An Energy-Aware Workload Dispatching Simulator for Heterogeneous Clusters

Miau-Ru Dai, Cheng-Jen Tang, and Chi-Cheng Chuang

Abstract—This paper presents an energy-aware workload dispatching simulator for heterogeneous clusters. Most clusters in a data center are composed of different kind of machines. Among these machines, the front-end nodes distribute incoming requests to the back-end workers. The main concern in such system traditionally focuses on computation performance, but energy consumption has emerged as an equally important issue recently. This work designs a workload dispatching simulator that is capable of identifying the energy usage of a heterogeneous cluster. The main target of the proposed simulator is to find out how a workload dispatching algorithm affects the energy consumption. The simulator consists of a configurable traffic generator, a workload dispatcher, and a set of server nodes. The traffic generator randomly produces workloads that are constrained by the average job number, and the average job size. The workload dispatcher assigns jobs according to some popular workload dispatching algorithms. Each server node can report its ID, idle power consumption, maximum power consumption, and computing capability. A set of records collected from a real heterogeneous cluster is examined using this simulator. The goal of this work is to develop a simulator that assists data center managers to estimate the availability, service quality, and energy consumption of their heterogeneous computation resources.

Index Terms—Heterogeneous Clusters, Workload Dispatching, Energy-Aware Simulation.

I. INTRODUCTION

A Cluster hosting Web applications contains many different types of hardware devices over the course of its construction. Sever nodes in such cluster have different energy consumption patterns and computation capabilities. The workload of an Internet data center is highly dynamic [1], [2], [3]. It is necessary to have a sophisticated workload distributor to assign jobs at any given time to maintain the required service quality. Such distributors dynamically dispatch user requests upon their arrival. In a highly fluctuated environment, the dispatching policy becomes a key issue for the overall performance of a cluster.

Managing energy cost is crucial for Internet service providers to make profit. Prior studies [4], [5] often use energy usage minimization as the optimal solutions. Such approaches work well for the flat rate electricity tariffs. However, recent emergency of Smart Grid and the promotion of time-based electricity pricing [6] complicate the situation. A time-based electricity pricing scheme, such as Time-Of-Use (TOU) rate, has a higher rate during peak periods, and a lower rate during off-peak periods. Minimizing energy usage does not always translate into the lowest energy cost when a time-based tariff is adopted. A profit-driven service provider requires an energy-aware tool to implement suitable power management. A simulator is necessary for the highly dynamic Internet environment.

This paper presents an energy-aware workload dispatching simulator that assists data center administrators capturing the probable energy usage profiles with various dispatching algorithms and workload patterns. The simulator imitates the behavior of real-world workload dispatching to a heterogeneous cluster. A model is built to represent the key characteristics of a heterogeneous cluster. A set of emulated workloads based on real-world traffic traces is used to test this simulator. The result shows that the simulator produces a power usage profile that is very similar to the real-world data.

II. RELATED WORK

There are many energy-aware workload dispatching algorithms for cluster-based web servers. Few attempts are pursued to examine these algorithms. The proposed simulator helps to fill this void. This section briefly some energy-aware workload dispatching algorithms.

Pinheiro et al.[7] propose an energy-conscious switching technique that adjusts on-power capacity at the coarse granularity of cluster-based server systems. This technique enables an economic framework for dynamic server resource allocation that allows informed trade-offs of service quality during shortages. Their system dynamically turns cluster nodes on when it is needed for handling heavy workloads, and off when the workload is lighter. Their approach is one of the first studies that explore the energy related issues on cluster-based systems. However, their algorithm assumes the targeted cluster comprised of homogeneous machines. In a homogeneous cluster, using round-robin to dispatch workload is a rational choice, since each machine has the same capability for solving problems, and the same power consumption profile.

Heath et al.[8] propose an approach for conserving energy in heterogeneous clusters hosting Web services. Their approach consolidates workloads into a subset of server nodes while other machines are turned off. A model is built to represent the request distribution among servers, and the types of nodes and resources. The power consumption model of each node is based on the OS-reported utilization rate. They find that the power consumption of a node is a linear function of its utilization rate. Their approach models the requests as the fraction of each resource they require. In their model, a content-oblivious workload dispatcher is employed. Their goal is to minimize the power-to-throughput ratio.
A Web server that is implemented based on their model achieves 42% energy savings on a small cluster.

Chen et al. [3] find that the major cause of energy inefficiency in data centers is the idle power. A server node consumes over 50% of the peak power even running at only 10% of CPU utilization. They propose a dynamic server provisioning technique. Their approach automatically provisions resources in data centers by taking energy savings and application performance into account. This technique employs ON/OFF control strategies aiming at energy saving with desired performance levels. In their approach, each node is limited with the maximum login rate and the maximum number of connections. Their work uses load-balancing as the workload dispatching algorithm.

Abbasi et al. [9] propose a two-tier management mechanism for Internet data centers. They assume that computing power aware server provisioning may not always be effective or sufficient with modern servers because of the cooling-computing power trade-off. Their reason is that consolidating the workload on fewer servers tends to decrease the computing power (since modern servers are not energy-proportional), but the consolidated servers may create hot spots that typically demand greater cooling power. In some cases, the cooling power increase may outweigh the computing power decrease. The occurrence of cooling-computing power trade-off depends on many factors such as regional climate type, number and type of server nodes, size of data center, etc.

Until recently, it remains a difficult problem to manage power for heterogeneous clusters [10]. The current energy management for heterogeneous clusters is either node addition/removal (or ON/OFF control) or workload dispatching. For ON/OFF control, an energy management mechanism needs to decide not only how many but also which server nodes should be turned on. This approach is also needed to have the information of workload and server characteristics. For energy-efficient workload dispatching, existing studies usually consider homogeneous clusters only. Identifying the optimal workload dispatching for a heterogeneous cluster remains a task for further exploring [10].

III. Modeling Heterogeneous Clusters

Most data centers use commercially off-the-shelf products as server machines. It is very common that recently purchased servers co-work with some older and workable ones in a cluster. Therefore, heterogeneity is inevitable in such environment.

A heterogeneous cluster is regarded as a collection of server nodes where the number of their types is greater than or equals to two. This work assumes each server node is capable of point-to-point communicating with the workload dispatcher. The workload dispatcher in a cluster is the frontend node to Internet. In the simulation environment, as shown in Fig. 1, Internet messages are simulated using a traffic generator.

A. Traffic Generator

The targeted simulator employs a traffic generator to simulate work requests from users. The algorithm of traffic generating is shown in Fig. 2.

```
1: Traffic Generator (R) {
   1 ≥ R ≥ 0;
   Generate a job queue Q to make the targeted cluster with utilization rate R.
}
2: empty Q
3: N ← RAND(0, Nmax) {
   N is the size of Q.
   Nmax is the maximally possible queue size.
   RAND is a uniformly distributed random number generator that generates a random values the two given arguments.
}
4: for i = 1 to N do
5:   x ← RAND(0, Xmax) {
   x is a random number.
   Xmax is a predefined value representing the maximally possible value of x.
}
6:   if x / Xmax ≤ R then
7:      J ← RAND(0, Jmax) {
         J is a random real number representing the computing capability required by a job.
         Jmax is a predefined value representing the maximally possible computing capability of a job.
      } push J into Q
9: end if
10: end for
11: return Q
```

![Fig. 1. Model of a Heterogeneous Cluster](image1)

![Fig. 2. Algorithm of Traffic Generating](image2)
This traffic generator requires an input value R representing the expected server utilization rate. R is the server utilization rate when the workloads are randomly dispatched to the back-end worker nodes. A job queue Q is produced by this traffic generator. Each job is represented as the required computing capability for finishing this job. The unity of the computing capability is defined as the computing capability required for the reference server node to finish a job in a unit processing time, e.g. one second.

The size N of the job queue Q is randomly generated using a uniformly distributed random number generator R_u. N is ranging from 0 to the maximally possible queue size N_{max}. For each job slot in Q, the following procedure is executed to determine whether to push a job assignment into Q or not.

1) A random number x is generated using R_u.
2) x is ranging from 0 to a predefined value X_{max}, where $X_{max} > 0$.
3) Whether $(\frac{x}{X_{max}} \leq R)$ is checked.
4) If the result is true, a job assignment is performed as the follows.
5) A randomly generated job J is ranging from 0 to the maximally possible computing capability J_{max}.
6) J is pushed into Q.

Suppose the sum of the computing capability of each server node is S. N_{max} and J_{max} are constrained by the Eq. (1). That is, the product of the expected values of N and J shall not be greater than the maximally possible computing capability.

$$S \geq E(N) \times E(J) \quad (1)$$

B. Workload Dispatcher

The workload dispatcher retrieves a job from the job queue Q, and assigns it to a node according to the adopted algorithm. The pseudo code of the workload dispatcher is shown in Fig. 3.

This workload dispatcher takes 4 arguments that are the job queue Q, the server node set S, the last enabled node L, and the callback function $CALLBACK$ of the selected workload dispatching algorithm. The job queue Q is generated by the traffic generator, as described in the previous section. The server node array R contains all the active nodes in the simulated cluster. This array is initialized and defined by the simulator. L represents the server node that is assigned with a job by this workload dispatcher. L is initialized with 0, if there is no prior assignment. Using the callback function makes the workload dispatching algorithm can be dynamically invoked. This work implements 12 dispatching algorithms including Round-Robin(RR), Random(RND), Least Utilization First (or Load Balanced)(LUF), Least Power First(LPF), Least Delay First(LDF), Least Pending Tasks First(LP2TF), Least Power-to-Utilization First(LPUF), Least Power-to-Task First (or Least Power-to-Throughput First)(LP2TF), Least Time-to-Task First(LTTF), Least Delay-to-Task First(LDTF), Least Utilization-to-Task First(LUTTF), and Least Pending-Task-to-Task First(LP3TF). $GetInfo()$ returns the following information of the given node:

1) Identity of the node
2) Consumed energy
3) CPU utilization
4) Power to CPU utilization ratio
5) Number of pending tasks
6) Average latency
7) Consumed computing power
8) Number of finished tasks

$CALLBACK$ examines this information to find out a suitable candidate to process an incoming job.

C. Server Node

In a server computer, CPU utilization is often considered as the major indicator of power consumption. Other components in a server computer are driven by instructions issued by the CPUs. Vasan et al. [11] find that a linear model for power consumption based on CPU utilization works effectively across a variety of servers. Based on their findings, this work assumes the power consumption model of a sever node as:

$$P(t) = P_{idle} + P_{dynamic} \times U(t) \quad (2)$$
1. Server Node ()
2. \(U \leftarrow 0 \) \{ \(U \) is the CPU utilization rate of this node. \}
3. \(G \leftarrow \) the remaining portion the an undergoing job of this node
4. \textbf{if} \(G > 0 \) \textbf{then}
5. \(C \leftarrow \) the computing capability of this node
6. \textbf{if} \(G \geq C \) \textbf{then}
7. \(G \leftarrow G - C \)
8. \(U \leftarrow 1 \)
9. \textbf{else}
10. \(Q \leftarrow \) Number of jobs in the job queue of this node
11. \textbf{if} \(Q > 0 \) \textbf{then}
12. \(V \leftarrow C - G \)
13. \(U \leftarrow 1 \)
14. \textbf{end if}
15. \(G \leftarrow 0 \)
16. \(\text{Var} \leftarrow 0 \)
17. \(\text{Perf} \leftarrow 0 \)
18. \(\text{Num} \leftarrow \) Number of child processes to be forked.
19. \(\text{Count} \leftarrow \) Number of loops to be processed.
20. \(\text{Start} \leftarrow \) Start time.
21. \textbf{for} \(i = 0 \) to \(\text{Num} - 1 \) \textbf{do}
22. \(\text{fork} \) a child process.
23. \textbf{end for}
24. \(\text{Exit} \) this child process.
25. \textbf{end if}
26. \(\text{End} \leftarrow \) End time.
27. \(\text{Perf} \leftarrow \text{End} - \text{Start} \)
28. \(\text{Var} \leftarrow 0 \)
29. \(\text{for} \) \(i = 0 \) to \(\text{Count} - 1 \) \textbf{do}
30. \(\text{fork} \) a child process.
31. \textbf{end for}
32. \textbf{return} \(\text{Perf} \)

Fig. 5. A Simple Multiprogramming Performance Tester

In Eq. (2), \(P(t) \) is the power consumption of a server node at time \(t \). \(P_{idle} \) is the power consumption of a node when its CPU utilization is 0%. \(P_{dynamic} \) represents the power dynamic range, which is the difference between the power consumption at utilization rate 0% and at 100%. \(U(t) \) is the CPU utilization rate of a server node at time \(t \). With Eq. (2), the energy consumption of the server node during a period from \(t_0 \) to \(t_1 \) can be easily obtained by \(\int_{t_0}^{t_1} P(t)dt \).

The role of a server node is to process the assigned jobs. Each server node has its own job queue. The workload dispatcher assigns a job to the job queue of the selected node as described in Fig. 3. The process of a server node is illustrated in Fig. 4.

D. Computing Capability of a Server Node

In a heterogeneous cluster, some nodes have greater computing capability than others. To make the comparison and calculation intuitive, this work defines the term reference server node. A reference server node is the server node with the unit, which is 1.0, computing capability. A server node of any type can be assigned as a reference server node, even this node is not managed by the simulated cluster. Suppose a server node has the computing capability of 2, this node can finish a job twice as quick as the reference server node. To calculate the computing capability, this study uses a similar process employed by Linux Benchmark system for obtaining BogoMIPS. The process is described in Fig. 5.

IV. REAL-WORLD DATA

This study uses the data recorded from a heterogeneous cluster to test the target simulator. This cluster consists of 40 computers that are 4 IBM X3200 M3 servers featuring one 2.53 GHz quad-core 8 threads Intel Xeon X3440 processor and 2 GB memory per server, 4 IBM X3550 M3 servers featuring two 2.40 GHz quad-core 8 threads Intel Xeon E5620 processor and 12 GB memory per server, 2 Tatung TSS 2520 Servers featuring two 2.40 GHz Xeon processors and 4GB memory per server, and 30 power-saving computers (ACER Veriton N260). Each power-saving computer runs with a dual-core 1.66GHz Intel ATOM N280 processor and 1 GB memory. All server nodes use Linux 2.6 as their operation system. Apache 2.2 and MySQL 5 are installed on each server node.

This study uses standard smart meters as the measurement instruments instead of using digital multi-meters (DMMs), which are employed in many prior studies. The instrumentation for measuring the power consumption consists of two standard smart meters manufactured by Tatung Company, i.e the S4E solid state meters. Tatung S4E meter is also one of standard smart meters manufactured by Tatung Company, i.e the S4E solid state meters. Tatung S4E meter is also one of few types of electronic electricity meter that are currently adopted by Taiwan Power Company, TaiPower. This study collects the power consumption information of this cluster for several weeks, which are 6082 quarter-hours, to be exact.
TABLE I

<table>
<thead>
<tr>
<th>Node Type</th>
<th>Idle Power</th>
<th>Dynamic Range</th>
<th>Computing Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM X3200 M3</td>
<td>63.723 W</td>
<td>10.47 W</td>
<td>12.61</td>
</tr>
<tr>
<td>IBM X3530 M2</td>
<td>93.867 W</td>
<td>88.035 W</td>
<td>31.62</td>
</tr>
<tr>
<td>Tatung TSS 2520</td>
<td>194.94 W</td>
<td>182.68 W</td>
<td>2.02</td>
</tr>
<tr>
<td>Acer Veriton N260</td>
<td>20.81 W</td>
<td>4.41 W</td>
<td>1.0</td>
</tr>
</tbody>
</table>

A. Power Consumption Patterns of Servers

In order to get the power consumption patterns based on the CPU utilization, this study uses sar (a Linux tool) to record the CPU activity. The interval parameter to sar is set to 60 seconds. One machine of each type runs sar as a daemon process to record its CPU utilization over the courses of this data gathering. Each of the machines that run sar also connects to a Mastech 9803R Bench Digital Multimeter (DMM) for recording its power usage. Each DMM reports 4 records per minute to an external computer through an RS-232 cable.

This study associates and synchronizes the recorded CPU utilization and the power usage information to get the correlation between CPU utilization and power consumption of each machine. These relationships of the measured machines are shown in Figure 6. The result validates the assumption given in Eq. (2). The performance tester is also executed on each test machine. The power consumption patterns and their computing capability of all types of nodes are shown in Table I. In this study, the ACER Veriton N260 is defined as the reference server node, which has the unity computing capability.

B. Power consumption data of different periods

The collected data sets cover three periods.

1) Idle Period: The first period is during the winter break when the servers are almost always idle. This period is from time unit 1 to 2400.

2) Busy Period: The second period is the preparation period for the new semester when all the servers are busy at installing and upgrading the required software packages, serving requests from students, updating accounts and performing maintenance activities by staffs, and assisting teachers for preparing their course materials. During the second period, the servers usually have the highest utilization rate of a semester. This period is from time unit 2401 to 3840.

3) Normal Period: During the third period, the servers support the regular computation and web host services. This period is from time unit 3841 to 6802.

Fig. 7 shows the recorded power consumption data. The workload dispatching algorithm used in the test cluster is Round-Robin.

A simulation is conducted using the server utilization data gathered from the test cluster. This series of server utilization rates is fed into the simulator as the input to the traffic generator. The simulation result is shown in Fig. 8. To measure the differences between values obtained by the simulator and the values actually recorded, this study uses the root-mean-square error (RMSE) and normalized root-mean-square error (NRMSE). RMSE is defined as:

$$\text{RMSE}(\theta) = \sqrt{E((\hat{\theta} - \theta)^2)}$$

where $$\hat{\theta}$$ is the simulated value, and $$\theta$$ is the recorded value. NRMSE is defined as:

$$\text{NRMSE} = \frac{\text{RMSE}}{v_{\text{max}} - v_{\text{min}}}$$

where $$v_{\text{max}}$$ and $$v_{\text{min}}$$ are the maximum value and the minimum value in the recorded data, respectively. RMSE and NRMSE of this simulation are shown in Table II.

V. Conclusion

The overall NRMSE is under 2%. Simulating the busy period produces the highest NRMSE, which has the RMSE of 15.89 W. The differences are mainly introduced by the following factors:

1) Power consumption of the infrastructure. The power lines and supporting infrastructure consume some energy that is not modeled in this simulator.

TABLE II

<table>
<thead>
<tr>
<th>Period</th>
<th>Idle Power</th>
<th>Busy Power</th>
<th>Normal Power</th>
<th>Overall Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_{\text{max}}</td>
<td>2514.4 W</td>
<td>2535.8 W</td>
<td>2529.6 W</td>
<td>2535.8 W</td>
</tr>
<tr>
<td>v_{\text{min}}</td>
<td>1655.7 W</td>
<td>1655.1 W</td>
<td>1655.8 W</td>
<td>1655.7 W</td>
</tr>
<tr>
<td>RMSE</td>
<td>9.38 W</td>
<td>15.89 W</td>
<td>11.23 W</td>
<td>11.88 W</td>
</tr>
<tr>
<td>NRMSE</td>
<td>1.09%</td>
<td>1.83%</td>
<td>1.28%</td>
<td>1.35%</td>
</tr>
</tbody>
</table>

Fig. 8. Simulation Result
2) Efficiency of the power supply unit (PSU). PSUs are known to have different efficiency at different load level. However, this is not considered in the proposed design.

3) Granularity of the computing capability modeling. This study uses simple coarse-granularity profiling to model the computing capability of different types of server nodes. This approach may affect the accuracy of the simulation.

Although there is difference between the real data and the simulation result, this study considers that the proposed design is good enough for empirical practice for the following reasons:

1) Users only need to gather the relationship between CPU utilization rates and the corresponding power consumption to build the power profile for each type of server node. This can be easily conducted by using a DMM and a software package, such as sar.

2) Profiling computing capability used in this study is easy and intuitive. The validation conducted in the previous section proves this approach is accurate enough to profile the power consumption pattern of the targeted cluster.

Such simple design enables data center managers to use inexpensive tools and simple programming to construct a workload dispatching simulator for estimating the energy usage of their heterogeneous clusters. With such simulator, some applications can be easily provoked, such as: estimating the energy cost with time-based tariffs, impacts of applying different workload dispatching schemes, changes in service quality when some server nodes are replaced or removed, etc. These applications eventually improve the energy efficiency and energy cost management for data centers adopted heterogeneous clusters.

REFERENCES

