 end for

 end for

end

2) Mining Multidimensional Sequence

Mining a multidimensional sequence [2] is done in three

steps: 1. Mining Sequential Pattern 2. Forming Projected

Database and 3. Mining MD-patterns. The whole algorithm is

named TWSMA. We implemented service weight in the

prefixSpan [4] algorithm such that service weight will be a

factor for the service to become frequent. The mean weight of

services in a subset is used to check if the subset is frequent.

The following explains the details of the algorithm:

Input: (1) Multidimensional Sequence Database: M-SDB;

(2) Minimum support

Output: The complete set of multidimensional sequential

patterns

Method:

A. Mining Sequential Pattern

1. First Scan

a: Calculate sequence database weight

b: Calculate min_weight

min_weight = min_support% of Sequence Database

Weight(SDW)

c: Call PrefixSpan(, , |l S )

Subroutine PrefixSpan(, , |l S )

The parameters are 1)  is a sequential pattern; 2) l is the

length of  and 3) |S  - is the  -projected database

if  otherwise, it is the sequence database S.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

Method:

1. Scan |S  once, find each frequent item, b, such that

(a) b can be assembled to the last element of to form a

sequential pattern; or

(b) can be appended to  to form a sequential

pattern.

2. for each frequent item b, append it to to form a

sequential pattern 

3. if(mean weight of min_weight ) output  .

4. else break

5. end if

6. for each , construct  -projected database |S  ,

and

call PrefixSpan(, 1, |l S  )

d: End if no frequent pattern is found or at end of database

B. Form MD- Projected Database

The dimension of the multidimensional sequence will make

an MD-pattern. As we are considering only user_id as

dimension it will make an MD-pattern of * or user_id. Then

all the sequences in tuples containing MD-pattern P =

(user_id) are collected which will form the multidimensional

Projected Database or MD-Projected database for p, as

denoted by SDB|p.

C. Mine MD-patterns from MD-Projected Database

Then mining of the projected database is done using the

aprioriall [10] algorithm with given minimum support which

gives the user-based frequent MD-pattern.

The same algorithm will be explained with the help of an

example in the following section. We took a service log

database of 27 rows with 3 users and 4 services. The

multidimensional table with sequence id, user id, and the

sequence is created as shown in the table below. The sequence

consists of pairs of service and service usage time. The

services used in a single session are considered as a single

sequence.

Table I is created from the log database whose entries

consist of the user_id and a set of pairs of service and

corresponding service usage time. From this table, we

calculate the relative service weight of each service in each

sequence and position, after which we create a

multidimensional service weight sequential database.

We take the case of user 10 and service 2 for following

calculations:

Time of usage of service 2 at position 1 and sequence 1 is

(t2,1,1) = 6 min.

Total time of usage of service i for user j, STi,j, is sum of times

of use of service i by user j, then the total time of usage of

service 2 for user 10 is

ST2,10 = (6 + 33 + 21 + 20 + 22 + 21) min = 123 min.

Total service usage time for user j, Tj, is sum of all times of

user j, then the total service usage time for user 10 is

T10 = (6 + 16 + 31 +… + 21) min = 227 min.

Weight of service 2 for user 10 is (ASW2,10) = 123/227 =

0.542 by (1).

For unit time (ut) 5 min, service usage count for service 2 at

position 1 and sequence 1 is (SC2,1,1) = 6/5 = 1.2 by (2).

 Consequently, the weight of service 2 at sequence 1 and

position l is (RSW2,1,1) = 1.2 * 0.542 = 0.650 by (3).

Similarly, relative weight of service 2 at sequence 1 and

position 4 is 3.577. From this result, we know that, for the

same service and same user also the service usage time makes

a difference in the weight of service.

After calculating the relative service weight of each service

in each position following the above method, we can create

the multidimensional service weight sequential database as

shown in Table II. The total weight of sequence database is

SDW = (0.650+0.224+1.804+...+1.242)=49.83 by (4).

 For minimum support 5%, minimum weight, Wm, is Wm =

49.83 * 5% = 2.4915 by (5).

For first scanning of sequence, if the following condition

holds, we regard the service as a frequent service:

Total weight of service in whole database ≥ Wm.

The total weight of service 2 in the whole database = 0.650

+ 3.577 + 2.276 + 2.168 + 2.385 + 2.276 + 0.001

= 13.333.

Since the total weight of service 2 is greater than the

minimum weight, service 2 is a frequent service.

This will make the 3 projected databases with service 2:

(123, 456, 2, 456), (2, 2, 1, 2), and (123, 456, 123, 456). By

scanning the <2>-projected database once, its locally frequent

services are generated checking that the sum of weight of

service is higher than min_weight, and all the length-2

sequential patterns prefixed with <2> will be found.

The repetition of this process for all frequent services will

give the frequent pattern from the frequent service and

user_id dimension.

V. EXPERIMENTS, RESULTS AND EVALUATION

A. Experiments and Results

To verify the efficiency of the new algorithm in mining

services for cloud users, it is tested in the service cloud system,

Jyaguchi. The real log sets of Jyaguchi Cloud users are used

as required data for mining. The real logs of the Jyaguchi

Cloud have a starting timestamp and an ending timestamp of

service usage, which will give the service usage time for each

service. The services used in a single session are considered

as a single sequence and user id as dimension. All

TABLE I

MULTI-DIMENSIONAL SEQUENCE WITH SERVICE USAGE TIME

seq. id user_id Sequence

1 10 (2,6),(123,16),(456,31),(2,33),(456,35)

2 10 (2,21),(2,20),(2,22),(1,22),(2,21)

3 16 (2,1),(123,9),(456,1),(123,1),(456,15)

4 15 (456,19),(456,24)(234,24),(456,43)

5 15 (234,20),(234,11),(234,30),(456,38)

6 16 (456,19),(123,39),(456,30),(234,30)

TABLE II

MULTI-DIMENSIONAL SEQUENCE WITH RELATIVE SERVICE WEIGHT

seq. id user_id Sequence

1 10 (2,0.650),(123,0.224),(456,1.804),(2,3.577),(456

,2.037)

2 10 (2,2.276),(2,2.168),(2,2.385),(1,0.427),(2,2.276)

3 16 (2,0.0014),(123,0.608),(456,0.089),(123,0.068),(

456,1.344)

4 15 (456,2.253),(456,2.846)(234,1.954),(456,5.1)

5 15 (234,1.628),(234,0.895),(234,2.442),(456,4.507)

6 16 (456,1.702),(123,2.636),(456,2.688),(234,1.242)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

experiments were performed on a 2.9 GHz Pentium machine

with 4 GB of main memory, Windows operating system, and

all programs were implemented in Java.

The experiment was done in the system on the set of 11

services and 10 users. The total number of rows in the

database was varied to investigate processing time and

memory usage. The value of minimum support was also

varied to find the appropriate minimum support to get

sufficient frequent patterns to verify the effectiveness of the

proposed algorithm. Finally the proposed algorithm was

compared with the Multidimensional sequence mining

algorithm seq-dim [2] in order to verify the effectiveness of

our algorithm.

Figs. 2–4 show the basic performance of the weight-based

time sequence mining method on the data set of the Jyaguchi

Cloud system. Fig. 2 shows the processing time per number of

sequence with various values for minimum support. The

graph shows that the process time increaseswith the number of

sequences and decreases with the size of minimum support.

Fig. 3 shows the memory used per number of sequence for

varied minimum support. This figure shows memory usage

consistent with number of sequence and decrease in minimum

support.

Fig. 4 shows the number of frequent patterns per number of

sequences with varied minimum support. The result shows

that the number of frequent patterns is not linear with the

number of sequences but that it depends on the nature of

sequences. However, for all sequences, the number of

frequent patterns was inversely related to the minimum

support. From the experiment, minimum support of 3% is

found to be an appropriate value to get a sufficient number of

frequent patterns.

Figs. 5–7 compares the number of frequent patterns,

process time, and memory usage for the seq-dim algorithm

and the TWSMA algorithm for data sequence 205. The

figures reveal that the process time and memory usage for our

algorithm is not much higher than that, for the original

seq-dim algorithm. So, the conclusion can be drawn that for

almost the same processing time and memory usage as the

seq-dim algorithm, the proposed algorithm will mine the

sequence with the service usage time.

B. Evaluation

The dataset of Table I was used to evaluate the efficiency of

our proposed algorithm. The dataset was used as input for the

original seq-dim algorithm and the TWSMA algorithm. For

minimum support of 20%, the total output number of frequent

patterns from the seq-dim algorithm was 25 and from

TWSMA algorithm was 15. The frequent patterns from

Fig. 2. Process time with no. of sequences for varied minimum support

Fig. 6. Memory Usage seq-dim vs TWSMA

Fig. 5. Processing Time seq-dim vs TWSMA

Fig. 3. Memory Usage with no. of sequences for varied minimum support

Fig. 7. No. of patterns seq-dim vs TWSMA

Fig. 4. No. of patterns with no. of sequences for varied minimum support

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

seq-dim include sequence (2,123), (2,123,456),

(456,123,456). In table I, service 2 is used for only 6 min and

1 min before service 123. Although service 2 occurs twice, the

service usage time is too low in the 2,123 sequence to be

regarded as a frequent service. The case in the (2,123,456)

and (456,123,456) sequences is similar. The proposed

algorithm in the paper well excludes these sequences whose

service usage time is low. This exclusion gives fewer but more

efficient frequent patterns which are beneficial to use in

recommending services.

VI. FUTURE WORK AND CONCLUSION

A. Future Work

One major problem in this method comes from the fact that

during the construction of a multidimensional sequence

pattern, we need to formulate a tree structure in order to

reduce searching and constructing time for the sets of

sequences. However, we have just utilized a prefix span

algorithm based approach during our search of the sequence.

This approach is well suited while there are few dimensions;

however, a hierarchical tree structure or graph algorithm need

to be applied in order to formulate and effectively construct

our multidimensional sequence pattern. This would improve

performance during the search and construction of

multidimensional sets, but it would be costly to set up.

Nevertheless, it is recommended that this tradeoff needs to be

investigated further to find the optimal type of searching

algorithm. An additional performance gain could be achieved

through utilizing parallelized processing in the database of

multidimensional sequence sets. Furthermore, we have

identified service category, user category as other dimensions

to increase number of dimensions as future task. We will also

be focused on calculating appropriate unit time and

distributed behavior mining in our research.

B. Conclusion

In this paper, we have proposed an algorithm for mining

cloud services through multidimensional sequence mining in

the Jyaguchi Cloud Environment by utilizing

multidimensional pattern mining with relative service weight

as an additional parameter of the sequence. Subsequently, a

process to get relative service weight through service usage

time and frequency of service is also presented. The pair of

service and related service weight is prepared for mining. This

algorithm can be realized by modifying one of the

multidimensional sequential pattern mining algorithms,

seq-dim algorithm, in order to adjust the concept of service

weight. Successful implementation of this algorithm is done

to mine frequent services in the Jyaguchi Cloud Environment.

The proposed algorithm will increase precision finding of

frequent services by considering the usage time of services in

a cloud environment.

ACKNOWLEDGMENT

 This work was supported by KAKENHI (23700244).

REFERENCES

[1] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc. of the

Eleventh International Conference on Data Engineering, pp. 3-14,

1995.

[2] H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen and U. Dayal,

“Multidimensional Sequential Pattern Mining,” Proc. of the tenth

international conference on Information and knowledge management

(CIKM '01), pp. 81-88, 2001.

[3] U. Yun, H. Shin, K. H. Ryu and E. C. Yoon, “An efficient mining

algorithm for maximal weighted frequent patterns in transactional

databases,” Knowledge-Based Systems, Vol. 33, pp. 53-64, 2012.

[4] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal

and M. C. Hsu, “Mining Sequential Patterns by Pattern-Growth: The

PrefixSpan Approach,” IEEE Transactions on Knowledge and Data

Engineering, Vol. 16, No. 10, pp.1424-1440, 2004.

[5] C. F. Ahmed, S. K. Tanbeer, B. S. Jeong, Y. K. Lee and H. J. Choi,

“Single-pass incremental and interactive mining for weighted frequent

patterns,” Expert Systems with Applications, Vol. 39, Issue. 9, pp.

7976-7994, 2012.

[6] K. Kaneiwaa and Y. Kudo, “A sequential pattern mining algorithm

using rough set theory,” International Journal of Approximate

Reasoning, Vol. 52, Issue 6, pp. 881-893, 2011.

[7] B. P. Gautam, “An Architectural Model for Time Based Resource

Utilization and Optimized Resource Allocation in a Jini Based Service

Cloud,” Master Thesis, Shinshu University, Nagano, Japan, 2009.

[8] P. Songram, V. Boonjing and S. Intakosum “Closed Multidimensional

Sequential Pattern Mining,” Proc. of the Third International

Conference on Information Technology: New Generations (ITNG '06),

pp.512-517, 2006.

[9] Y. Hirate and H. Yamana, “Generalized Sequential Pattern Mining with

Item Intervals,” Journal of Computers, Vol. 1, No. 3, pp. 51-60, 2006.

[10] T. Wang and P. He, “Web Log Mining by an Improved AprioriAll

Algorithm,” World Academy of Science, Engineering and Technology,

Vol. 4, pp. 591-594, 2007.

[11] J. H. Chang, “Mining weighted sequential patterns in a sequence

database with a time-interval weight,” Knowledge-Based Systems, Vol.

24, Issue 1, pp.1-9, 2011.

[12] B. P. Gautam and D. Shrestha, “A Model for the Development of

Universal Browser for Proper Utilization of Computer Resources

Available in Service Cloud over Secured Environment,” Proc. of the

International MultiConference of Engineers and Computer Scientists

2010 (IMECS2010), Vol I, 2010.

[13] G. Yap, A. Tan and H. Pang, “Dynamically-Optimized Context in

Recommender Systems,” Proc. of the 6th International Conference on

Mobile Data Management, pp. 265-272, 2005.

[14] B. P. Gautam, S. K. Shrestha and D. R. Paudel, “Utilization of Jyaguchi

Architecture for development of Jini Based Service Cloud,” Wakkanai

Hokusei Gakuen University Journal, No. 11, pp. 7-21, 2011.

[15] C. K. Gu and X. L. Dong, “Efficient mining of local frequent periodic

patterns in time series database,” Proc. of 2009 International

Conference on Machine Learning and Cybernetics, Vol. 1, pp.183- 186,

2009.

[16] Y. L. Chen, M. C. Chiang and M. T. Ko, “Discovering time-interval

sequential patterns in sequence databases”, Expert Systems with

Applications, Vol. 25, Issue 3, pp. 343-354, 2003.

[17] J. Han, H. Cheng, D. Xin and X. Yan, “Frequent pattern mining:

current status and future directions,” Data Mining and Knowledge

Discovery, Vol. 15, Issue 1, pp. 55-86, 2007.

[18] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association

Rules,” Proc. of the 20th International Conference on Very Large Data

Bases (VLDB ’94), pp. 487-499, 1994.

[19] H. Mannila, H Toivonen and A. Inkeri Verkamo, “Discovery of

Frequent Episodes in Event Sequences,” Data Mining and Knowledge

Discovery, Vol. 1, Issue 3, pp. 259-289, 1997.

[20] M. J. Zaki, “Efficient Enumeration of Frequent Sequences,” Proc. of

the Seventh International Conference on Information and Knowledge

Management (CIKM ’98), pp. 68-75, 1998.

[21] S. Ramaswamy, S. Mahajan and A. Silberschatz, “On the Discovery of

Interesting Patterns in Association Rules,” Proc. of the 24th

International Conference on Very Large Data Bases (VLDB ’98), pp.

368-379, 1998.

[22] Y. H. Hu, T. C. K. Huang, H. R. Yang and Y. L. Chen, “On mining

multi-time-interval sequential patterns,” Data & Knowledge

Engineering, Vol. 68, Issue 10, pp. 1112-1127, 2009.

[23] B. Zhou, S. Hui and A. Fong, “Efficient Sequential Access Pattern

Mining for Web Recommendations,” International Journal of

Knowledge Based and Intelligent Engineering Systems, Vol. 10, No.2,

pp. 155-168, 2006.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

