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Abstract—Research in the area of sequential pattern mining 

has resulted in the proposal of numerous algorithms. However, 

there is a lack of research in the field of multidimensional 

sequential pattern mining which can be used in cloud services 

for service recommendation. This paper presents algorithms 

that process a sequential pattern of services in multidimensional 

space. Beyond mining single-dimensional sequences, we take 

into account multidimensional information associated with 

sequential data such as time series patterns, which can have a 

great impact for many potential service users. Thus, we propose 

a time based multidimensional sequential pattern mining 

algorithm. This algorithm constructs sequences by finding the 

service usage pattern and then characterizes each set of 

sequences using multidimensional properties based on user id, 

time series, and usage frequencies that define the 

multidimensional sequences. These sets of sequences are built 

around frequent sequential patterns that consider multiple 

dimensions. Thus, the whole process results in constructing a 

multidimensional array of sets and characterizing sequential 

patterns using multidimensional information. This algorithm 

has implemented in the Jyaguchi cloud system,  in which the 

daily activities of the users and services are mined by 

considering the time factor in order to analyze the behavior of 

users. 

 
Index Terms—Service Mining, Multidimensional Pattern 

Mining, Jyaguchi Service Cloud, Relative and Absolute Service 

Weight  

I. INTRODUCTION 

n the last couple of decades, we have witnessed an 

extensive growth of the information available on the 

Internet. One of the reasons for this growth is the addition of 

social network applications to the web. However, this growth 

of information has created a great deal of complexity for the 

user. In this context, information filtering functionalities, 

which can provide tools that support users information 

acquisition. The objectives of these tools are to rank 

information according to partly revealed preferences, which 

are encapsulated in previously undertaken surveys done by 
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marking users' provided information and properties itself. 

Nonetheless, the presented rank might not satisfy users' 

expectation.  

Generally, frequency of access of an item or duration of its 

use are considered when mining an item. However, we believe 

service mining in a cloud environment requires parameters of 

service usage for high precision in finding frequent patterns. 

In this research, we propose an algorithm, Time Weight 

Sequence Mining Algorithm (TWSMA), for mining 

multidimensional sequences considering service usage time 

as a service weight parameter.   

II. JYAGUCHI CLOUD SYSTEM AND ITS OVERVIEW  

In order to perform our experiment, we utilize the Jyaguchi 

cloud [7],[12],[14] system. The term Jyaguchi was introduced 

by the author [7] and was derived from the Japanese language, 

in which the term means “an outlet portion of a tube or tap, 

which has opening and closing valves to regulate the rate of 

water flow.” Accordingly, such a behavior of regulating 

resources is incorporated in the field of service usage, which 

was introduced in the Jyaguchi architecture. Jyaguchi 

proposed a hybrid architectural model because no single 

architectural model sufficiently provides a solution that is 

capable of regulating services on a pay per use basis, thereby 

providing features of SaaS. Furthermore, Jyaguchi is an 

architectural model for the development of distributed 

applications that can be extended to an architecture for cloud 

services and demonstrates how this style can be used to 

enhance the architectural design of a next-generation service 

cloud [1]. Fig. 1 below portrays the interaction between 

service provider and client.  

  
Fig. 1.  Jyaguchi Architecture 
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We chose to use Jyaguchi in our experiment because there 

is a rapid development of cloud computing technology as well 

as diverse methods of obtaining data. Consequently, the 

requirement for data mining in this infrastructural 

environment has dramatically increased. At present, however, 

there are few data analysis tools to process large-scale data 

that float in the cloud service environment. Also, data mining 

technology is gradually emerging in the backdrop of such 

circumstances. In fact, massive data mining over cloud 

services could be a very important guide to scientific research 

and business decision making. In order to propose a prototype 

data mining technique in cloud services utilizing sequential 

pattern mining, we have made use of the Jyaguchi architecture, 

in which the authors have substantial experiences. 

III. BACKGROUND AND RELATED WORKS  

The problem of sequential pattern mining was first 

introduced by Srikant and Agrawal in [1]. Since then, 

numerous studies have addressed the issue of efficient mining 

of sequential patterns [6], [9], [16], [18], [19], [20], [21], [22]. 

Gu et al. [15] were the first  to come up with the notion of time 

interval in sequential pattern mining and proposing 

time-interval sequential pattern mining, which reveals the 

order of items as well as time intervals between successive 

items. Han et al.[17] have further enhanced this concept with 

partial periodic patterns in time series databases for mining 

multiple periods. Chang [11] proposed the framework of 

TiWS pattern mining, in which the weight of each sequence is 

first obtained from the time intervals of elements in sequence, 

and subsequently TiWS patterns are found using this weight. 

Yun et al. [3], Ahmed et al. [5], have used weighted frequent 

pattern mining techniques for efficient mining. Yun et al. [3] 

developed an algorithm with maximal weight and 

experimentally showed the technique to be superior to earlier 

methodology that did not consider weights. Multidimensional 

sequence mining was introduced by Pint et al. [2] who 

suggested three methods for mining: uniseq, seq-dim and 

dim-seq. Songram et al. [8] also discussed the mining of 

closed multidimensional sequences. None of them considered 

service usage time, which makes all these algorithms difficult 

to use for the purpose of service mining. 

Similarly, the techniques used in pattern mining for items 

by Ahmed et al. [5] can be used for service mining; however, 

while mining services, an additional dimension of data should 

be considered, i.e., the time of service usage. This is the 

time-duration difference between two consecutive services, 

provided that the user does not sign out from the vendor’s 

system. Service usage, generally, is directly proportional to 

the popularity of the service. In our proposed algorithm, we 

consider this factor of time series pattern usages for service 

mining of cloud services. Experiments similar to those in this 

paper are performed by Zhou et al. [23] and Yap et al. [13] in 

which a sequential pattern mining algorithm showed evidence 

of a sufficient solution for data mining but ignored the time 

series pattern of usages.  

The following are reasons why this area is less studied:  

 -- Despite of maturity, services provided on the cloud 

platform are less comparable than the web based services. 

 -- The availability of user data is rare because vendors 

try to consolidate their user’s transaction for their own 

purpose. 

-- Service mining is an emerging concept and hence more 

research is yet to be done. 

IV. ALGORITHM: SERVICE MINING FOR CLOUD USERS  

A. Problem Definition  

Multidimensional sequential pattern mining is the process 

of mining sequential patterns along with one or more 

dimensions of information in which the order of dimension 

values is not important. 

Let I = {i1,i2,i3,….,in} be a set of services. A service-set X is 

a subset of services, i.e., X I . A sequence S is denoted by 

(s1,s2,s3..sl) where sj is a service-set, i.e., 
j

s I  for 1 j l  . 

sj is also called an element of the sequence. A service usage 

time sequence ST is denoted by (st1,st2,..stk), where stm is a set 

of pairs of service (sj) and service usage time ( , ,js o pt ) in 

sequence o and position p, i.e., stm=(sj, , ,js o pt ) 

Definition 1 (Unit Time): Unit time is a unit for measuring 

service usage time periods. In this algorithm, unit time is 

manually set. 

Definition 2 (Service Usage Time): Service usage time 

( , ,js o pt ) in a sequence ST = (st1, st2, …, stk) where stm= 

(sj, , ,js o pt ) is a usage time of service sj in sequence o and 

position p.  

Definition 3 (Absolute Service Weight): Absolute Service 

Weight ( ,i ju sASW ) is a weight of service sj for user i. Absolute 

Service Weight is the quotient of total service time usage of 

services sj by user i to total service usage time of user i in the 

system.    
,
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where n = total no. of service used by user i, 
z = total no. of sequences 

            y = total no. of positions in sequence 

 

Definition 4 (Service Used Count): Service Used Count 

( , ,js o pSC ) of service sj in sequence o and position p is the 

Service Usage Time ( , ,js o pt ) per unit time (u).  

, ,

, ,

j

j

s o p

s o pSC

t

u
                                                                   (2)  

    Definition 5 (Relative Service Weight): Relative Service 

Weight ( , ,js o pRSW ) is defined as the weight of service in each 

position of each sequence. Relative Service Weight in each 

position of each sequence is calculated by multiplying Service 

Used Count ( , ,js o pSC ) by Absolute Service Weight 

( ,i ju sASW ).  
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 Definition 6 (Sequence Database Weight): Sequence 

Database Weight (SDW) is the sum of all Relative Service 

Weights along the whole sequence database.  
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Definition 7 (Minimum Weight): Minimum Weight (Wm) is 

the minimum weight that a service should have in order to be a 

frequent service and is the minimum support percentage of the 

sequence database weight.  

Wm = SDW * min_support                                                   (5)  

 

Definition 8 (Mean Weight): Mean Weight (MW) of a subset 

or subsequence or sequence is the mean of the weights of each 

service in the sequence. 

, ,

1
j

n

s o p

i

RSW

MW
n




,                                                          (6) 

where n = total no. of services in the sequence  

A sequence database S is a set of tuples <sid,sw>, where sid 

is a sequence id and sw is a set of pairs of service id and 

relative service weight i.e., sw = (sj, , ,js o pRSW ). The relative 

service weight differs with time of service usage in that 

sequence and service user.  

Further, the dimension of user_id with service weight 

sequence SW forms a multidimensional database with schema 

like (SID, Ui,SW), where SID is the unique sequence id, Ui is 

the User Id dimension and SW is in the domain of sequences. 

The multidimensional sequence will be of the form (ui,sw), 

where ui( {*}
i

U  ) for (1 i m  ) and sw is a sequence. A 

multidimensional sequence Q = (ui, sw) is said to match tuple 

t = (xi,swt) in the multidimensional sequence database if and 

only if, for( 1 i m  ), either ui=xi or ui =*, and swt lies 

entirely within sw. The support of Q is the number of tuples in 

the database matching multidimensional sequence Q and is 

denoted by support (Q). The multidimensional sequence Q is 

called a multidimensional sequential pattern if and only if 

support (Q)  min_support, where min_support is the given 

minimum support threshold.  

B. Algorithm description 

A complete set of algorithms for making a 

multidimensional sequential input file and mining for frequent 

patterns is proposed here. The whole algorithm will be 

described in two parts: the first one covers creation of 

multidimensional service weight sequences and the second 

one covers mining multidimensional sequences. In a later part 

of this section, the algorithm will be explained with an 

example. 

1) Create Multidimensional service-weight sequence 

In this section of algorithm, whole log database is read and 

relative service weight is calculated for each service in each 

position to generate sequences of pairs of services and relative 

service weights are created from the log database.  

Input:  (1) Service Log database D 

(2) Unit time 

Output: (1) Multidimensional service-weight sequence 

begin 

    , ,t
js o p  = 0, ,i ju sASW  =0, , ,js o pRSW  =0, unit_time=u, 

 , ,js o pSC  =0, SW = ‘’, S= ‘’; 

    for i< size(S); 

       if in_array(session_id,exists_session_id) then  

          p=p+1           

       else 

          exists_session_id.add(session_id) 

          o=o+1; 

       end if 

       serviceUsedByUserPerService[ui][sj] +=  , ,js o pt  

       , ,js o pSC  = , ,js o pt  /u 

       serviceUsedByUser[ui]+= , ,js o pt ; 

    end for 

  foreach(serviceUsed = 

size(serviceUsedByUserPerService))  

       for (j<size(serviceUsed))  

            ,i ju sASW  = round(serviceUsedByUserPerService[ui] 

[sj]/serviceUsedByUser[ui],3); 

       end for 

   end for 

   foreach j=size(o) 

       foreach k=size(p) 

         , , , , ,*
j j i js o p s o p u sRSW SC ASW  

           SW=(sj, , ,js o pRSW ) 

          S=(session_id, SW) 

       end for 

   end for 

end 

2) Mining Multidimensional Sequence 

Mining a multidimensional sequence [2] is done in three 

steps: 1. Mining Sequential Pattern 2. Forming Projected 

Database and 3. Mining MD-patterns. The whole algorithm is 

named TWSMA. We implemented service weight in the 

prefixSpan [4] algorithm such that service weight will be a 

factor for the service to become frequent. The mean weight of 

services in a subset is used to check if the subset is frequent. 

The following explains the details of the algorithm: 

Input:  (1) Multidimensional Sequence Database: M-SDB; 

(2) Minimum support  

Output: The complete set of multidimensional sequential 

patterns 

Method:  

A. Mining Sequential Pattern 

1.  First Scan 

a: Calculate sequence database weight 

b: Calculate min_weight 

min_weight = min_support% of Sequence Database 

Weight(SDW)  

c: Call PrefixSpan( , , |l S  ) 

Subroutine PrefixSpan( , , |l S  ) 

The parameters are 1)   is a sequential pattern; 2) l is the 

length of  and 3) |S  - is the  -projected database 

if  otherwise, it is the sequence database S. 
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Method: 

1. Scan |S   once, find each frequent item, b, such that 

(a) b can be assembled to the last element of to form a 

sequential pattern; or 

(b) <b> can be appended to  to form a sequential 

pattern. 

2. for each frequent item b, append it to to form a 

sequential pattern   

3. if(mean weight of min_weight  ) output  . 

4. else break 

5. end if 

6. for each , construct  -projected database |S  , 

and 

call PrefixSpan( , 1, |l S   ) 

d: End if no frequent pattern is found or at end of database 

 

B. Form MD- Projected Database 

The dimension of the multidimensional sequence will make 

an MD-pattern. As we are considering only user_id as 

dimension it will make an MD-pattern of * or user_id. Then 

all the sequences in tuples containing MD-pattern P = 

(user_id) are collected which will form the multidimensional 

Projected Database or MD-Projected database for p, as 

denoted by SDB|p. 

 

C. Mine MD-patterns from MD-Projected Database 

Then mining of the projected database is done using the 

aprioriall [10] algorithm with given minimum support which 

gives the user-based frequent MD-pattern.  

The same algorithm will be explained with the help of an 

example in the following section. We took a service log 

database of 27 rows with 3 users and 4 services. The 

multidimensional table with sequence id, user id, and the 

sequence is created as shown in the table below. The sequence 

consists of pairs of service and service usage time. The 

services used in a single session are considered as a single 

sequence.  

Table I is created from the log database whose entries 

consist of the user_id and a set of pairs of service and 

corresponding service usage time. From this table, we 

calculate the relative service weight of each service in each 

sequence and position, after which we create a 

multidimensional service weight sequential database. 

We take the case of user 10 and service 2 for following 

calculations: 

Time of usage of service 2 at position 1 and sequence 1 is 

(t2,1,1) = 6 min. 

Total time of usage of service i for user j, STi,j, is sum of times 

of use of service i by user j, then the total time of usage of 

service 2 for user 10 is 

ST2,10 = (6 + 33 + 21 + 20 + 22 + 21) min = 123 min. 

Total service usage time for user j, Tj, is sum of all times of 

user j, then the total service usage time for user 10 is 

T10 = (6 + 16 + 31 +… + 21) min = 227 min. 

Weight of service 2 for user 10 is (ASW2,10) = 123/227 = 

0.542 by (1). 

For unit time (ut) 5 min, service usage count for service 2 at 

position 1 and sequence 1 is (SC2,1,1) = 6/5 = 1.2 by (2). 

 Consequently, the weight of service 2 at sequence 1 and 

position l is (RSW2,1,1) = 1.2 * 0.542 = 0.650 by (3). 

Similarly, relative weight of service 2 at sequence 1 and 

position 4 is 3.577. From this result, we know that, for the 

same service and same user also the service usage time makes 

a difference in the weight of service. 

After calculating the relative service weight of each service 

in each position following the above method, we can create 

the multidimensional service weight sequential database as 

shown in Table II. The total weight of sequence database is 

SDW = (0.650+0.224+1.804+...+1.242)=49.83 by (4). 

 For minimum support 5%, minimum weight, Wm, is Wm = 

49.83 * 5% = 2.4915 by (5). 

For first scanning of sequence, if the following condition 

holds, we regard the service as a frequent service: 

Total weight of service in whole database ≥ Wm. 

The total weight of service 2 in the whole database = 0.650 

+ 3.577 + 2.276 + 2.168 + 2.385 + 2.276 + 0.001       

= 13.333. 

Since the total weight of service 2 is greater than the 

minimum weight, service 2 is a frequent service. 

This will make the 3 projected databases with service 2: 

(123, 456, 2, 456), (2, 2, 1, 2), and (123, 456, 123, 456). By 

scanning the <2>-projected database once, its locally frequent 

services are generated checking that the sum of weight of 

service is higher than min_weight, and all the length-2 

sequential patterns prefixed with <2> will be found. 

The repetition of this process for all frequent services will 

give the frequent pattern from the frequent service and 

user_id dimension. 

V.  EXPERIMENTS, RESULTS AND EVALUATION 

A. Experiments and Results  

To verify the efficiency of the new algorithm in mining 

services for cloud users, it is tested in the service cloud system, 

Jyaguchi. The real log sets of Jyaguchi Cloud users are used 

as required data for mining. The real logs of the Jyaguchi 

Cloud have a starting timestamp and an ending timestamp of 

service usage, which will give the service usage time for each 

service. The services used in a single session are considered 

as a single sequence and user id as dimension. All 

TABLE I 

MULTI-DIMENSIONAL SEQUENCE WITH SERVICE USAGE TIME 

seq. id user_id Sequence 

1 10 (2,6),(123,16),(456,31),(2,33),(456,35) 

2 10 (2,21),(2,20),(2,22),(1,22),(2,21) 

3 16 (2,1),(123,9),(456,1),(123,1),(456,15) 

4 15 (456,19),(456,24)(234,24),(456,43) 

5 15 (234,20),(234,11),(234,30),(456,38) 

6 16 (456,19),(123,39),(456,30),(234,30) 

 

 

TABLE II 

MULTI-DIMENSIONAL SEQUENCE WITH RELATIVE SERVICE WEIGHT 

seq. id user_id Sequence 

1 10 (2,0.650),(123,0.224),(456,1.804),(2,3.577),(456

,2.037) 

2 10 (2,2.276),(2,2.168),(2,2.385),(1,0.427),(2,2.276) 

3 16 (2,0.0014),(123,0.608),(456,0.089),(123,0.068),(

456,1.344) 

4 15 (456,2.253),(456,2.846)(234,1.954),(456,5.1) 

5 15 (234,1.628),(234,0.895),(234,2.442),(456,4.507) 

6 16 (456,1.702),(123,2.636),(456,2.688),(234,1.242) 
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experiments were performed on a 2.9 GHz Pentium machine 

with 4 GB of main memory, Windows operating system, and 

all programs were implemented in Java. 

The experiment was done in the system on the set of 11 

services and 10 users. The total number of rows in the 

database was varied to investigate processing time and 

memory usage. The value of minimum support was also 

varied to find the appropriate minimum support to get 

sufficient frequent patterns to verify the effectiveness of the 

proposed algorithm. Finally the proposed algorithm was 

compared with the Multidimensional sequence mining 

algorithm seq-dim [2] in order to verify the effectiveness of 

our algorithm. 

Figs. 2–4 show the basic performance of the weight-based 

time sequence mining method on the data set of the Jyaguchi 

Cloud system. Fig. 2 shows the processing time per number of 

sequence with various values for minimum support. The 

graph shows that the process time increaseswith the number of 

sequences and decreases with the size of minimum support. 

Fig. 3 shows the memory used per number of sequence for 

varied minimum support. This figure shows memory usage 

consistent with number of sequence and decrease in minimum 

support. 

Fig. 4 shows the number of frequent patterns per number of 

sequences with varied minimum support. The result shows 

that the number of frequent patterns is not linear with the 

number of sequences but that it depends on the nature of 

sequences. However, for all sequences, the number of 

frequent patterns was inversely related to the minimum 

support. From the experiment, minimum support of 3% is 

found to be an appropriate value to get a sufficient number of 

frequent patterns. 

Figs. 5–7 compares the number of frequent patterns, 

process time, and memory usage for the seq-dim algorithm 

and the TWSMA algorithm for data sequence 205. The 

figures reveal that the process time and memory usage for our 

algorithm is not much higher than that, for the original 

seq-dim algorithm. So, the conclusion can be drawn that for 

almost the same processing time and memory usage as the 

seq-dim algorithm, the proposed algorithm will mine the 

sequence with the service usage time. 

B. Evaluation 

The dataset of Table I was used to evaluate the efficiency of 

our proposed algorithm. The dataset was used as input for the 

original seq-dim algorithm and the TWSMA algorithm. For 

minimum support of 20%, the total output number of frequent 

patterns from the seq-dim algorithm was 25 and from 

TWSMA algorithm was 15. The frequent patterns from 

 
Fig. 2.  Process time with no. of sequences for varied minimum support  

 

 
Fig. 6.  Memory Usage seq-dim vs TWSMA  

 
Fig. 5.  Processing Time seq-dim vs TWSMA  

 
Fig. 3.  Memory Usage with no. of sequences for varied minimum support 

 
Fig. 7.  No. of patterns seq-dim vs TWSMA  

 

 
Fig. 4.  No. of patterns with no. of sequences for varied minimum support  
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seq-dim include sequence (2,123), (2,123,456), 

(456,123,456). In table I, service 2 is used for only 6 min and 

1 min before service 123. Although service 2 occurs twice, the 

service usage time is too low in the 2,123 sequence to be 

regarded as a frequent service. The case in the (2,123,456) 

and (456,123,456) sequences is similar. The proposed 

algorithm in the paper well excludes these sequences whose 

service usage time is low. This exclusion gives fewer but more 

efficient frequent patterns which are beneficial to use in 

recommending services.   

VI. FUTURE WORK AND CONCLUSION  

A. Future Work 

One major problem in this method comes from the fact that 

during the construction of a multidimensional sequence 

pattern, we need to formulate a tree structure in order to 

reduce searching and constructing time for the sets of 

sequences. However, we have just utilized a prefix span 

algorithm based approach during our search of the sequence. 

This approach is well suited while there are few dimensions; 

however, a hierarchical tree structure or graph algorithm need 

to be applied in order to formulate and effectively construct 

our multidimensional sequence pattern. This would improve 

performance during the search and construction of 

multidimensional sets, but it would be costly to set up. 

Nevertheless, it is recommended that this tradeoff needs to be 

investigated further to find the optimal type of searching 

algorithm. An additional performance gain could be achieved 

through utilizing parallelized processing in the database of 

multidimensional sequence sets. Furthermore, we have 

identified service category, user category as other dimensions 

to increase number of dimensions as future task. We will also 

be focused on calculating appropriate unit time and 

distributed behavior  mining  in our research.  

B. Conclusion 

In this paper, we have proposed an algorithm for mining 

cloud services through multidimensional sequence mining in 

the Jyaguchi Cloud Environment by utilizing 

multidimensional pattern mining with relative service weight 

as an additional parameter of the sequence. Subsequently, a 

process to get relative service weight through service usage 

time and frequency of service is also presented. The pair of 

service and related service weight is prepared for mining. This 

algorithm can be realized by modifying one of the 

multidimensional sequential pattern mining algorithms, 

seq-dim algorithm, in order to adjust the concept of service 

weight. Successful implementation of this algorithm is done 

to mine frequent services in the Jyaguchi Cloud Environment. 

The proposed algorithm will increase precision finding of 

frequent services by considering the usage time of services in 

a cloud environment.  
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