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Abstract—Canonical correlation analysis (CCA) is a multi-
variate statistical technique for finding the linear relationship
between two sets of variables. The kernel generalization of
CCA named kernel CCA has been proposed to find nonlinear
relations between data sets. Despite the wide usage of CCA
and kernel CCA, they have one common limitation that is the
lack of sparsity in their solution. In this paper, we consider
sparse kernel CCA and propose a novel sparse kernel CCA
algorithm (SKCCA). Our algorithm is based on a relationship
between kernel CCA and least squares. Sparsity of the dual
transformations is introduced by penalizing the `1-norm of dual
vectors. Experiments demonstrate that our algorithm not only
performs well in computing sparse dual transformations but
also can alleviate the over-fitting problem of kernel CCA.

Index Terms—canonical correlation analysis, kernel, sparsity

I. INTRODUCTION

THE description of relationship between two sets of
variables has long been an interesting topic to many

researchers. Canonical correlation analysis (CCA) [10] is
a multivariate statistical technique for finding the linear
relationship between two sets of variables. It seeks a linear
transformation for each of the two sets of variables in a
way that the projected variables in the transformed space
are maximally correlated. In recent years, CCA has been
successfully applied in various areas, including genomic
data analysis [19], [20] and bilingual analysis [18], where
researchers can measure multiple sets of variables on a single
subject. For instance, DNA copy number variations, gene
expression, and single nucleotide polymorphism (SNP) data
might all be available on a common set of patient samples.

Since CCA only consider linear transformation of the
original variables, it fails to capture nonlinear relations. How-
ever, in a wide range of practical problems linear relations
may not be adequate for studying relation among variables.
Detecting nonlinear relations among data is important and
useful in modern data analysis, especially when dealing
with data that are not in the form of vectors, such as text
documents, images, microarray data and so on. A natural
extension, therefore, is to explore and exploit nonlinear rela-
tions among data. Among nonlinear extensions of CCA, one
most frequently used approach is the kernel generalization
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of CCA, named kernel canonical correlation analysis (kernel
CCA) [1], [3]. Kernel CCA have been successfully applied
in many fields, including content−based image retrieval [9],
bioinformatics [21] and independent component analysis [3].

Despite the wide usage of CCA and kernel CCA, they
have one common limitation that is the lack of sparsity
in their solution. For CCA, the lack of sparsity makes
the interpretation of extracted features difficult, while for
kernel CCA it can lead to excessive computational time to
compute projections of new data since kernel functions must
be evaluated at all training data. To handle the limitation
of CCA, researchers suggested to incorporate sparsity into
weight vectors and many attempts have been made to study
sparse CCA [6], [8], [19], [20]. Similarly, we shall find sparse
solutions for kernel CCA so that projections of new data can
be computed by evaluating the kernel function at a subset
of the training data. Another motivation for studying sparse
kernel CCA is the over-fitting problem of kernel CCA as
pointed out in [3], [9]. Although there are many sparse kernel
approaches [5], seldom can be found in the area of sparse
kernel CCA [4], [16].

In this paper we consider a new sparse kernel CCA
approach. A relationship between CCA and least squares is
established so that CCA solutions can be obtained by solving
a least squares problem. Since the optimization criteria of
CCA and kernel CCA are of the same form, this relationship
can be extended to kernel CCA. Based on the relationship,
we attempt to introduce sparsity to kernel CCA by penalizing
`1-norm of the solutions, which eventually leads to a `1-
norm regularized least squares problem having the form of
the following basis pursuit denoising (BPDN) problem

min
x∈Rd

1

2
‖Ax− b‖22 + λ‖x‖1, (1.1)

where λ > 0 is a regularizer controlling the sparsity of x. We
adopt a fixed-point continuation (FPC) method [7] to solve
the BPDN problem above, which results in a new sparse
kernel CCA algorithm named SKCCA.

The remainder of the paper is organized as follows. In
Section II, we present background results of both CCA
and kernel CCA. In Section III, we establish a relationship
between CCA and least squares problems. In Section IV,
we extend the relationship to kernel CCA and incorporate
sparsity into kernel CCA by penalizing the least squares with
`1-penalty. Solving the penalized least squares problems by
FPC leads to a new sparse kernel CCA algorithm. Numerical
results of applying the newly proposed algorithm to content-
based image retrieval are presented in Section V. Finally, we
draw some conclusions in Section VI.

II. BACKGROUND

Let {xi}ni=1 ∈ Rd1 and {yi}ni=1 ∈ Rd2 be n samples for
variables x ∈ Rd1 and y ∈ Rd2 , respectively. Denote

X = [x1 · · · xn] ∈ Rd1×n, Y = [y1 · · · yn] ∈ Rd2×n,
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and assume both {xi}ni=1 and {yi}ni=1 have zero mean, i.e.,
n∑
i=1

xi = 0 and
n∑
i=1

yi = 0. Then CCA solves the following

optimization problem

max
wx,wy

wTxXY
Twy

s.t. wTxXX
Twx = 1,

wTy Y Y
Twy = 1,

(2.1)

to get the first pair of weight vectors wx and wy , which are
further utilized to obtain the first pair of canonical variates
wTxX and wTy Y, respectively. However, only one pair of
weight vectors is not enough for most practical problems.
To obtain multiple projections of CCA, we recursively solve
the above optimization problem with additional constraint
that the current canonical variates must be orthogonal to all
previous ones. Specifically, denoting Wx = [w1

x · · · wlx] and
Wy = [w1

y · · · wly], we use the trace formula

max
Wx,Wy

Trace(WT
x XY

TWy)

s.t. WT
x XX

TWx = I, Wx ∈ Rd1×l,
WT
y Y Y

TWy = I, Wy ∈ Rd2×l.

(2.2)

as the criterion of CCA to compute multiple projections.
In kernel methods, we first implicitly represent data as

elements in reproducing kernel Hilbert spaces associated
with positive definite kernels, then apply linear algorithms
on the data and substitute the linear inner product by kernel
functions, which results in nonlinear variants. The main idea
of kernel CCA is that we first virtually map data X into a
high dimensional feature space Hx via a mapping φx such
that data in the feature space become

Φx =
[
φx(x1) · · · φx(xn)

]
∈ RNx×n,

where Nx is the dimension of feature space Hx that can be
very high or even infinite. The mapping φx from input data to
the feature space Hx is performed implicitly by considering
a positive definite kernel function κx satisfying

κx(x1, x2) = 〈φx(x1), φx(x2)〉, (2.3)

where 〈·, ·〉 is an inner product in Hx, rather than by giving
the coordinates of φx(x) explicitly. The feature space Hx is
known as the Reproducing Kernel Hilbert Space (RKHS) [2]
associated with kernel function κx. In the same way, we can
map Y into a feature space Hy associated with kernel κy
through mapping φy such that

Φy =
[
φy(y1) · · · φy(yn)

]
∈ RNy×n.

After mapping X to Φx and Y to Φy , we then apply ordinary
linear CCA to data pair (Φx,Φy).

Let

Kx = 〈Φx,Φx〉 = [κx(xi, xj)]
n
i,j=1 ∈ Rn×n, (2.4)

Ky = 〈Φy,Φy〉 = [κy(yi, yj)]
n
i,j=1 ∈ Rn×n (2.5)

be matrices consisting of inner products of data sets Φx and
Φy , respectively. Kx and Ky are called kernel matrices or
Gram matrices. Then kernel CCA seeks linear transformation
in the RKHS by expressing the weight vectors as linear
combinations of the training data, that is

wx = Φxα =
n∑
i=1

αiφx(xi), wy = Φyβ =
n∑
i=1

βiφy(yi),

where α, β ∈ Rn are called dual vectors. The first pair
of dual vectors can be determined by solving the following
optimization problem

max
α,β

αTKxKyβ

s.t. αTK2
xα = 1,

βTK2
yβ = 1.

(2.6)

To compute multiple pairs of dual vectors, we consider

max
Wx,Wy

Trace(WT
x KxKyWy)

s.t. WT
x K

2
xWx = I, Wx ∈ Rn×l,

WT
y K

2
yWy = I, Wy ∈ Rn×l,

(2.7)

where Wx = [α1 · · · αl] and Wy = [β1 · · · βl] consist of
dual vectors for X and Y , respectively.

In the process of deriving (2.7), we assumed data Φx and
Φy have been centered (that is, the column mean of both
Φx and Φy are zero) as X and Y , otherwise, we need to
perform data centering before applying kernel CCA. Unlike
data centering of X and Y , we can not perform data centering
directly on Φx and Φy since we do not know their explicit
coordinates. However, as shown in [12], [13], data centering
in RKHS can be accomplished via some operations on kernel
matrices. To center Φx, a natural idea should be computing
Φx,c = Φx(I− ene

T
n

n ), where en denotes column vector in Rn

with all entries being 1. However, since kernel CCA makes
use of the data X through kernel matrix Kx, the centering
process can be performed on Kx as

Kx,c = 〈Φx,c,Φx,c〉 = (I − ene
T
n

n
)〈Φx,Φx〉(I −

ene
T
n

n
)

= (I − ene
T
n

n
)Kx(I − ene

T
n

n
). (2.8)

Similarly, we can center testing data Φx,t as

Kx,t,c = 〈Φx,c,Φx,t − Φx
ene

T
N

n
〉

= (I − ene
T
n

n
)Kx,t − (I − ene

T
n

n
)Kx

ene
T
N

n
, (2.9)

where N is the number of testing data and Kx,t denotes the
kernel matrix between training and testing data. More details
about data centering in RKHS can be found in [12], [13]. In
the sequel of this paper, we assume the kernel matrices have
been centered.

III. CCA AND LEAST SQUARES

It is well known that CCA is closely related to linear
regression problem, and some relation between CCA and
linear regression has been established under the condition
that rank(X) = n − 1 and rank(Y ) = d2 in [14], [15]. In
this section, we establish a relation between CCA and linear
regression without any additional constraint on X and Y .
Before that, we consider the characterization of solutions of
(2.2).

Define r = rank(X), s = rank(Y ), m = rank(XY T ) and
t = min{r, s}. Let the (reduced) SVD factorizations of X
and Y be, respectively,

X = U

[
Σ1

0

]
QT1 =

[
U1 U2

] [Σ1

0

]
QT1 = U1Σ1Q

T
1 ,

(3.1)
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and

Y = V

[
Σ2

0

]
QT2 =

[
V1 V2

] [Σ2

0

]
QT2 = V1Σ2Q

T
2 , (3.2)

where U ∈ Rd1×d1 , U1 ∈ Rd1×r, U2 ∈ Rd1×(d1−r),
Σ1 ∈ Rr×r, Q1 ∈ Rn×r, V ∈ Rd2×d2 , V1 ∈ Rd2×s,
V2 ∈ Rd2×(d2−s), Σ2 ∈ Rs×s, Q2 ∈ Rn×s, U and V
are orthogonal, Σ1 and Σ2 are nonsingular and diagonal,
Q1 and Q2 are column orthogonal. It follows from the two
orthogonality constraints in (2.2) that

l ≤ min{rank(X), rank(Y )} = min{r, s} = t. (3.3)

Next, let
QT1Q2 = P1ΣPT2 (3.4)

be the singular value decomposition of QT1Q2, where P1 ∈
Rr×r and P2 ∈ Rs×s are orthogonal and Σ ∈ Rr×s, then
m = rank(QT1Q2) ≤ min{r, s} = t.

A solution subset of optimization problem (2.2) is de-
scribed in the following lemma

Lemma 1: Any (Wx,Wy) of the following forms{
Wx = U1Σ−11 P1(:, 1 : l) + U2E ,
Wy = V1Σ−12 P2(:, 1 : l) + V2F ,

(3.5)

where P1(:, 1 : l) denotes the first l columns of P1, E ∈
R(d1−r)×l and F ∈ R(d2−s)×l are arbitrary, is a solution of
optimization problem (2.2).

The proof of Lemma 1 can be found in [6], where a full
characterization of all solutions of optimization problem (2.2)
has been established.

Based on the explicit expression of solutions of opti-
mization problem (2.2), we can now establish a relationship
between CCA and least squares. Let

Tx = Y T [(Y Y T )
1
2 ]†V1P2(:, 1 : l)Σ(1 : l, 1 : l)−1

= Q2P2(:, 1 : l)Σ(1 : l, 1 : l)−1, (3.6)

Ty = XT [(XXT )
1
2 ]†U1P1(:, 1 : l)Σ(1 : l, 1 : l)−1

= Q1P1(:, 1 : l)Σ(1 : l, 1 : l)−1, (3.7)

where A† denotes the Moore-Penrose inverse of a general
matrix A and 1 ≤ l ≤ m, then we have the following
theorem.

Theorem 2: For any l satisfying 1 ≤ l ≤ m, suppose
Wx ∈ Rd1×l and Wy ∈ Rd2×l satisfy

Wx = arg min{‖XTWx − Tx‖2F : Wx ∈ Rd1×l}, (3.8)

and

Wy = arg min{‖Y TWx − Ty‖2F : Wy ∈ Rd2×l}, (3.9)

where Tx and Ty are defined in (3.6) and (3.7), respectively.
Then Wx and Wy form a solution of optimization problem
(2.2).

Proof: Since (3.8) and (3.9) have the same form, we
only prove the result for Wx, the same idea can be applied
to Wy .

We know that Wx is a solution of (3.8) if and only if it
satisfies the normal equation

XXTWx = XTx. (3.10)

Substituting factorizations (3.1), (3.2) and (3.4) into the
equation above, we get

XXT = U1Σ2
1U

T
1 ,

and

XTx = U1Σ1Q
T
1Q2P2(:, 1 : l)Σ(1 : l, 1 : l)−1

= U1Σ1P1(:, 1 : l),

which yield an equivalent reformulation of (3.10)

U1Σ2
1U

T
1 Wx = U1Σ1P1(:, 1 : l). (3.11)

It is easy to check that Wx is a solution of (3.11) if and only
if

Wx = U1Σ−11 P1(:, 1 : l) + U2E , (3.12)

where E ∈ R(d1−r)×l is an arbitrary matrix. Therefore, Wx

is a solution of (3.8) if and only if Wx can be formulated as
(3.12).

Similarly, Wy is a solution of (3.9) if and only if Wy can
be written as

Wy = V1Σ−12 P2(:, 1 : l) + V2F , (3.13)

where F ∈ R(d2−s)×l is an arbitrary matrix.
Now, comparing equations (3.12) and (3.13) with the

equation (3.5) in Lemma 1, we can conclude that for any
solution Wx of the least squares problem (3.8) and any
solution Wy of the least squares problem (3.9), Wx and
Wy form a solution of optimization problem (2.2), hence
a solution of CCA.

Remark 3.1: In Theorem 2 we only consider l satisfying
1 ≤ l ≤ m. This is reasonable, since there are m nonzero
canonical correlations between X and Y , and weight vectors
corresponding to zero canonical correlation do not contribute
to the canonical correlation between data X and Y .

IV. SPARSE KERNEL CCA

Since kernel CCA criterion (2.7) and CCA criterion (2.2)
have the same form, we can expect a similar characterization
of solutions of (2.7) as Lemma 1. Define

r̂ = rank(Kx), ŝ = rank(Ky), m̂ = rank(KxKy),

and let the eigenvalue decomposition of Kx and Ky be,
respectively,

Kx = U
[
Π1 0
0 0

]
UT =

[
U1 U2

] [Π1 0
0 0

] [
U1 U2

]T
= U1Π1UT1 , (4.1)

and

Ky = V
[
Π2 0
0 0

]
VT =

[
V1 V2

] [Π2 0
0 0

] [
V1 V2

]T
= V1Π2VT1 , (4.2)

where

U ∈ Rn×n, U1 ∈ Rn×r̂, U2 ∈ Rn×(n−r̂), Π1 ∈ Rr̂×r̂,

V ∈ Rn×n, V1 ∈ Rn×ŝ, V2 ∈ Rn×(n−ŝ), Π2 ∈ Rŝ×ŝ,

U and V are orthogonal, Π1 and Π2 are nonsingular and
diagonal. In addition, let

UT1 V1 = P1ΠPT2 (4.3)
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be the singular value decomposition of UT1 V1, where P1 ∈
Rr̂×r̂ and P2 ∈ Rŝ×ŝ are orthogonal and Π ∈ Rr̂×ŝ is a
diagonal matrix. Then we can prove for 1 ≤ l ≤ min{r̂, ŝ}
that {

Wx = U1Π−11 P1(:, 1 : l) + U2E ,
Wy = V1Π−12 P2(:, 1 : l) + V2F ,

(4.4)

with E ∈ R(n−r̂)×l and F ∈ R(n−ŝ)×l being arbitrary
matrices, form a subset of solutions to (2.7).

Solutions of (2.7) can also be associated with least squares
problems. Define

Tx = U1P1(:, 1 : l), Ty = V1P2(:, 1 : l), (4.5)

with 1 ≤ l ≤ m̂, then each pair of Wx and Wy , satisfying

Wx = arg min{‖KxWx − Tx‖2F :Wx ∈ Rn×l},
and

Wy = arg min{‖KyWy − Ty‖2F :Wy ∈ Rn×l},
respectively, forms a solution of (2.7).

Motivated by research on lasso [17] which shows that
sparsity can be obtained by penalizing `1-norm of the vari-
ables, we incorporate sparsity into Wx and Wy by solving
the following `1-norm regularized least squares problems

min 1
2‖KxWx − Tx‖2F +

l∑
i=1

λx,i‖Wx,i‖1
subject to Wx ∈ Rn×l,

(4.6)

and

min 1
2‖KyWy − Ty‖2F +

l∑
i=1

λy,i‖Wy,i‖1
subject to Wy ∈ Rn×l,

(4.7)

where λx,i, λy,i > 0 are regularization parameters, Wx,i and
Wy,i are ith column of Wx and Wy , respectively.

Since optimization problems (4.6) and (4.7) have the same
form, all results holding for one problem can be naturally
extended to the other, so we concentrate on (4.6). Note that
when l = 1 optimization problem (4.6) reduces to a BPDN
problem of the form (1.1), which has been intensively studied
in the field of compressed sensing. Many efficient approaches
have been proposed to solve the BPDN problem, among
which we adopt the fixed-point continuation (FPC) method
[7], due to its simple implementation and nice convergence
property.

Fixed-point algorithm for (1.1) is an iterative method
which updates iterates as

xk+1 = Sν
(
xk − τAT (Ax− b)

)
, with ν = τλ, (4.8)

where τ > 0 denotes the step size, and Sν is the soft-
thresholding operator defined as

Sν(x) = sign(x)�max{|x| − ν, 0}, x ∈ Rd, (4.9)

with � denoting component-wise multiplication. Sν(x) re-
duces all components of x with magnitude less than ν to
zero, thus reducing the `1-norm and introducing sparsity.

The fixed-point algorithm can be extended to solve (4.6),
which yields

Wk+1
x,i = Sνx,i

(
Wk
x,i − τxKT

x (KxWk
x,i − Tx,i)

)
, (4.10)

where i = 1, · · · , l, νx,i = τxλx,i with τx > 0 denoting the
step size.

Algorithm 1 Sparse kernel CCA (SKCCA)

Input: Training data X ∈ Rd1×n, Y ∈ Rd2×n

1: Construct and center kernel matrices Kx, Ky;
2: Compute matrix factorizations (4.1)-(4.3);
3: Compute Tx and Ty defined in (4.5);
4: νx,i = τxλx,i, νy,i = τyλy,i, i = 1, · · · , l,
5: repeat
6: Wk+1

x,i = Sνx,i

(
Wk
x,i − τxKx(KT

xWk
x,i − Tx,i)

)
,

7: until convergence
8: repeat
9: Wk+1

y,i = Sνy,i

(
Wk
y,i − τyKy(KT

yWk
y,i − Ty,i)

)
,

10: until convergence
Output: Sparse dual transformation matrices Wk

x and Wk
y .

We can prove that fixed-point iterations have some nice
convergence properties which are presented in the following
theorem. Proof of the theorem can be found in [7].

Theorem 3: Let Ω be the solution set of (4.6), then there
exists M∗ ∈ Rn×l such that

KT
x (KxWx − Tx) ≡M∗, ∀ Wx ∈ Ω. (4.11)

In addition, define

L := {(i, j) : |M∗i,j | < λx,j} (4.12)

as a subset of indices and let λmax(KT
xKx) be the maximum

eigenvalue of KT
xKx, and choose τx from

0 < τx <
2

λmax(KT
xKx)

,

then the sequence {Wk
x}, generated by the fixed-point iter-

ations (4.10) starting with any initial point W0
x , converges

to some W∗x ∈ Ω. Moreover, there exists an integer K > 0
such that

(Wk
x )i,j = (W∗x)i,j = 0, ∀(i, j) ∈ L, (4.13)

when k > K.
Remark 4.1: 1) Equation (4.11) shows that for any two

optimal solutions of (4.6) the gradient of the squared Frobe-
nius norm in (4.6) must be equal.

2) Equation (4.13) means that the entries of Wk
x with

indices from L will converge to zero in finite steps. The
positive integer K is a function of W0

x and W∗x , and
determined by the distance between them.

Similarly, we can design a fixed-point algorithm to solve
(4.7) as follows:

Wk+1
y,i = Sνy,i

(
Wk
y,i − τyKT

y (KyWk
y,i − Ty,i)

)
, (4.14)

where i = 1, · · · , l, νy,i = τyλy,i with τy > 0 denoting the
step size.

Applying fixed-point iterations (4.10) and (4.14) to `1-
norm regularized least squares problems (4.6) and (4.7),
we get a new sparse kernel CCA algorithm presented in
Algorithm 1.

Since canonical correlations in kernel CCA depend only
on kernel matrices Kx and Ky . Therefore, as we shall
see from factorizations (4.1)-(4.3), canonical correlations in
kernel CCA are determined by singular values of UT1 V1. The
following proposition reveals a simple result regarding the
distribution of canonical correlations.
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Proposition 4: Let r̂ = rank(Kx) and ŝ = rank(Ky). If
r̂ + ŝ = n + γ for some γ > 0, then UT1 V1 has at least γ
singular values equal to 1.

Proof: Since U1 ∈ Rn×r̂, U2 ∈ Rn×(n−r̂) and V1 ∈
Rn×ŝ are column orthogonal and U1UT1 + U2UT2 = In, we
have

(UT1 V1)TUT1 V1 = VT1 U1UT1 V1 = Iŝ − VT1 U2UT2 V1.
If there exist γ > 0 such that r̂ + ŝ = n+ γ, then n− r̂ =
ŝ− γ < ŝ and

rank(VT1 U2UT2 V1) = rank(UT2 V1) ≤ n− r̂,
which implies VT1 U2UT2 V1 has at least ŝ− (n− r̂) = γ zero
eigenvalues. Thus, (UT1 V1)TUT1 V1 has at least γ eigenvalues
equal to 1, which further implies that UT1 V1 has at least γ
singular values equal to 1.

In kernel methods, due to nonlinearity of kernel functions,
the rank of kernel matrices is very close to n, which
makes most canonical correlations to be 1. For instance, for
Gaussian kernel

κ(x, y) = exp
(
− 1

2σ2
‖x− y‖2

)
, σ 6= 0 (4.15)

we can prove that the kernel matrix Kx given by (Kx)ij =
exp

(
− 1

2σ2 ‖xi − xj‖2
)

has full rank, provided that the points
{xi}ni=1 are distinct [12]. Thus, in kernel methods we usually
have

r̂ = rank(Kx) = n− 1, ŝ = rank(Ky) = n− 1,

after centering data. In this case, all nonzero canonical
correlations determined by the singular values of UT1 V1 are
equal to 1. This means ordinary kernel CCA fails to provide
a useful estimation of canonical correlations for general
kernels, because for any distinct sample {xi}ni=1 of variable
x and distinct sample {yi}ni=1 of variable y the canonical
correlations returned by kernel CCA will be 1 even though
variables x and y have no joint information.

To avoid forementioned data over-fitting problem in kernel
CCA, researchers suggested to design a regularized kernel-
ization of CCA [3], [9]. On the other hand, as shown in [17],
the `1-penalty term can alleviate data overfitting problem
while at the same time introduce sparsity. We can expect that
sparse kernel CCA (4.6)-(4.7) enjoys the properties of both
computing sparse Wx, Wy and avoiding data over-fitting
similar to regularized kernel CCA.

V. EXPERIMENTS

In this section, we apply our newly proposed sparse kernel
CCA algorithm SKCCA to content-based image retrieval
(CBIR) by combining image and text data. CBIR is a
challenging aspect of multimedia analysis and has become
popular in past few years. Generally, it is the problem of
searching for digital images in large databases by their visual
content (e.g., color, texture, shape) rather than the metadata
such as keywords, labels, and descriptions associated with the
images. There exists study utilizing kernel CCA for image
retrieval [9].

In the implementation of SKCCA, we need to determine
regularization parameters {λx,i} and {λy,i}. We know that
x∗ is a solution of BPDN problem (1.1) if and only if

0 ∈ AT (Ax∗ − b) + λ∂‖x∗‖1,

where ∂‖x∗‖1 is the subgradient of `1-norm ‖ · ‖1 at x∗.
It follows that x = 0 is the solution of (1.1) when λ ≥
‖AT b‖∞. To avoid zero solution, which is meaningless in
practice, we chose

λx,i = γx‖KT
x Tx,i‖∞, λy,i = γy‖KT

y Ty,i‖∞, i = 1, · · · , l,
where 0 < γx, γy < 1.

A MATLAB code implementing FPC algorithm for BPDN
problem, named FPC BB [22], is publicly available. We
used this code in our implementation of Algorithm 1 with
xtol=10−5 and mxitr=104 and all other parameters de-
fault.

We experiment on the Ground Truth Image Database [23]
created at the University of Washington, which consists of
21 data sets of outdoor scene images. In our experiment we
used 852 images form 19 data sets that have been annotated
with keywords. We exploited text features and low-level
image features, including color and texture, and applied
sparse kernel CCA to perform image retrieval from text
query. We used the bag-of-words approach to represent the
text associated with images, Gabor filters to extract texture
features and HSV (hue-saturation-value) color representation
as color features.

Following previous work [9], we used Gaussian kernel

kx(Ii, Ij) = exp
(
−‖Ii − Ij‖

2

2σ2

)
,

where Ii is a vector concatenating texture features and color
features of ith image and σ is the minimum distance between
different images, to compute kernel matrix Kx for the first
view. The linear kernel was employed to compute kernel
matrix Ky using text features for the other view. We used
217 images as training data and the rest were used as testing
data.

We compare the performance of CCA, kernel CCA and
SKCCA in TABLE I, where the accuracy of image retrieval
is measured by average area under the ROC curve (AROC),
and for a collection of queries we use the average of retrieval
precision of all queries as the average retrieval precision of
this collection. More details about the evaluation of retrieval
performance can be found in [6]. Results in TABLE I were
obtained by letting l = m̂ = rank(KxKy), that is, projections
corresponding to all nonzero canonical correlations were
used. ‘Corr’ denotes the summation of canonical correlations
between testing data, ‘Sparsity’ column records sparsity of
both Wx and Wy , which is the percentage of zero entries
in the matrices. The first component records sparsity of Wx

while the second component records sparsity of Wy . The
‘(γx, γy)’ column records value of regularization parameters
in SKCCA.

TABLE I: CCA, kernel CCA and SKCCA for content-based
image retrieval.

Algorithms AROC Corr Sparsity (%) l (γx, γy)

CCA 0.7396 11.53 (0, 7.7) 124 -

KCCA 0.8259 19.37 (0, 0) 124 -

SKCCA 0.8489 24.98 (91.1, 88.4) 124 (0.5, 0.3)

From TABLE I, we observe that SKCCA have the best
retrieval performance in terms of precision. It also obtains
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Fig. 1: Content-based image retrieval using CCA, kernel
CCA and SKCCA with 217 images in the training data and
635 images in testing data.

larger summation of canonical correlations between testing
data than other two approaches, which empirically shows that
SKCCA is better than CCA for finding nonlinear relations
and alleviates the over-fitting problem of KCCA. We can
also see that sparsity of the dual projections Wx and Wy

computed by SKCCA is greater than 88%, which can exces-
sively reduce the computational time of computing projection
of a new data in practice as we only need to evaluate kernel
functions between the new data and a small subset of training
data.

In Fig. 1, we plot AROC of CCA, kernel CCA and
SKCCA as a function of the number of projections used (i.e.,
different l). As visible in Fig. 1, the AROC of all approaches
gradually increases when more projections are used for re-
trieval. This is reasonable, beacause when we increase l more
projections corresponding to nonzero canonical correlations
are used for retrieval and these added projections may convey
information contained in the training data. In addition, we
observe that the AROC of SKCCA is at first smaller than and
then exceeds that of kernel CCA. This indicates that when
suitable number of dual projections are used for retrieval
SKCCA can improve the performance of kernel CCA.

VI. CONCLUSIONS

In this paper we proposed a novel sparse kernel CCA
algorithm called SKCCA. This algorithm is based on a
relationship between kernel CCA and least squares which
is an extension of a similar relationship between CCA and
least squares. We incorporated sparsity into kernel CCA by
penalizing the `1-norm of dual vectors. The resulting `1-
regularized minimization problems were solved by a fixed-
point continuation (FPC) algorithm. Empirical results show
that SKCCA not only performs well in computing sparse dual
transformations, but also alleviates the over-fitting problem
of kernel CCA.

Several interesting questions and extensions remain. In
many applications such as genomic data analysis, CCA is
often performed on more than two data sets. It will be helpful
to extend sparse kernel CCA to deal with multiple data sets.
In the derivation of SKCCA, we did not discuss the choice of
kernel function. However, it is believed that the performance

of kernel CCA depends on the choice of the kernel. As for
future research, we plan to study the problem of finding the
optimal kernel of kernel CCA for different applications, as
in the case of kernel FDA [11]. Moreover, we also plan to
generalize the idea of sparse kernel CCA in this paper to
involve multiple kernels.
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