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Abstract—It is common that typical devices that form digital 

images contain of lenses and semiconducting sensors which 

capture a projected scene. These components cause distortions 

such as simple geometrical distortion, degradation and noise. 

That is why sophisticated denoising, sharpening and colour 

correction algorithms are crucial to obtain high-quality digital 

images. In this paper we present a novel parallel scheme of 

image filtration based on Principal Component Analysis (PCA) 

and non-local processing. Work fundamentals of its algorithm 

are discussed in detail along with experimental data showing its 

features in comparison with existed filtration approaches. 

 
Index Terms—Image filtration, principle component 

analysis, non-local processing 

 

I. INTRODUCTION 

HERE are several widely known methods of cancelling 

an additive white Gaussian noise (AWGN) in digital 

images [1]. Among them are algorithms of (1) local 

processing, (2) non-local processing, (3) pointwise 

processing and (4) multipoint processing.  

Each of these methods has its specific pros and cons in 

quality of reconstructed digital images and computational 

cost of implemented algorithms. Omitting the computational 

cost analysis we note that the main problems with the quality 

of reconstructed images in modern algorithms are: Gibbs 

effect, which becomes highly noticeable on images 

containing objects with high brightness contrast on their 

outer edges, and edge degradation of objects on an image 

being processed. 

Solutions of the stated problems at this time are efficiently 

found by the following digital image reconstruction 

algorithms: (1) algorithm based on block-matching and 3D 

filtering (BM3D) [2]; (2) algorithm based on shape-adaptive 
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discrete cosine transform (SA-DCT) [3]; (3) k-means 

singular value decomposition (K-SVD) [4]; (4) non-local 

means algorithm (NL-means) [5]; (5) algorithm based on a 

local polynomial approximation and intersection of  

confidence intervals rule (LPA-ICI) [6]. 

Examples of denoising an AWGN affected image with the 

listed filtration algorithms are shown in Fig. 1. Specific 

values of Peak Signal-to-Noise Ratio (PSNR) and Mean 

Structural Similarity Index Map (MSSIM) are shown for 

each algorithm. Hereinafter best image reconstruction results 

based on the criteria of PSNR [7] and MSSIM [8] are 

marked in bold. 

Literature on digital images noise cancelling shows that 

modern AWGN filtration methods used for greyscale images 

may be successfully transferred to other digital image 

processing tasks. So, this work in addition to the primary use 

of the methods shows how they may be are used for: (1) 

denoising AWGN-noised colour images; (2) filtration of 

mixed noises; (3) suppression of blocking artefacts in 

compressed JPEG images. 

Filtration of color images is an issue of the day for various 

practical applications. That is why there are numerous 

solutions to it. One of the possible approaches is a direct 

channelwise processing of an RGB image, which was used 

in this work. Here, no transition from RGB image to an 

image with separated brightness and colour information 

during the modelling process was performed, and an AWGN 

was separately inserted to each channel with the same 

characteristics. 

II. DESCRIPTION OF THE PROPOSED ALGORITHM 

Flowchart of our algorithm is shown in Fig. 2. Consider 

that a digital image to process x is distorted with AWGN n 

with first and second moments both equal to zero. In the 

following we shall investigate the main steps of our 

algorithm. 

A. First Stage 

Keystone of the stage is the Muresan and Parks filtration 

method based on the PCA introduced in 2003 [9]. 

1. Evaluate dispersion 
2  of the input noised image 

nxy  . This can be done using a common 

formula [9, 10]: 

2. 
6745,0

)(
ˆ

1HHMedian
 , 

there 1HH  – module values of high-high band wavelet 

coefficients of first-level wavelet decomposition [10]. 
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a) AWGN noised image  

(17,73 dB; 0,266) 

 

 

 
b) [2] (27,41 dB; 0,807) 

 

 
c) [3] (26,85 dB; 0,796) 

 
d) [4] (26,60 dB; 0,781) 

 
e) [5] (25,99 dB; 0,726) 

 
f) [6] (25,95 dB; 0,734) 

 

Fig. 1. Denoising of an AWGN-noised ( 35 ) image by various algorithms on an example of the test image “Cameraman”. In 

brackets PSNR, dB and MSSIM 

 

Note that the AWGN model, mainly discussed in the 

work, may be complicated to a mixed noise model to 

simulate, for example, noise of CMOS sensors: 

nxxy )( 21   , 

there 1  and 2  – constants, showing the noising degree, 

and n  – AWGN with zero mean and dispersion equal to 1. 

2. Divide the input noised image into a set of overlapping 

blocks. (Fig. 3). Each of them contains of: train region, 

denoise region and overlap region. Dimensions of these 

areas may vary. 

3. In the train region select all possible blocks size of 
II ll   (training vectors). Last are column vectors each 

2I )(l  in length. They allow us to form a selective matrix 
I
yS  

with a size of I2I )( nl  , which contains of the mentioned 

column vectors. Here In  is a number of training vectors 

found in the train region. 

4. Based on the preliminary centred 
I
yS  matrix, create a 

covariation matrix I
I
yS

Q . In which 
I
yS  is a centred selective 

matrix 
I
yS . Then, for the I

I
yS

Q  matrix, find eigenvalues and 

corresponding eigenvectors (principal components of data 

comprised in the I
yS  matrix). Finally, create an orthogonal 

transform matrix I
yP . 

5. For each 2I )(,,2,1 li   и I,,2,1 nj   find 

projections (transform coefficients) 
j
iY )( I  of vectors 

contained in the matrix I
yS , on eigenvectors found in the 

previous step: 


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
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Here 
j
i

j
i

j
i NXY )()()( III   (an i-th projection of vector j 

from the matrix 
I
yS  on eigenvectors of the matrix I

I
yS

Q ) is a 

sum of an i-th projection of undistorted data vector j and an 

i-th projection of noise vector j. Note, that there is no line 

above the 
j
iN )( I  component. The reason for this is that the 

centred and noncentered noising matrixes have the same 

projections 
j
iN )( I , because the AWGN model used has a 

zero mean. 
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Fig. 2. Digital image filtration flowchart based on the proposed parallel procedure of denoising 

 

 

 
a) 

 
b) 

 
Fig. 3. а) Filtration process description. Pixels inside a denoise region of a digital image are studied with statistics gathered from a 

train region; b) Example of pixel grouping inside the train region for a test image “Barche” 

 

6. Evaluate the received projections with optimal linear 

mean-square error (LMMSE) estimator [9]: 

j
i

i

ij
i YX )()

ˆ
( I

22

2
I 







. 

Here 2  – noise dispersion and 2
i  – a dispersion of i-th 

projection of undistorted vectors nj ,,2,1  , which can 

be found using a maximum likelihood estimator [9]: 


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,0maxˆ  . 

7. Based on the processed data 
j
iX )

ˆ
( I  reconstruct an 

evaluation Iˆ
xS  of unnoised data matrix I

xS , then, basing on 

which, reconstruct a separate processed image area.  In this 

case, first of all, a train region is reconstructed by inserting 

training vectors into their spatial positions considering the 

overlaps. Training vectors kept as column vectors in the 

matrix Iˆ
xS , are again transformed into blocks size of II ll   

prior the insertion into the train region. Note, that an overlap 

region is averaged using simple arithmetic averaging. Then, 

after the reconstruction of the train region extract the smaller 

denoise region from it. 

Repeating similar operations for the rest denoise regions 

considering the overlaps allows us to process the whole 

image and receive a primary evaluation I
x̂  of the unnoised 

image x . While doing this, denoise regions processed are 

inserted into their spatial positions of the image I
x̂ , and the 

overlap region is arithmetically averaged.  

B. Second Stage 

1. Using the noised image y , repeat steps 2–5, discussed 

in the first stage. Sizes of train regions, denoise regions, 

overlap regions and training vectors change accordingly. 

2. Then process received projections using the following 

formula: 

j
i

j
i

j
i

j
i Y

X

X

X )(

))
ˆ

((

))
ˆ

((

)
ˆ

( II

2
2

III

2
III

II 







.              (1) 

Here 
j
i

j
i

j
i NXY )()()( IIIIII   (an i-th projection of vector 

j from a matrix 
II
yS  on eigenvectors of a matrix II

II
yS

Q ) is a 

sum of an i-th projection of undistorted data vector j and an 

i-th projection of noise vector j, and 

j
i

j
i

j
i NXX ))ˆ(()())

ˆ
(( IIIIIIII   (an i-th projection of vector 

j from matrix 
II

ˆ Ix
S  on eigenvectors of a matrix II

II

ˆ Ix
S

Q ) is a 

sum of an i-th projection of undistorted data vector j and i-th 

projection of residual noise vector j. Formula (1) is an 

equation of an empirical Wiener filter. Note, that in early 

works in digital image processing [11] L.P. Yaroslavsky 

showed a great potential of empirical Wiener filter as an 

operator for transform coefficients reduction. 
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3. Same operations discussed in step 7 of the first stage of 

processing give us a second evaluation II
x̂  of the unnoised 

image. 

C. Third Stage 

Implementation of this stage requires non-local processing 

approach introduced by Buades, Coll and Morel in 2005 [5]. 

Here we discuss in detail the major steps of the non-local 

algorithm for image denoising on the example shown in 

Fig. 2. 

1. For a processed pixel ),( jiy  of the noised image y  

select a square area of a fixed size IIIIII ll   (similarity area) 

in its spatial position for evaluation II
x̂ . This area is centred 

on a ),(ˆ II jix  pixel. 

2. Then, determine similarity between the pixel ),( jiy , 

being processed, and ),( lky  pixel of the same image y , 

based on the evaluation II
x̂ , using a weighted Euclidean 

distance  

 Nnm a nlmkxnjmixnmg,
2IIII )],(ˆ),(ˆ[),( , 

there N  – a fixed-size area, centred on point with )0,0(  

coordinates, ),( nmga  – additional weight coefficients, 

found as Gaussian kernel coefficients with a standard 

deviation a . 

3. Next, for the final evaluation of pixel ),(ˆ III jix , find 

weight of pixel ),( lky  similar to ),( jiy : 

2III

,

2IIII

III
)(

)],(ˆ),(ˆ[),(

e),,,( h

nlmkxnjmixnmg

h

Nnm a

lkjiw

 




 , 

there 
IIIh  – a filtration parameter, which affects a filtration 

degree of digital image. Parameter IIIh  can be found as 

follows: 

 IIIIII сh , 

there IIIс  – a positive constant in a range from 0.1 to 1, 

found empirically,   – a standard deviation of the AWGN 

affected the image x . 

4. Finally, form a resulting non-local evaluation of the 

processed pixel ),( jiy  based on the following formula 

 lk lkylkji
h

gjix , ),(),,,(),(ˆ III
III , 

there 



lk lkji

h
w

lkji
h

w
lkji

h
g

, ),,,(

),,,(
),,,(

III

III

III . 

Repeating the discussed steps for the rest pixels of the 

image y , it is possible to obtain a third evaluation III
x̂  of 

the original unnoised image x . 

D. Fourth  Stage 

This stage is based on forming a final ‘accurate’ 

evaluation IV
x̂  of the unnoised image x  using a ‘mixing 

pixels’ procedure shown as a separate block on Fig. 2. 

In this work mixing pixels procedure is performed 

according to the simple formula: 

IIIIIIIIIIIV ˆˆˆ xxx  dd , 

there IId  and IIId  – constant values, in a range from 

0.1 to 1. 

III. COMPUTATIONAL COSTS 

Consider N  and M  – number of strings and columns, 

respectfully, of a processed image, N  – step in pixels, 

which a denoise region is moved on, n  – number of training 

vectors found in a train regions, m  – length of training 

vectors, depicted as column-vectors, l  – parameter, setting 

up a size of similarity area, and g  – parameter, setting up a 

size of similar pixels search area. 

Firstly, calculations connected with creation of 

covariation matrix, search for eigenvectors (principal 

components) and data interpretation in a found principal 

component’s basis require )( 2nmO  operations for each 

denoise region. 

Secondly, computations of data transform coefficients, 

shown in the found principal components’ basis, performed 

TABLE 1 

Numerical Modeling Results
  [2] [3] Parallel Scheme [4] [5] [6] 

Cameraman, 256256  

15 31,90 (0,901) 31,61 (0,901) 31,12 (0,889) 31,52 (0,895) 30,29 (0,863) 30,87 (0,872) 

20 30,39 (0,873) 30,01 (0,871) 29,73 (0,859) 29,92 (0,863) 29,12 (0,829) 29,29 (0,835) 

25 29,22 (0,849) 28,81 (0,844) 28,64 (0,833) 28,63 (0,833) 28,05 (0,795) 28,04 (0,800) 

Peppers, 256256  

15 32,67 (0,907) 32,44 (0,902) 32,02 (0,895) 32,19 (0,898) 31,30 (0,879) 31,18 (0,869) 

20 31,23 (0,887) 30,99 (0,881) 30,75 (0,876) 30,73 (0,876) 29,77 (0,845) 29,59 (0,833) 

25 30,08 (0,868) 29,83 (0,862) 29,75 (0,858) 29,51 (0,854) 28,50 (0,812) 28,33 (0,800) 

Lena, 512512  

15 34,27 (0,896) 33,87 (0,891) 34,09 (0,895) 33,71 (0,885) 32,82 (0,865) 32,18 (0,850) 

20 33,06 (0,877) 32,64 (0,872) 32,94 (0,878) 32,41 (0,863) 31,35 (0,831) 30,75 (0,815) 

25 32,09 (0,861) 31,67 (0,855) 32,03 (0,862) 31,35 (0,843) 30,21 (0,797) 29,69 (0,784) 

Couple, 512512  

15 32,09 (0,876) 31,76 (0,867) 31,64 (0,867) 31,44 (0,854) 30,35 (0,824) 30,14 (0,815) 

20 30,72 (0,846) 30,34 (0,833) 30,37 (0,834) 29,92 (0,812) 28,62 (0,772) 28,56 (0,764) 

25 29,65 (0,819) 29,23 (0,802) 29,34 (0,803) 28,71 (0,773) 27,29 (0,723) 27,37 (0,717) 

Hill, 512512  

15 31,86 (0,839) 31,60 (0,832) 31,71 (0,837) 31,47 (0,823) 30,58 (0,795) 30,43 (0,787) 

20 30,72 (0,804) 30,39 (0,792) 30,55 (0,797) 30,18 (0,777) 29,20 (0,748) 29,14 (0,739) 

25 29,85 (0,775) 29,49 (0,759) 29,64 (0,763) 29,20 (0,739) 28,13 (0,707) 28,19 (0,700) 
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using LMMSE estimator during the first stage and using 

empirical Wiener filter during the second stage, combined 

require )(nmO  operations for each denoise region. 

Thirdly, third stage based on non-local processing 

algorithm requires )( 22gNMlO  operations in total. 

Finally, mixing pixels procedure requires as low as 

)(NMO  operations in total. 

Discussion above leads to a complete equation describing 

the computation cost of the proposed algorithm:  

  )()()()( 222 NMOgNMlOnmOnmO
N

NM
O 











, 

there 
N

NM


 represents the number of denoise regions per 

processed image. 

Computation cost of the proposed algorithm is relatively 

high in comparison with existed denoising algorithms. There 

are several possible approaches which can be used to 

decrease the cost: (1) calculate only first largest eigenvalues 

and correspondent eigenvectors for creation of principal 

components’ basis [12]; (2) during the processing of a 

noised image change a procedure of searching a local 

principal component basis with a creation of global 

hierarchical principal component basis [13]; (3) while using 

a non-local processing algorithm [5, 14-16] implement it in a 

vector form [14-15], or, alternatively, use a global principal 

components’ basis separately calculated for a processed 

image – this will reduce size of compared similarity areas of 

pixels being processed and analyzed, and speed up 

calculation of weight coefficients used to form a final 

estimation of an unnoised pixel [17]. 

 

 
a) «Cameraman»  

(28,64 dB; 0,833) 

 

 
b) «Peppers»  

(29,75 dB; 0,858) 

 

 
c) «Lena»  

(32,03 dB; 0,862) 

 

 
d) «Couple»  

(29,34 dB; 0,803) 

 
e) «Hill»  

(29,64 dB; 0,763) 

 
f) «Man»  

(29,52 dB; 0,798) 

 

Fig. 4. Fragments of AWGN-noised ( 25 ) (left) and reconstructed (right) images, obtained using the parallel processing scheme 

(Fig. 2). PSNR, dB and MSSIM are given for each reconstructed image accordingly  
 

IV. MODELLING RESULTS 

The algorithm discussed in this work was implemented in 

MATLAB. Study was done using a ‘classic’ set of halftone 

images with sizes of 256256  and 512512  pixels, 

available for analysis [18]. 

Numerical results (PSNR and MSSIM) for reconstructed 

from noised with AWGN images using the proposed 

algorithm and contemporary noise cancelling methods are 

given in Table 1. The resulting test images, reconstructed 

using the proposed parallel noise cancelling scheme, for 

AWGN with 25 , are shown in Fig. 4. 

V. CONCLUSION 

Based on these studies it can be concluded that the 

proposed algorithm allows to obtain solid results in image 

reconstruction. Its advantages are: (1) possibility to store 

local characteristics, (2) high quality processing of major 

edges of an image and (3) adaptability to analyzed data. The 

major concern about the algorithm is its high computational 

cost. 
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