
 

 

 
Abstract—Two facial authentication methods based on two 

different Gabor phase feature representations are proposed in 
this paper. In the first proposed scheme, similarity score having 
the highest classification accuracy is used as threshold of the 
Gabor filter. In the second method, minimum intra-personal 
similarity score is used as individual subject’s threshold for 
authentication. Both of these methods have shown high 
classification capability for our dataset. 
 

Index Terms--Human face authentication; Gabor wavelets; 
Gabor magnitude features; Local Gabor binary pattern. 

I. INTRODUCTION 

Due to unconstrained variations of pose, illumination, key 
frame selection and region of interest, automated real time face 
authentication is a challenging objective. The fast and 
automatic method of face authentication is to use a class 
specific threshold on the similarity measure when verifying the 
face image. On the basis of the threshold, the authentication 
system should accept the query image as a positive sample or 
reject it. Due to the difficulty level in face authentication 
problems, the selection of proper threshold of a given class in a  
dataset is an open problem because this difficulty level can 
change in different situations e.g. in video surveillance issues. 
The determination of the threshold is usually done by using 
receiver operating characteristic (ROC) curve which is based 
on the different values of false positive rate (FPR) and true 
positive rate (TPR) [1] as mentioned by Mansfield et al. [2]. 
Generally, the point on the ROC curve that has the maximum 
accuracy, i.e. TPR-FPR value, is selected as the operating 
threshold. We call this method the global threshold which 
provides a binary classification threshold between negative and 
positive set. However, for multiclass classification problem,  
individual threshold of each class can be used. We call this the 
local threshold approach. 
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In this paper, we evaluate the performance of these two face 

authentication  methods  for  two  different Gabor phase based 

feature  representations.  The  proposed  threshold  based  face  
verification methods and the experimental results are described  
in subsequent sections. 

II. THE FACE AUTHENTICATION SYSTEM 

In face verification systems, the user makes a “positive” 
claim to an identity, requiring a “one-to-one” comparison of the 
submitted face sample to the enrolled face template of the 
claimed identity. The procedure is shown in Figure 1.  

 
 

 
 
 

Figure 1. A typical face authentication system 
 
 These components are discussed in following sections 
.  

A. Face data acquisition 

To evaluate the performance of the proposed system, images 
from our in-house database are being used. The in-house 
database contains images which were collected using a generic 
webcam. Most of the images were taken from a 100 frame 
video sequence recorded in unconstrained environment where 
illumination, background and facial expression were not 
restricted. However, the distance from camera and face 
orientation was kept consistent in all recordings. Video 
sequences of a total of 60 subjects were collected. The images 
taken were of size 352×440.  

In Figure 2, sample images from the database are shown for 
reference.  

 

 
Figure 2. Sample images from the in-house database 
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B. Face data preprocessing 

We use Viola-Jones Ada Boosted algorithm [3] to extract the 
face region from the image. This algorithm has become almost 
a de facto standard for face detection from images taken in 
unconstrained environment. As per requirement of the 
algorithm, all the images we have used contain full frontal 
upright faces. The basic principle of the Viola-Jones algorithm 
is to scan a sub-window capable of detecting faces across a 
given input image. It rescales the detector and runs it many 
times through the image at different sizes each time. This scale 
invariant detector is constructed using an integral image and 
simple rectangular features of Haar wavelets.  In Figure 3, a 
gray level raw image of size 256×354 is cropped and resized 
into a 128×128 facial region image after face detection. After 
that, the intensity of the image is normalized. 

 
Figure 3. Extraction of face region from a video frame and 

preprocessing 

C. Facial feature extraction 

Facial features are acquired in a few steps. Firstly, Gabor 
wavelet is applied on the cropped facial region image and phase 
of each of the filter responses is calculated. For each of the 
Gabor phase face, local Gabor binary pattern (LGBP) [4] is 
calculated. After that, each of the LGBP image is divided into 
smaller non overlapping regions and histograms are calculated 
for each of the regions [5]. Finally, these local histograms are 
concatenated one after another to construct the final feature 
vector. 

 
1) The Gabor wavelet 

Due to their biological relevance and computational 
properties, Gabor wavelets are introduced to image analysis. As 
a feature generator, Gabor filters are widely used in face 
recognition. Since the kernels of Gabor wavelets are similar to 
the 2D receptive field profiles of the mammalian cortical 
simple cells, they exhibit desirable characteristics of spatial 
locality and orientation selectivity. They are also optimally 
localized in the space and frequency domains. The Gabor 
wavelets (kernels, filters) can be defined as follow [5]: 

߰ஜ,௩ሺݖሻ ൌ 	
ฮ݇ஜ,௩ฮ
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where v and μ define the scale and orientation of the Gabor 
kernel, z denotes the pixel, i.e., z=(x,y); ‖∙‖ denotes the 
Euclidean norm operator, and the wave vector ݇ఓ,௩ is defined 
as: 

݇ఓ,௩ ൌ 	݇௩݁థഋ (2)

where ߶ఓ ൌ 8/ߤߨ  is the orientation parameter and k୴ ൌ
k୫ୟ୶	/f  , where f is the spacing factor between filters in the 

frequency domain.  In Figure 4, Gabor kernels at five different 
scales and eight different orientations are depicted. 

Given an input face image I, its convolution with Gabor 
wavelet ψஜ,୴ can be defined as: 

ఓܱ,௩ሺݖሻ ൌ ሻݖሺܫ ∗ 	߰ఓ,௩ሺݖሻ (3)

where * denotes the convolution operator. For each Gabor 
kernel, at every image pixel z, a complex number containing a 
real part   and an imaginary part   is generated. Based on these 
two parts phase Φ୴,ஜሺzሻcan be computed as follow: 

Φఓ,௩ሺݖሻ ൌ ݊ܽݐܿݎܽ ቆ ఓܱ,ఔ
ூሺݖሻ

ఓܱ,ఔ
ோሺݖሻ

ቇ (4)

In our work, Gabor filters at five scales (v={0,1,…,4} in 
Equation (1)), and eight orientations (μ={0,1,2,…,7} ranging 
between 0°  to 7π/8°  in Equation (1)) are applied on each 
preprocessed facial image.  

 

Figure 4. Real part of Gabor kernels at 5 scales (v={0,1,…,4}) 
and 8 orientations (μ={0,1,2,…,7}) 

 
Here note that the preprocessed image is 128×128 and the 

scale size is relative to this image size. The Gabor filters exhibit 
some invariance to background, translation, distortion and size. 
However, this invariance property of the Gabor wavelet may 
not hold if the change in background, translation, distortion or 
size is too large. In this sense the filter scale and image size is 
related. By convolving the Gabor filters/kernels with the facial 
image, the Gabor filter/kernel representation of a facial image 
is obtained. Therefore, 40 Gabor responses are recorded from a 
single facial image. Figure 5 presents 40 Gabor phase 
representation of the normalized facial image of Figure 3 for 
the values σ=2π,݇௫=π/2, and f=√2 in Equation (1). 

 
2) Local Gabor Binary Pattern Histogram Sequence 
(LGBPHS) 

Researchers in face recognition have been representing and 
recognizing faces based on subspace discriminant analysis or 
statistical learning for years. Nevertheless, these approaches are 
always suffering from the generalized ability problem due to 
the unpredictable distribution of the real-world face images 
used for testing, which might differ dramatically from that of 
the training samples. Local Gabor binary pattern histogram 
sequence (LGBPHS) [4] is a non-statistic based face 
representation approach, which is not only robust to the 
variations of imaging condition but also has much 
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discriminating power. It is based on multi-resolution spatial 
histogram combining local intensity distribution with the 
spatial information. Therefore, it is robust to noise and local 
image transformations due to variations of lighting, occlusion 
and pose. In LGBPHS, a face image is modeled as a “histogram 
sequence” by dividing each local Gabor binary pattern (LGBP) 
[4] map into non-overlapping rectangle regions with specific 
size, and histogram is computed for each region. The LGBP 
histograms of all the LGBP maps are then concatenated to form 
the final histogram sequence as the model of the face. 

 
Figure 5. Gabor phase representation of the face of Figure 3 

(shown as a fourth order tensor) 
 
Local Gabor binary pattern (LGBP) operator based on Gabor 

phase labels the pixels of Gabor phase image by calculating 
neighborhood of each pixel with center value through Equation 
(5). After LGBP calculation, the Gabor phase images of Figure 
5 looks like one presented in Figure 6. If eight neighborhoods 
of the center pixel, located atሺxୡ, yୡሻ , are ൫x୮, y୮൯ , where 
p=0,1,…,7, then LGBP based on Gabor phase at ሺxୡ, yୡሻ is 
defined as follows [4]: 

ܤܩܮ ఓܲ,௩ ൌ 	݂ ቀ߶ఓ,௩,൫ݔ, ൯ݕ െ	߶ఓ,௩,ሺݔ, ሻቁݕ ൈ 2


ୀ

(5)

where݂ሺݔሻ ൌ 	 ቄ
1, ݔ  0
0, ݔ ൏ 0 

 
Figure 6. Local Gabor Binary Pattern (LGBP) representation of 

Figure 5 
These LGBP labels are then encoded further to local 
histograms,  which  are    used    as   face    representation   for 
classification.   If   each    LGBP   map    is    divided    into   R 

non-overlapping    regions,  then   histogram  of   rth  region of 
specific  LGBP  map   (from    (v,μ)th Gabor  phase  picture) is 
computed by:  

ఓ,௩,ܪ ൌ ሺ݄ఓ,௩,ሺ0ሻ, ݄ఓ,௩,ሺ1ሻ, … , ݄ఓ,௩,ሺܶ െ 1ሻሻ (6)

 

where T is the bin size. Then all the histogram pieces computed 
from the R regions of a LGBP map are concatenated to a 
histogram sequence of LGBP image as follows: 

ఓ,௩ܪ ൌ ሺܪఓ,௩,, ,ఓ,௩,ଵܪ … , ఓ,௩,ோିଵሻ (7)ܪ

 

3) The Gabor feature representation 
The result of a Gabor transformation can be seen as a fourth 

order tensor TG(u,v,l,m) (Figure 5) which is a 8×5×128×128 
tensor in this example, where  u={1,2,…,8},v={1,2,…,5} are 
indexes along orientation and scale of Gabor filter response and 
l={1,2,…,128) and m={1,2,…,128} are width and height of the 
image respectively. It can be noticed that entries of the fourth 
order tensor are complex numbers and the phase part of this 
fourth order tensor is defined here as the Gabor phase-face 
which we can acquire using Equation (4). There are 40 
components (Gabor phase-face) for a single facial image in 
Gabor facial representation, and each one is the phase part of 
the output which is obtained by convolving a facial image with 
40 Gabor filters/kernels.  

In the conventional representation, the output of a Gabor 
function using the convolution Iሺx, yሻ ∗ 	ψஜ,୴ሺx, yሻ (Equation 
(3)) followed by application of LGBPHS will return a 
histogram based basic Gabor-phase feature vector for the μth 
orientation at vth scale, and dimension of this vector is 
n=256×l/16×m/16=256×8×8=16384. It is because during 
LGBPHS (Equation (7)) calculation, 64 non overlapping 
regions are considered. It means that in Equation (7), value for 
R=8×8=64 is chosen. LGBP contains values ranging between 
[0, 255] since the bin size of T=256 is chosen in Equation (5).  

 
4) 40 basic Gabor filter and summed Gabor filter of all scale 
and orientations 

We used each of the 40 different Gabor face as 40 different 
representation of a single face image. Instead of using Equation 
(8), we use the following formula:  

݃ఓ,௩ ൌ  ሺ8ሻ																																											ఓ,௩ܪ	
 
where	݃ఓ,௩  is the Gabor feature vector for filter response of 
Gabor filter/kernel at μ orientation and v scale. From this, it can 
be seen that 40 different representations are possible for a 
single facial image.  
The sum of Gabor representations in all scales and all 
orientations is: 
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ସ

௩ୀ



ఓୀ

	ൌ ሻݖሺܫ ∗ 	߰ఓ,௩ሺݖሻ
ସ

௩ୀ



ఓୀ

	

߶∑,∑ሺݖሻ ൌ arctanቆ
ܱ∑,∑
ூ ሺݖሻ

ܱ∑,∑
ோ ሺݖሻ

ቇ	

ܤܩܮ ∑ܲ,∑ ൌ 	݂ ቀ߶∑,∑,൫ݔ, ൯ݕ െ ߶∑,∑,ሺݔ, ሻቁݕ ൈ 2


ୀ

	

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013



 

,∑,∑ܪ ൌ ቀ݄∑,∑,ሺ0ሻ, ݄∑,∑,ሺ1ሻ,… , ݄∑,∑,ሺܶ െ 1ሻቁ	

݃∑,∑ ൌ ൫ܪ∑,∑,, ,ଵ,∑,∑ܪ … ,  ሺ9ሻ																																	ோିଵ൯,∑,∑ܪ
where, ݃∑,∑ is the Gabor feature vector. In this representation 
filter responses for all orientations for a scale is summed and 
then each such representation of scale is summed.  

 
5) Similarity measure 

As the number of samples per subject is only a few for the 
databases, distance based similarity measures are employed to 
identify persons in the gallery database. Here notice that using 
LGBPHS, facial images are represented as histogram 
sequences. Similarity of two faces represented can be 
calculated as:   

ଵܪ ൌ ሺܪ,,
ଵ , ,,ଵܪ

ଵ , … , ,,ோିଵܪ
ଵ , ,ଵ,ܪ

ଵ , … , ,ଵ,ோିଵܪ
ଵ , ,ଶ,ܪ

ଵ , … , ,ସ,ோିଵܪ
ଵ ሻ 

and ଶܪ ൌ ሺܪ,,
ଶ , ,,ଵܪ

ଶ , … ,,ோିଵܪ,
ଶ , ,ଵ,ܪ

ଶ , … ,ଵ,ோିଵܪ,
ଶ , ,ଶ,ܪ

ଶ , … , ,ସ,ோିଵܪ
ଶ ).To 

calculate their matching score, histogram intersection is 
applied. Histogram intersection of two histograms, denoted as 
∩ ሺhଵ, hଶሻ , is used as a similarity measurement of two 
histograms can be defined as follows [6]: 

∩ ሺ݄ଵ, ݄ଶሻ ൌ 	min	ሺ݄
ଵ, ݄

ଶሻ

்

ୀଵ

 (10)

where	hଵ and hଶ are two histograms, and T is the number of 
bins in the histogram. The intuitive motivation for this 
measurement is calculation of the common part of two 
histograms. Using histogram intersection the similarity of two 
face images based on the LGBPHS face representation is 
computed by: 

∩ ሺܪଵ,ܪଶሻ ൌ 		∩ ሺܪ௩,ఓ,	ଵ , ௩,ఓ,ଶܪ ሻ

ோିଵ

ୀ

ସ

௩ୀ



ఓୀ

 (11)

D. Face Authentication 

For our face authentication system we applied two types of 
thresholds, 1) Global threshold, and 2) Local threshold. 

 
1) Global Threshold  

When considering a global threshold, we are solving a 
classification problem between two classes. In such case, each 
instance ܫ is mapped to one element of the set ሼ, ݊ሽ of positive 
and negative class labels. The classification model maps from 
instance to predicted classes. Given a classifier and an instance, 
there are four possible outcomes. If the instance is positive and 
it is classified as positive, it is counted as a true positive (TP).If 
it is classified as negative, it is counted as false negative (FP). If 
the instance is negative and it is classified as negative, it is 
counted as true negative (TN); if it is classified as positive, it is 
counted as a false positive (FN). Given a classifier and a set of 
instances (the test set), a two-by-two confusion matrix (also 
called a contingency table) can be constructed representing the 
dispositions of the set of instances. Given a classifier and a set 
of instances (the test set), a two-by-two confusion matrix (also 
called a contingency table) can be constructed representing the 
dispositions of the set of instances.  

The numbers along the major diagonal represent the correct 
decision made, and the numbers off the diagonal represent the 
errors (confusion) between the various classes.  

Figure 7 shows a confusion matrix. We picked the similarity 

measure that provides the highest accuracy ܣ for both ݃ఓ,௩ and 
݃∑,∑  based feature representations as the global threshold, 
where accuracy ܣ is calculated as [1]: 

ܣ																															 ൌ 	
ܶܲ  ܶܰ
ܲ  ܰ

																																		ሺ12ሻ 

 
where, TP = true positive, TN = true negative, P = number of 

positive samples, and N = number of negative samples.  
 

 
 

Figure 7.The confusion matrix. 
 

Moreover, equations of several common metrics that we 
calculated from the confusion matrix are the true positive rate: 

tp rate ≈Positives correctly classified /  Total positives 
and the false positive rate : 

fp rate ≈Negatives incorrectly classified /  Total negatives 
By using these two equations, we can construct the ROC 

curve that can help us to find the optimal threshold for the 
training set. It is a two-dimensional graph of which TP rate is 
plotted on the Y-axis and FP-rate is plotted on the X axis. An 
ROC graph depicts relative trade-offs between benefits (true 
positives) and costs (false positives).  The lower left point (0,0) 
represents the strategy of never issuing a positive classification. 
It is a classifier which has no false positive errors but also gains 
no true positives. The opposite strategy, of unconditionally 
issuing positive classifications, is represented by the upper right 
point (1,1). The point (0,1) represents perfect classification. All 
these have provided us a visual interpretation of the 
performance of the global thresholds of both feature 
representations. 

 
2) Local Threshold  

Due to the unconstrained nature of the face images, similarity 
scores can vary drastically between each separate subjects. In 
such case, a multi-class classification, where each face is 
individual class itself, can be more effective than a global 
threshold based approach described above. We consider taking 
the minimum similarity measure between intra-class histogram 
intersection to be the local threshold since it provides the 
minimum similarity needed for a probe face to claim 
authentication with the gallery image. This local threshold is 
calculated by establishing training sets for individual subjects 
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in the gallery set. For a training set of a gallery image having n 
samples, the local threshold ܶ of the samples is calculated 
as follows: 

ܶ 	ൌ min ቀܮୀଵ
ିଵܮୀାଵ

 ∩ ሺܪ,  ሺ13ሻ									ሻቁܪ

where	ܮ is the loop operator. 

III. EXPERIMENT RESULTS AND DISCUSSION 

To calculate the global threshold, we used a training set of 60 
subjects from our in-house dataset. Only 30 subjects were used 
for the gallery set. The first 30 images of the probe set were 
considered as the positive samples and the second 30 images as 
the negative samples. The face images were extracted from the 
first and sixth frame of the video sequence of each subjects. To 
find the threshold with maximum accuracy, we ran the 
experiment with threshold value starting from 0 to 16384, 
which was the highest histogram intersection value obtainable 
for a grayscale image with 256 bins and 64 regions. We 
incremented the threshold by 128. The performance of the 
thresholds for gஜ,୴ and ݃∑,∑ feature representations is shown in 
ROC curves given in Figure 8 and Figure 9 respectively. Note 
that in Figure 8, the ROC curves for higher scales show more 
discriminating thresholds which indicates the higher 
discriminating capability of the lower frequency filters. 

When testing the chosen global thresholds calculated for the 
gஜ,୴ and	݃∑,∑	feature representation, we used a different set of 
samples for probe and gallery sets collected from second and 
fifth video frame, respectively. For gஜ,୴ feature representation, 
when verifying a probe image claiming to be a “positive” 
sample image in the gallery set, we calculated the similarity 
measures between them for each of the 40 filters and then 
compared them with their corresponding global threshold of the 
feature representation. If 50% or more of the similarity 
measures got equal or above threshold value, we accepted the 
probe image as a positive sample. For ݃∑,∑ feature 
representation, we checked whether the similarity measure 
between the probe and gallery image was above or equal to the 
optimal threshold chosen for authentication.  

Table I provides the test results for the two feature 
representations. 

 To calculate local thresholds, a 300 image training set was 
used from our in-house database of  60 subjects. The training 
set contained 5 images each subject.  

 To test the local thresholds, a different set of images was 
used for each subject from the training set of the same subjects 
to create the probe and gallery set. The probe set contained a 
single image per subject. For the local threshold based 
approach, each subject was a separate class. For each class, it 
had 1 positive sample and 59 negative samples. Accuracy for 
each subject was calculated using Equation (13).  We 
considered the performance of the gஜ,୴ feature representation 
based 40 thresholds and ݃∑,∑ threshold by the mean accuracy 
achieved on the test set.  

The results of the test for both feature representations are 
given in Table II.  
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Figure 8. ROC curves for  gஜ,୴ feature representation based 

thresholds 
 

 
Figure 9. ROC curve for ݃∑,∑ based feature representation 

thresholds 
 
 

Table I. Global threshold test set result for both feature 
representations using 60 subjects. 

Filter TP FN TN FP 
Classification 
Accuracy (%) 

݃ఓ,௩ 24 6 30 0 90 
݃∑,∑ 27 3 30 0 95 

 
Table II. Local threshold test set result for both feature 
representations using 60 subjects. 

Feature 
Representation

Mean Classification 
Accuracy (%) 

݃ఓ,௩ 93.19 
݃∑,∑ 95.89 

IV. CONCLUSION 

Real-time automated face verification is a challenging issue 
due to the variations in the data samples and time required to 
perform the classification objective. In this paper, we have 
proposed two Gabor phase feature representation based face 
authentication for binary and multi-class classification. Firstly, 
we have used the similarity measure with the highest accuracy 
for a Gabor feature representation as the global threshold. 
Secondly, we have used possible minimum threshold of 
individual similarity measures for each subject to classify faces. 
Both of these methods have shown high classification 
capability for our dataset with local threshold based approach 
showing comparably better results. 
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