
 

  
Abstract—The health condition of the bridge can be 

predicted through sensors’ reading in bridge monitoring. The 
sensors measure the acceleration and displacement of bridge 
response. The data is sent to the local server through the data 
acquisition. Interpretation of the data applied neural network 
in the localized server system. This paper aims to define 
performance of the acceleration and displacement data domain 
as input in applied neural networks.  The architecture of neural 
networks’ model used an input layer, one and two hidden layers 
with n neurons and an output layer. The input layer consists of 
time-acceleration domain and time-displacement domain of the 
bridge due to earthquake loads. Meanwhile, the output layer 
consists of bridge condition level which is determined using 
finite-element analysis software. The training activation used 
Gradient Descent Back-propagation and activation transfer 
function used Log Sigmoid function.  The bridge condition is 
categorized in a range 0 to 3, which indicates the extent of 
bridge health condition ranging from safe to high-risk level. 
The case study is 3 spans of box-girder’s bridge subject to four 
earthquakes loads.  The results showed that the prediction of 
bridge health condition based on displacement data domain 
with one hidden layer is more acceptable compared with based 
on acceleration. The comparison obtains the recommendation of 
the best of data reading from the sensors to predict the bridge 
health condition. The application neural networks in the bridge 
health prediction can help the authorities to know the condition 
of the bridge due to earthquake at monitoring time, as the 
repair and maintenance of bridges can be performed as early as 
possible before the bridge was damaged. 

 
Index Terms—neural networks, acceleration, displacement, 

bridge health condition. 
 

I. INTRODUCTION 

EURAL networks are computer processes that attempt 
to imitate the working process of human brain. The 

activity of neural networks associated with the use of 
intelligent. The learning mechanisms in neural networks 
exist to acquire the knowledge. The architectural model of 
neural networks has been classified as various types based 
on their training activation. The multi perceptron layers 
architectures are usually selected to solve many problems 
using neural networks.  The neural networks have the ability 
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to model the non-linear relationship between a set of input 
variable and the corresponding outputs without the need for 
predefined mathematical equations. Furthermore, neural 
networks do not need prior knowledge of the nature to the 
relationship between the model inputs and corresponding 
outputs. Comparison to traditional methods, neural networks 
tolerate relatively imprecise, noisy or incomplete data. 
Approximate results are less vulnerable to outliers, have 
better been filtering capacity and more adaptive. This 
enables neural networks to overcome the limitations of the 
existing methods and successful in be applied on many 
problems within the field of Civil Engineering. 

The neural networks have been applied in Civil 
Engineering since the past decades. Reference [1] 
investigated the use of neural network in some Civil 
Engineering system. The training and testing process utilize 
actual field data as the input. The target output is the 
theoretical solution of the problem being analyzed. The 
results showed that the neural networks are reliable as well 
as the other conventional methods. Some other researchers 
interested to develop the neural networks’ algorithm despite 
their presently basic form at solving direct mapping problems. 
Therefore, currently the total of the applied neural networks in 
the Civil Engineering studies have increased[2]. Even in the 
bridge engineering field, many civil engineering researchers 
had applied the neural network in the latest research such as 
[3], [4], and [5]. However, there is a little discussion about 
which the best of both acceleration and displacement values 
for input data in neural networks, especially for bridge 
health prediction. Accordingly, the aim of this paper is to 
define performance of the acceleration and displacement 
data as an input domain in bridge health prediction due to an 
earthquake. As of, the civil engineer can make a 
recommendation to bridge authorities for the choice of 
optimal sensors.        

II.  BRIDGE HEALTH CONDITIONS AFTER EARTHQUAKE 

Bridge’s structure needs to be observed periodically in the 
real time. In bridge health monitoring, the damage of the 
bridge can be known and detected early through data reading 
by the sensors. The acceleration and displacement data 
reading was sent to the local server through data acquisition. 
Interpretation of data reading used the neural networks in the 
localized server system. Several researchers observed the 
accelerations and displacements as the input data in neural 
networks, such as [4], and [6]. Reference [4] used neural 
networks to observe a bridge under dynamic load, especially 
general traffic load. The objective of the research is to 
estimate the bridge displacement which corresponds to the 
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strain of the bridge. On the other hand [6] studied the 
acceleration based approach using neural networks. The 
objective of research is to predict the displacement of 
building response under earthquake excitation. The inputs 
data are the acceleration, velocity and displacement at 
ground and several stories of building. The others 
researchers investigated the application of neural networks 
in existing bridge evaluation such as [7], and detected a 
bridge damage such as [8] used frequencies and mode 
shapes as the input  data. Studies about the application of 
neural networks on bridge structures under seismic have 
been conducted by [3], [9], and [10].  

In structural dynamic, the response of the bridge due to 
earthquakes commonly is derived from (1) 

 
 }]{[}]{[}]{[}]{[ guMYKYCYM &&&&& −=++    (1) 

 
where [M], [C] and [K] respectively is matrix of mass, 
damping and stiffness. Meanwhile Y&& , Y& , and Y individually 
is vector of acceleration, velocity, and displacement of a 
bridge response.  Vector 

gu&& is acceleration of earthquake 

excitation. By using the uncoupling procedure, the modal 
equation of nth mode can be written as (2). 
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Displacement for each mode shown as (3) 
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where nξ , ω , and nφ respectively are damping ratio, 

frequency and n number of mode shape. The acceleration is 
generated by second time derivative of displacement.   The 
displacement values of a bridge response describe the 
performance of the bridge under an earthquake loading. In 
bridge monitoring, both of acceleration and displacement 
values can be resulted from measurement by sensors were 
installed. The acceleration and displacement values can also 
be produced from finite-element analysis using a computer 
program.   

The construction era of a bridge is a good indicator of 
likely performance, with higher damage levels expected in 
older construction than in newer construction [11]. The more 
ages of the bridge structure, the longer loading to have been 
accepted. Therefore, bridge structure monitoring is 
necessary done as periodically in order to know the bridge 
health condition at the given time. According to [12], 
damage of bridge structure is normally defined as the 
intentional or unintentional  changes in material and 
geometric properties of the bridge, including changes in 
boundary or supporting conditions and structural 
connectivity, which adversely affect the current or future 
serviceability of the bridge. Damage can occur under large 
transient loads such as strong motion earthquakes and can 
also be accumulated incrementally over long periods of time 
due to factors such as fatigue and corrosion damage. 

In this paper bridge health condition is focused on the non 
linear behavior of piers due to earthquakes. The analysis of 
the simulation model used the finite-element software. 
Response acceleration data is adopted from [13] as shown in 

Fig. 1. The Fig.1 displayed the peak ground accelerations 
(PGA) of the earthquakes are 0.1539G (1.51 m/s2) for San 
Fernando earthquake, 0.8677G (8.51 m/s2) for New Zealand 
earthquake, 0.4731G (4.64 m/s2) for Lomaprieta earthquake, 
and 0.3803G (3.73 m/s2) for Landers earthquake.  

The acceptance criteria of pier damage based on structural 
performance levels in FEMA 356 [14]. The criteria are 
Immediate Occupancy (IO), Life Safety (LS) and Collapse 
Prevention (CP).  The IO is defined as the structure still safe 
to occupy which only very limited structural damage has 
occurred after an earthquake. The risk of life-threatening 
injury is expected very low. The LS is defined as some 
structural element and component are severely damaged but 
the risk of life-threatening injury is expected low. The CP is 
defined as the structure is on the verge of partial or total 
collapse and significant risk of injury may exist.  

 

 
Fig. 1.  Response acceleration of earthquake data from PEER [13]. 

III.  NEURAL NETWORK IN BRIDGE HEALTH PREDICTION 

This study used the Neural Network Back Propagation 
(BPNN) algorithms. The best performances of BPNN 
depend on the selection of suitable initial weight, learning 
rate, momentum, networks architecture model and activation 
function. The weight describes the acceleration or 
retardation of the input signals. The architecture model for 
this system has n number of input neurons, one and two 
hidden layers with n neurons and an output. The input 
networks consist of time-acceleration domain and time-
displacement domain of the bridge seismic response 
analysis. The numbers of input correspond to the numbers of 
sensor on the bridge monitoring. Meanwhile the output layer 
is the level of a bridge health condition due to an earthquake, 
which is resulted by finite-element analysis software. The 
architecture model of neural networks illustrates in Fig. 2. 

 
Fig. 2. The architecture model of neural networks with 2 hidden layers 

in the system. 
 
The training function used Gradient Descent Back-

propagation to minimize the sum squared error (E) between 
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the output value of neural network and the given target 
values. The total error is defined as (4). 

∑
∈
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1 )(            (4)  

where tj denotes target value, aj denotes activation value of 
output layer, and J is set of training examples. The steps are 
repeated until the mean-squared error (MSE) of the output is 
sufficiently small. 

The final output is generated by a non linear filter Φ 
caller activation function or transfer function. The transfer 
function for this model used Log Sigmoid function, which 
has a range of [0,1] to obtain the output. This function is 
differentiable function and suitable used in BPNN 
multilayer as shown in (5). 
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Each i represents one of the units of layer l connected to 
unit j and ɵj represents the bias. 

The weight, wij of networks has adjusted to reduce the 
overall error. The updated weight on the link connection the 
ith and jth neuron of two adjacent layers is defined as,  

)/( ijij WEW ∂∂=∆ η            (6) 

where, η is the learning rate parameter with range 0 to 1 and 

ijWE ∂∂ / is the error gradient with reference to the weight.  

In this study, input data has normalized by a linear 
normalization equation as follows: 

)()( minmaxmin
' zzzzz ii −−=         (7) 

where  is the normalized input values, zi the original data, 
zmax and zmin, respectively, the maximum and minimum 
values.  

IV.  A CASE  STUDY 

The bridge simulation model covered 3 spans of box 
girder concrete. The lengths of the 3 spans are 79m, 110m, 
and 79m respectively. The 2 sensors were assumed to be 
installed on the top of piers as shown in Fig. 3. The sensors 
measure the acceleration and displacement values of the 
bridge response. 

 

 
Fig. 3. The 3 spans of box girder bridge model 

 
The bridge model in Fig. 3 has been analyzed using the 

finite-element software. The non linear time history analysis 
has been applied in the model so the behavior and condition 
on the model due to earthquake can be known as a detail at 
the given time.  

According to FEMA 356, time history analysis shall be 
performed with at least three time-histories data sets of 
ground motion. Since three time history data sets are used in 
the analysis of structure, the maximum value of each 
response parameter shall be used to determine design 

acceptability. The bridge model in this study has been 
simulated to receive four excitations of earthquake in Fig. 1. 
Thereby, responses of bridge structure due to some 
earthquakes have applied as input in the training process.  

The damage of structure element from finite-element 
analysis is described in Fig. 4. The criteria of bridge damage 
is based on standard of Federal Emergency Management 
Agency [14]. Initial of B is described as operation level, 
which states transition from safe level to IO level. The IO is 
immediate-occupancy; LS is life-safety, and CP is collapse-
prevention. The level before damage is described with S 
(safe level). Fig.4 illustrates the point of high risk damage at 
the top of piers (CP level).    

 
 

Fig. 4. Damage level of bridge model due to the excitation of Lomaprieta, 
1989 earthquake 

 
Fig.5 and Fig.6 show the response of the bridge model 

due to Lomaprieta earthquake. The acceleration and 
displacement response of the bridge is measured during 
11.65 seconds at the point where sensor1 and sensor2 will be 
located. The damage level occurred after 9.25 seconds. This 
level consists of IO level (1st index), LS level (2nd index) and 
CP level (3rd index) respectively at 9.26, 11.05, and 11.50 
seconds. The time before 9.25 seconds is categorized a safe 
level (zero index). The maximum acceleration values of 
bridge response are 4.745 m/s2 at sensor1 and 1.7089 m/s2 at 
sensor2 (Fig. 5). The maximum displacement value at 
sensor1 is 0.0486m, whereas at sensor2 is 0.00985m (Fig. 
6). 
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Fig.  5. The acceleration response of bridge model due to the excitation of 
Lomaprieta 1989 earthquake.  
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Fig.  6. The displacement response of bridge model due to the excitation of 
Lomaprieta 1989 earthquake.  
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 The architecture of neural network method in this study is 
shown in Fig. 2. The study used 1 and two hidden layers to 
finding the best result for prediction of bridge condition. The 
architectures model for 1 hidden layer has 5 neurons for 
input, 5 neurons for hidden and 4 neurons for output layer. 
The topology of the neural network neurons is 5-5-4. 
Whereas the architectures model for 2 hidden layers has 5 
neurons for input layer, 5 neurons for 1st hidden and 5 
neurons for 2nd hidden layer and 4 neurons for output layer. 
The topology of neurons can be written as 5-5-5-4. The 
neurons for input layer consist of time, acceleration and 
displacement from sensor1 and sensor2. The output layer is 
a damage level of the bridge which is categorized into 4 
indexes. The indexes are 0 (zero) for safety level (S), 1 (one) 
for IO level, 2 (two) for LS level and 3 (three) for CP level. 

One of the excitations is the Lomaprieta earthquake, 
which has 234 data for input and output data as shown in 
Table I. The safety level has been described by 186 data 
during 9.25 seconds for S=0 output index, 42 data during 
2.05 seconds for IO=1 output index, 2 data during 0.05 
seconds for LS=2 output index, and 4 data during 0.15 
seconds for CP=3 output index.    

 
TABLE I 

THE EXAMPLE OF INPUT DATA FROM LOMAPRIETA 
EARTHQUAKE  

 

TIME ACC1 DISPL1 ACC2 DISPL2
1 0 0.00E+00 -9.77E-05 0.00E+00 -2.95E-04 S = 0

2 0.05 3.57E-02 -1.29E-04 1.18E-03 -3.29E-04 S = 0

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

225 11.2 -3.26E-02 -5.65E-03 6.44E-01 2.45E-04 IO= 1

226 11.25 5.59E-02 -3.37E-03 1.70E-01 2.83E-03 IO= 1

227 11.3 -1.36E-01 -9.34E-04 -3.18E-01 5.81E-03 IO= 1

228 11.35 2.58E+00 2.74E-03 -2.27E-01 8.24E-03 IO= 1

229 11.4 6.23E-01 1.13E-02 -8.02E-01 9.85E-03 LS= 2

230 11.45 1.10E+00 2.26E-02 -8.31E-01 9.58E-03 LS= 2

231 11.5 -1.44E+00 3.64E-02 -5.99E-01 7.66E-03 CP=3

232 11.55 -3.25E+00 4.69E-02 5.41E-02 4.70E-03 CP=3

233 11.6 -4.75E+00 4.86E-02 1.09E-01 9.90E-04 CP=3

234 11.65 3.01E+00 4.06E-02 8.88E-01 -3.14E-03 CP=3

No. of 
DATA

INPUT
OUTPUT

 
Note: ACC1 and DISPL1 are acceleration and displacement values at 
Sensor1. ACC2 and DISPL2 are acceleration and displacement values at 
Sensor2. 

 
The total numbers of input and output data are 1809, 

which is resulted by finite-element analysis due to four 
earthquakes excitation. The neural networks used 70% data 
for training, 15% data for testing and 15% data for 
validation process. 

The parameters to indicate the end of training are the 
mean square error (MSE), maximum of epochs and learning 
rate (Lr). The MSE with 0.01 performance goal has been 
used in the networks, whereas the maximum number of 
epoch used 50000, and learning rate used 0.1. The networks 
have been examined by the computer with specification Intel 
Core i5-2410M, the power of processor is 2.30 GHz with 
turbo boost up to 2.90 GHz and memory 4 GB.        

The results from the models with one hidden layer are 
shown in Fig. 7 and Fig. 8, while the models with 2 hidden 
layers are shown in Fig.9 and Fig. 10. The MSE of neural 
networks of a model based on acceleration data domain is 
seen in Fig.7. The MSE of training, testing and validation 
process have the same trend line along the 10000th to 

30000th iteration. The error of the validation process 
increase since after the 30000th epoch. There was over-
fitting at the process. The network begins to over-fit the 
data, since the MSE of the validation set will typically begin 
to rise. The discrepancy of the MSE validation indicates the 
architectures of the model unsuitable for acceleration data 
domain with one hidden layer.   
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Fig. 7. The Means Square Error of neural network model for 1 hidden layer 

of acceleration domain 
 

Fig. 8 illustrates all MSE in the neural networks model 
based on displacement have the same trend line and in tune 
since 10000th epoch. The error on all processes decreases 
along the iterations. The result indicates the architectures 
model for 1 hidden layer can be accepted and used for 
predict the damage level based on the displacement data 
domain. 
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Fig. 8. The Means Square Error of Neural Network model for 1 hidden 

layer of displacement domain 
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Fig. 9. The Means Square Error of Neural Network model for 2 hidden 

layer of acceleration domain  

 
The neural networks model based on acceleration data 

domain with two hidden layers is shown in Fig. 9. The figure 
illustrates all MSE models have the same trend after 10000 
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iterations. The MSE values of testing process are higher than 
other MSE values. The error into the testing process is not 
used during the training process, but it is used to compare 
the different models.  

Fig.10 shows the MSE of the model based on 
displacement data domain. The MSE of validation has the 
fluctuation along the iterations before 25000 epochs. The 
fluctuation describes the networks have not been convergent 
yet.    It means the acceleration data domain more acceptable 
rather than the displacement data domain for two hidden 
layers’ model. 
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Fig.10. The Means Square Error of Neural Network model for 2 hidden 

layer of displacement domain 
 

 The comparison of acceleration and displacement data 
domain for 1 and 2 hidden layers model has been observed 
in Table II and Table III. The comparisons are the average 
of mean square error (MSE mean), regression (R mean) and 
running time (CPU time). The best performance of MSE 
value is the smallest of MSE, because it means the smallest 
of the error occurred in the calculation. However the best 
regression value is the highest one close to 1. The regression 
with value close to 1 defines the prediction value almost 
100% close to the actual one. The best performance of CPU 
time is the shortest time to process the calculation in central 
processing unit (CPU). The CPU time is measured in 
seconds. The CPU time is dependent with CPU’s 
computational power and specification of the computer.  

The both Table II and Table III show the MSE value 
decreases since the epoch increases. However CPU time 
increases since the epoch increases. On the other hand 
regression value increases close to 1 since the epoch 
increases.  
  

TABLE II 
Comparison of acceleration and displacement domain for 1 hidden layer    

MSE Mean R Mean CPU Time MSE Mean R Mean CPU Time
5000 0.0618 0.79144 369.114 0.058 0.80933 360.6743

6000 0.0611 0.79401 445.3361 0.0573 0.81163 430.4848

10000 0.0624 0.79517 738.1031 0.059 0.80359 716.1226

15000 0.0609 0.80089 1080.4 0.0546 0.82214 1050.5

25000 0.0597 0.80509 1824.3 0.0538 0.82635 1797.5

50000 0.0574 0.80689 3846.7 0.0531 0.82937 3661.6

Epochs
Acceleration Displacement

 
 

Table II shows the all average of regressions (R-mean) is 
above 80% for displacement data domain with 1 hidden 
layer. The table describes the displacement data domain has 
the smaller MSA values and the higher R-mean values rather 
than the acceleration data domain. The best of MSE and R-

mean value are 0.0531 and 0.82937 at 50000 epochs for 
displacement data domain. The values are 3.89% smaller 
than MSE of acceleration data domain and 1.37% higher 
than R mean of acceleration data domain. The process time 
needs 2.46% shorter than the acceleration data domain.  

Analog with Table II, the comparison of the acceleration 
and displacement data domain for 2 hidden layers has been 
shown in Table III. Table III displays the all average of 
regressions (R-mean) is above 0.81% for displacement data 
domain with 2 hidden layers. Similar with Table II, the table 
displays the displacement data domain has the smaller MSA 
values and the higher R-mean values rather than the 
acceleration data domain. 

 
TABLE III 

Comparison of acceleration and displacement domain for 2 hidden layer    

MSE Mean R Mean CPU Time MSE Mean R Mean CPU Time
5000 0.0611 0.79973 391.5625 0.0565 0.81091 409.0502

6000 0.0576 0.79704 473.8842 0.0555 0.81619 472.527

10000 0.0583 0.80678 760.3333 0.0546 0.81876 779.771

15000 0.0578 0.80832 1153.8 0.0525 0.8278 1193.9

25000 0.0572 0.80988 1910.9 0.0522 0.82921 2013.8

50000 0.0556 0.81451 3900.6 0.0512 0.83001 4091.8

Epochs
Acceleration Displacement

 
 
The best of MSE and R-mean value are 0.0512 and 

0.83001 at 50000 epochs for displacement data domain. The 
values are 4.12% smaller than MSE of acceleration data 
domain and 0.94% higher than R mean of acceleration data 
domain. However, the process time needs 2.39% longer than 
the acceleration data domain. 

The result shows the neural networks model for 1 hidden 
layer model is suitable for the displacement data domain 
because the results display the values of the MSE mean are 
smaller and the regression values (R mean) are higher close 
to 1 and the CPU time is shorter than acceleration data 
domain. The smaller MSE mean defines the error occurred 
in calculation to predict the bridge damage is smaller. 
Whereas the neural networks model for 2 hidden layers 
model is unsuitable with the displacement data domain. 
Although the model has the MSE mean values are smaller 
and regression values (R mean) are higher close to 1, 
however the process time is longer than acceleration data 
domain. Therefore for prediction damage level on bridge 
monitoring is recommended to use 1 hidden layer with 
displacement data domain.   

V. CONCLUSION 

The bridge health system used several sensors to detect 
the behavior of a bridge such as bridge deformation and 
damage. The sensors connected to data logger and sent the 
information data such as displacement and acceleration to 
the local server. The data is used as input by neural networks 
within the server system. The architecture of neural network 
method in this study used one and two hidden layers.  

The results denote the models with one hidden layer for 
acceleration data domain had the discrepancy of the MSE 
validation. The problem indicates the architectures of the 
model unsuitable for acceleration data domain with one 
hidden layer.  While the neural networks’ model based on 
displacement with a hidden layer have the same trend line 
and in tune since the 10000th epoch. The error on all 
processes decreases along the iterations.  
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The neural networks’ model based on acceleration data 
domain with two hidden layers illustrates all MSE models 
have the same trend after 10000 iterations. The MSE values 
of testing process are higher than others MSE values. The 
error during the testing process is not used during the 
training process, but it is used to compare the different 
models. While the MSE validation of the neural network 
based on displacement data domain with two hidden layers 
had the fluctuation along the iterations before 25000 epochs. 
The fluctuation describes the networks has not reached 
convergence.     
 The comparison of acceleration and displacement data 
domain for one and two hidden layers’ model has been 
concluded based on MSE mean value, regression mean value 
and CPU time of the network model. Both comparisons 
show the MSE mean value decreases since the epoch 
increases. However, CPU time increases when the epoch 
increases. Whereas regression value increases close to 1 
since the epoch increases.  

The average of regressions (R-mean) for displacement 
data domain with 1 and two hidden layers is above 80%. The 
value denotes the damage values from the displacement data 
domain has been predicted 80% close to the actual damage 
values. Conversely, the process time for two hidden layers 
needs the longer time than the acceleration data domain. 
Therefore, the bridge health prediction based on 
displacement domain data for one hidden layer is more 
accurate rather than the acceleration data domain with 1 and 
two hidden layers.  

According to the results, the neural networks’ method 
based on the displacement data has the best performance 
since uses one hidden layer in the system. The reason 
describes the displacement is derived from second time to 
generate the acceleration. The displacement has simpler 
physic quantity rather than acceleration so the convergent is 
approached faster.  

Actually, most bridge monitoring system use the 
accelerometer sensors to measure the acceleration of bridge 
response, because the accelerometer sensor is simpler to 
install in the field. Furthermore, the acceleration from 
accelerometer sensors can be modified directly to conduct 
the displacement value before entry into the neural networks 
system server. Consequently, the monitoring system is 
recommended to be used in the neural networks with one 
hidden layer based on displacement domain. The 
implementation of the intelligent neural network method for 
the bridge seismic monitoring system can help the bridge 
authorities to predict the stability and health condition of the 
bridge structure at any given time. 
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