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Efficient and Robust Clustering on Large-scale
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Abstract—Density-based clustering algorithms are applied
for the detection of clusters in spatial data sets, but typical
algorithms usually have difficulties in selecting appropriate
parameters. Recently, the FN-DBSCAN algorithm extended
the density-based clustering algorithms with fuzzy set theory
and solved this problem. However, EN-DBSCAN has a time
complexity of ()(n?), which indicates that it is not suitable
to deal with large-scale data sets. In this paper, we propose a
novel clustering algorithm called landmark FN-DBSCAN which
ensures linear time and space complexity with respect to the size
of the input data set and empirically provides good clustering
qualities.

Index Terms—eclustering, fuzzy neighborhood functions, FN-
DBSCAN

[. INTRODUCTION

LUSTERING is an important tool for data analysis. It

aims to divide a given data set into several clusters,
where each pair of data in the same cluster has greater simi-
larity than that in two different clusters. In the past decades,
many clustering algorithms have been proposed. A rough
but widely agreed framework [1] is to classify clustering
techniques into partitional clustering [2], [3], hierarchical
clustering [4], [5] and density-based clustering [6], [7].
Density-based clustering techniques have several advantages,
e.g. the number of clusters need not be known beforehand,
the detected clusters can be represented in arbitrary shapes
and outliers can be detected and eliminated. These advan-
tages make the density-based clustering algorithms suitable
for dealing with spatial data sets. However, they usually have
difficulties in selecting appropriate parameters. Recently, the
Fuzzy Neighborhood DBSCAN (FN-DBSCAN) extended the
density-based clustering algorithms with fuzzy set theory,
which makes density-based clustering algorithms more ro-
bust [8]. However, FN-DBSCAN requires a time complexity
of O(n?), where n is the number of data in the data set,
implying that FN-DBSCAN is not suitable for applications
with large scale data sets. In this paper, we propose a novel
clustering algorithm called landmark FN-DBSCAN. Here,
‘landmark’ represents a subset of the input data set, which
makes the algorithm efficient with large-scale data sets. We
present a theoretical analysis on time and space complexities,
which indicates that they are linearly dependent on the size
of the data set. The experiments presented in this paper also
show that landmark FN-DBSCAN is much faster than FN-
DBSCAN and provides good clustering qualities.
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II. RELATED WORK
A. DBSCAN

DBSCAN is the first proposed and still widely used
density-based clustering algorithm. It introduced two basic
concepts, i.e. the s-neighborhood of a data and the core
dato (cardinality) [9]. Based on these concepts, DBSCAN
applies a distance-based strategy to estimate the local density.
It assumes that the probability density of a small area in the
feature space is uniform and the data density in each desired
cluster is higher than that outside the cluster. The density of
noisy data is expected to be lower than that of normal data.
The key idea of DBSCAN is that for each data in a cluster,
the number of data in its neighborhood (determined by the
parameter £) has to exceed some threshold (determined by
the parameter MinPts).

However, the parameter = is a globally fixed value, which
indicates that the neighborhoods of all data have the same
radius value. If we measure the degree of the neighborhood
membership for each data pair, the membership function used
in DBSCAN can be described by Equation (1).

1, ifdis(d,d)<e
0, otherwise

Na(d') = { (1)

In this model, crisp neighborhood model, all data in one
e-neighborhood have the same value of membership degrees,
which makes it difficult to calculate the cardinality of the
neighborhood. considering three data, d, dy and ds, also, we
want to differentiate the membership degrees between two
data pairs, i. e. (d,d;) and (d,d2)(Fig. 1). Unfortunately,
the membership degrees for (d,d;) and (d, ds) are the same
according to Equation (1).

Fig. 1. Example of nsing crisp neighborhood in DBSCAN. Data d; and
dy have the same value of cardinality, 12, but different values of density.

B. Fuzzy Neighborhood DBSCAN

Fuzzy Neighborhood DBSCAN (FN-DBSCAN) extended
the original DBSCAN algorithm with fuzzy set theory to
provide a better solution than the crisp neighborhood model
used in DBSCAN. The key idea of FN-DBSCAN is to
use fuzzy neighborhood functions to define a new fuzzy
neighborhood instead of the old crisp neighborhood. Given
two data 4 and ' (d,d € D), an example of fuzzy
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neighborhood functions as an exponential function is given

by Equation (2).
dis(d, d)N 2
DY) e

ﬂxw)—exp((}

where k is a positive real number (k > 0) affecting the
neighborhood radius and 4™%* is the maximum distance of
all data pairs in D),

As expected, different membership degrees can be dis-
tinguished by applying this neighborhood function. FN-
DBSCAN introduced a new definition for describing a soft
neighborhood based on fuzzy neighborhood functions [8].
By defining the fuzzy neighborhood, the original, distance-
based, DBSCAN can be transformed into the level-based FN-
DBSCAN. Thus, in the previous example shown in Fig 1, the
fuzzy cardinality of dy and dy are not the same according
to the definition of fuzzy core data (more discussions in
[8]).

In fact, the EN-DBSCAN alogrithm is very similar to
the original DBSCAN algorithm. More precisely, if FN-
DBSCAN uses the same techniques of defining neighbor-
hoods and calculating the cardinalities, FN-DBSCAN will
become DBSCAN. Furthermore, we know that the time
complexity of FN-DBSCAN is O(n?), which is the same
as that of DBSCAN.

II1. LANDMARK Fuzzy NEIGHBORHOOD DESCAN

In this section, we propose a novel clustering algorithm,
landmark EN-DBSCAN. This algorithm can provide a simi-
lar clustering quality as that provided by FN-DBSCAN, but
only requires a time complexity linearly depended on the
size of input data set.

A. Algorithm

The landmark FN-DBSCAN algorithm consists of three
steps:
1) Divide a data set into several subsets represented by
the generated ‘landmarks’.
2) Execute a modified version of FN-DBSCAN on the
generated landmark set and output the landmark index.
3) Label data according to the landmark index.

To reduce the expensive cost of directly processing the
data set, the input data set is divided into several subsets of
smaller sizes. In this procedure, some data in the data set
are selected and further processed as ‘landmarks’ and each
landmark is used to represent one subset. Here we present
several concepts related to this procedure.

Definition 1 (landmark): Given a data set I) as an n X m
matrix, where n is the number of data and s is dimension-
ality of data, a landmark ({), which is a triplet is defined
as

L= (V,NF (), ) 3

where V is an m-dimensional vector equaling to a data
in D (determined by Algorithm 1), N J’?(.5) is a subset of
D, containing all the data in the fuzzy neighborhood of !
(Definition 2) and g is a positive real number called the
membership level of { (Equation (7)).

With the property V, a landmark can compare the mem-
bership degree with a data or another landmark. To measure
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the membership degree in such cases, two variants of expo-
nential fuzzy neighborhood functions are used.

First, considering a landmark [ and a data 4 (d € D),
the membership degree between { and d can be measured by

Equation (4).
. 2
fi{d) = exp ( (’r' oo %) ) {4)

where r, k are positive real numbers and Ad™®* is the
maximum distance between V and all the other data in D.

Second, for measuring the membership degree between
two landmarks l; and [s, the membership function is given
by Equation (5).

P 2
1) = exp ( (- B ) s

where & is a positive real number and Ad™** is the maxi-
mum distance between V; and all other landmarks.

Definition 2 (fuzzy-neighborhcod of a landmark): Given
a set D where D can be a set of data or a set of landmarks,
and a positive real number £4, the fuzzy-neighborhood of
a landmark [, denoted as N7 (1), is a set of data or a set of
landmarks defined by

Ni(h)y={de D| fild) 2 &1} )

where f;{d) can be obtained by Equation (4) or Equation
(5). We say d is in the fuzzy neighborhood of landmark I.

The last property of a landmark, the membership level, p,
can be caleculated by the following equation:

p= > fild (7)
deNF()

With the above concepts we present a technique of gener-
ating landmarks using Algorithm 1.

Algorithm 1 LandmarkGeneration
Input: D, r, k, &1
Output: L
L+ ¢
2: for all d in D do
3. find a landmark ! = (V,u,s) € L, such that L.V =
min{dis(.V,d)}.

) 2
4 w4+ exp —(whdﬁff;fﬁ’f)) )2
5. if L =¢ or u < g; then
6: Ved N« ¢ ue 0
7: L+ (V,N,u);
8 L« Lu{l};
9. else
10: LN « LNU{d}
11 Lu+—lLu+tu
12:  end if
13: end for

From Algorithm 1, we observe that landmarks are gener-
ated dynamically during the algorithm execution and all data
in the data set must belong to one landmark. Finally, all data
can be labeled according to each corresponding landmark.

Since the output of Algorithm 1 is a set of landmarks,
which is not acceptable by the FN-DBSCAN algorithm, we
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make a variation on the standard FN-DBSCAN algorithm so
that the modified version can process them.

Here, we present a method to calculate the cardinality
of the landmark neighborhood. Considering a set of

landmarks, L, where [ = V,NJ‘E (O,py e L, the
cardinality of the neighborhood of { can be calculated by
card(l) = Z V. (&)

VENE(D)

B. Complexity Analysis

Theorem 1: The time complexity of landmark FN-DB-
SCAN is O(kn 4+ k?), where n is the number of data and k&
is the number of generated landmarks.

In Step (1), the algorithm scans the data set once, which
takes O(n) as the time time complexity. In each loop, to
find the landmark with the minimum distance to the current
data, it is expected to take a O(1/2*%kn) as the total time
complexity. For calculating Ad™?*, O(kn) is taken as the
time complexity. So, the time complexity of Step (1) is
O(kn). In Step (2) has the same time complexity of FN-
DBSCAN, O(k?). Obviously, Step (3) has O(n) as the time
complexity. Therefore, the time complexity of landmark FN-
DBSCAN is O(kn + k? + r) = O(kn + k2)

However, in practice the number of generated landmarks
is much lesser than the number of data in the data set, i.e.
k < n. In this case, the time complexity of landmark FN-
DBSCAN reduces to O(n), which indicates that it is suitable
for large-scale data sets.

Theorem 2: The space complexity of landmark FN-DB-
SCAN is O(n + k), where n is the number of data and % is
the number of generated landmarks.

In Step (1), the algorithm requires the space complexity
at O(n) and O(k) to store the data set and the generated
landmarks, respectively. Furthermore, it needs to store the
index of all data in landmark neighborhoods, which is O(n)
in total. In Step (2), the algorithm requires the same space
complexity as that of EFN-DBSCAN, O(k). Step (3) needs no
more exira space. Therefore, the space complexity is O(n+
k+n+k)=0n+k).

Similar to the time complexity, the space complexity will
reduce to O(n) if & < n.

IV. EXPERIMENTS

In this section, both clustering quality and clustering
efficiency of the landmark FN-DBSCAN algorithm were
evaluated in comparison with FN-DBCAN.

The clustering quality results was evaluated by comparing
with the true partition (gold standard). A well-known method,
Rand-Index [10], was used to evaluate the clustering quality.
A high value obtained from Rand-index indicated that the
evaluated method provided a high clustering quality (accu-
racy) on the input data set, and vice versa.

Two synthetic spatial data sets and two real world data sets
were used as experimental objects. Their details are shown in
Table 1. Here data sets of different sizes were prepared, but
they shared the same data distributions. Correct answers for
each data set (including one data set of different sizes) were
pre-prepared and then used in the Rand-Index calculations.

The first two data sets, Anchor and Banana, were used to
test the capability of the algorithm to detect clusters with
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TABLE I
DATA SETS USED IN EXPERIMENTS.

name Size D HC  noise
Anchor 20000 2 2 yes
Banana 12000 2 2 yes
Letter 20000 16 26 no
Pendigits 10992 16 10 no

The symbol D means the ‘number of dimensions’
and #C means the ‘number of clusters’.

250 250
200 200
150 150
100 100

50 50

Fig. 2. Samples of used synthetic data sets. (a) Anchor data set (2500
data). (b) Banana data set (3000 data).

arbitrary shapes and that of the data sets to deal with noisy
data.

Anchor, illustrated in Fig 2{a), consists of two clusters
with a shape like an anchor. We used eight groups of
Anchor data sets with different scales. Generally speaking,
both landmark EN-DBSCAN and EN-DBSCAN can provide
good clustering quality, i.e two clusters can be found and
noisy data can be detected. The detailed results of clustering
quality with different sizes are shown in Fig. 3(a). We
observe that the landmark FN-DBSCAN algorithm and the
FN-DBSCAN algorithm achieved similar results, and both
obtained Rand-Index values of approximately 0.99. However,
there were substantial differences in their efficiencies. The
time cost of the FN-DBSCAN algorithm increased very
rapidly, while that of the landmark FN-DBSCAN algorithm
increased slowly (Fig. 3(b), » = 3). For example, when the
size of the data set was 2500, the landmark FN-DBSCAN
algorithm saved approximately 85% of the time of FN-
DBSCAN and provided almost the same quality (r = 3).
On increasing the number of data to 20000, it saved 95.5%
of the time of FN-DBSCAN and even provided a slightly
better quality (r = 3).
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¥ FN.DBSCAN 80 | v mpBscan]- - - - -
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v 105 FNDESCAN |—— & EN-DBSCAN ;
3 8 G5 mmes mam = mem 7 ol ;-
5 B o B L
hn 1 [ e = s A s s s e n el n
g = /
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is v gt T
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0.9 0= e A -
] 1 2 0.5 1 15 2
Number of data_ 4 Number of data 4
x 10 x 10
(@) (b)
Fig. 3. Results of Anchor data set (+ = 3). Comparison of (a) Clustering

quality and (b) Clustering Efficiency.
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TABLE II
LETTER DATA SET.
Landmark FN-DBSCAN *FNR  Landmark FN-DBSCAN *FNt
Si Rand-Index execution time(s) (%)
ize
r vahie r value
0.5 0.6 0.7 0.8 0.9 03 0.6 0.7 0.8 0.9
2000 09612 09623 09623 09622 09621 09620 045 0.84 0.98 127 323 1.69
4000 09611 09620 09623 09624 09623 0.9528 0.83 142 2.52 3.19 4.16 7.03
8000 09616 09623 09623 09622 09621 09239 8.80 16.94 28.06 4048 53.61 437.02
16000 09617 09623 09622 09621 0.9621 0.8083 19.16 103.13 13194 212.63 495.86 1494.45
20000 09613 09621 09622 09621 09620 09615 2516 10795 220.83 257.94 72347 272222
#*FNR means the ‘FN-DBSCAN"s Rand-Index value’ and FNt means the ‘FN-DBSCAN"s execution time’
TABLE II1
PENDIGITS DATA SET.
Landmark FN-DBSCAN *FNR  Landmark FN-DBSCAN *FNt
X Rand-Index execution time(s) (8)
Size
7 valae 7 value
02 0.3 04 0.5 0.6 0.2 0.3 0.4 0.5 0.6
1000 0.9260 09220 09090 09037 09018 09003 0.06 0.06 009 017 023 0.42
2000 09193 09151 09086 09054 09030 09068 0.05 011 022 038 058 1.39
4000 0.9300 09185 09083 09044 09025 09180 0.11 025 056 098 1.63 5.52
8000 09190 09154 09074 09042 09020 09263 055 136 2.53 409 698 66.44
10992 0.9242 09160 09075 09036 09021 0.9336 045 1.41 316 645 10.83 120.41

#*FNR means the ‘FN-DBSCAN"s Rand-Index value’ and FNt means the ‘FN-DBSCAN"s execution’

1.01 25
_¥_ FN.DBSCAN _ _¥_ FN.DBSCAN »
b 1.005 +¥N—DB§CAN ————— % 20F = %%SSI(CAN _____ #
1
g P
o 1 | r——mm g | =
E 2 | o = e = 2 o
(5]
0.995 f ——————————+ 8 b s g e s
M v
- w—n g
0.99 0 X
0 5000 10000 0 5000 10000
Number of data Number of data
(a) (b}

Fig. 4. Results of Banana data set {r = 3). Comparison of (a) Clustering
quality and (b) Clustering Efficiency.

Banana data set contained two banana shaped clusters with
12000 data including noisy data (Fig. 2(b)). The clustering
result of quality and efficiency are summarized in Fig.
4(a) and Fig. 4(b), respectively (r = 3). We observe that
both landmark FN-DBSCAN and FN-DBSCAN could can
achieve good results on this data set, although the former
was significantly more efficient. When the data set size was
1500, landmark FN-DBSCAN was over 5 times faster than
EN-DBSCAN, but provided the same quality (» = 1.8). On
increasing the number of data, the landmark FN-DBSCAN
algorithm was over 41 times faster than FN-DBSCAN and
achieved a Rand-Index value of 0.994 (6000 data, » = 1.5)
which is the same as FN-DBSCAN. Furthermore, it was over
47 times faster than FN-DBSCAN, whereas it achieved a
Rand-Index value of 1.0 (12000 data, r = 1.5).

The other two data sets, Letter and Pendigits, were selected
from UCIT Machine Learning Repository (http:/archive.ics.u-
ci.edw/ml). The results of landmark FN-DBSCAN and FN-
DBSCAN are summarized in Table IT and Table IIT. respec-
tively. Landmark FN-DBSCAN was over 12 times faster than
EN-DBSCAN for 20000 size Letter data set {r = 0.7) and
over 267 times faster for 10992 Pendigits data set (r = 0.2).
However, we noticed that FN-DBSCAN provided a slightly
better quality than landmark FN-DBSCAN on these two data
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sets, but the difference was marginal.

V. CONCLUSION

In this paper, we propose a novel clustering algorithm
called landmark fuzzy neighborhood DBSCAN (landmark
FN-DBSCAN). The presented concept, landmark, was used
to represent a subset of the input data set which made the
algorithm efficient for large-scale data sets. We presented a
theoretical analysis on the time and space complexities of the
algorithm, which showed that both were linearly dependent
on the size of data set. The experiments presented in this
paper also showed that landmark FN-DBSCAN was much
faster than FN-DBSCAN and was able to provide a very
similar clustering quality.
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