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Abstract—We present a system for spatio-temporally 

coherent 3D animation reconstruction from multi-view RGB-D 
images using landmark sampling. Our system captures multi-
view synchronous RGB-D images from six RGB-D cameras 
and we show that by sampling landmarks from both depth and 
color images, it is possible to reconstruct a spatio-temporally 
consistent 3D animation from a non-coherent time-varying 
data. The reconstructed spatio-temporally coherent 3D 
animation can be used in a number of applications that require 
time-coherent data, e.g. motion analysis, gesture recognition, 
compression, free-viewpoint video and CG animations. 
 

Index Terms— Dynamic surface reconstruction, multi-view 
video, three-dimensional animation reconstruction, three-
dimensional dynamic scene geometry 
 

I. INTRODUCTION 

PATIO-TEMPORALLY coherent time-varying dynamic 
scene geometry is employed in a number of 

applications. It can be used for 3D animation in digital 
entertainment production, electronic games, 3D television, 
motion analysis, gesture recognition etc. First step in 
obtaining spatio-temporally coherent 3D video is to capture 
the shape, appearance and motion of a dynamic real-world 
object. One or more video cameras are employed for this 
acquisition, but unfortunately, data obtained by these video 
cameras has no temporal consistency, as there is no 
relationship between the consecutive frames of a video 
stream. In addition, for a multi-view video, there is no 
spatial consistency between cameras even for the same 
frame of the video. In order to reconstruct a spatio-
temporally coherent 3D animation, a spatial structure 
between cameras has to be established along with the 
temporal matching over the complete video data. 

In this paper we present a new method for capturing 
spatio-temporal coherence between RGB-D images captured 
from six RGB-D video cameras. In principle, any type and 
combination of RGB and depth cameras can be used, but in 
our work we use an acquisition system comprising of 
Microsoft Kinect [13] cameras. Microsoft Kinect is a hybrid 
color (RGB) and depth camera system which provides both 
the color and depth information at the rate of 30 frames per 
second. Our acquisition system can acquire synchronous 
streams of RGB-D data from multiple Microsoft Kinects. 
We show that by extracting landmarks from both color and 
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depth data we can establish a spatial and temporal structure 
that can be used to reconstruct a spatio-temporally coherent 
3D animation. Our landmark sampling approach uses color 
data for an initial estimate for mapping two consecutive 
frames. In the next step, we employ a geometric based 
refinement method to find the accurate matching of the 
dynamic geometry representation in the three-dimensional 
space. Results from our work can be employed in a number 
of scenarios to enhance or analyze the representation of a 
dynamic real world scene. 

Traditionally, the multi-view video recordings are 
acquired by a setup of color video cameras that are placed 
around a real-world object in a circular arrangement [7]. A 
hardware trigger is used to synchronously record a real-
world dynamic object from all cameras. The recorded color 
multi-view video streams are then used to reconstruct a 
dynamic three-dimensional representation of the real-world 
scene. One of the pioneering works in this area, which uses 
multi-view video data to reconstruct free-viewpoint video, 
was presented by Carranza et al. [7]. They used eight 
cameras to record a moving person and used the multi-view 
data to capture the shape, motion and appearance of the 
person. This work was later extended by Theobalt et al. [16] 
to capture the shape, motion and appearance but also the 
surface reflectance properties of the real-world dynamic 
object. Vlasic et al. [17] and Aguiar et al. [8] presented 
enhanced methods for reconstructing very high quality of 
dynamic scenes. Both of these methods first acquired a high 
quality laser scan of the real-world person, which was then 
animated using a skeleton based or data driven deformation. 
One of the earlier works on creating spatio-temporally 
coherent 3D animation using landmarks was presented by 
Ahmed et al. [1].  Unlike other works, they did not use 
template geometry for tracking the dynamic object; rather 
the three-dimensional representation was directly obtained 
from RGB images. Unlike our approach they also did not 
incorporate geometric information for accurate matching, 
instead they relied on the color information to obtain the 
dense matches at a higher resolution than the original three-
dimensional surface representation. 

With the advent of low cost depth cameras, acquisition of 
three-dimensional geometry at high frame rate has become 
really feasible. Time-of-Flight [11] cameras are extensively 
used to obtain and manipulate the depth information in a 
number of applications [3][11]. Microsoft recently released 
Kinect as an input peripheral of Xbox 360 that can not only 
capture depth but also the color information at 30 frames per 
second. Kinect has been adopted by the research community 
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because of its low cost, and has been used in a number of 
applications ranging from motion capture, gesture 
recognition and also dynamic three-dimensional surface 
deformation. 

Recently, one or more depth cameras are used to 
reconstruct both static and dynamic real-world objects. Kim 
et al. [11] and Castaneda et al. [6] presented method of 
reconstructing a three-dimensional representation of a static 
object using depth cameras. Berger et al. [4], Girshich et al. 
[9], Weiss et al. [18], and Baak et al. [3] used depth cameras 
for reconstructing three-dimensional shape, pose and 
motion. They demonstrate that it is possible to get good 
quality results by employing both depth and color cameras. 
For capturing the dynamic scene data using depth sensors, 
two methods were recently presented by Kim et al. [10] and 
Berger et al. [4]. In [10] authors employ RGB cameras 
along with Time of Flight sensors to get both depth and 
color information while the [4] employ four Microsoft 
Kinect cameras to reconstruct the motion of a real world 
human actor. Both of these methods do not reconstruct 
temporally coherent animation from the captured depth and 
color data. 
 Our work derives from the work of Ahmed et al. [2] that 
captures six synchronous multi-view RGB-D streams using 
an acquisition system comprising of Kinects. In that work 
only the acquisition is performed with no further analysis of 
the acquired RGB-D data. The main motivation of our work 
is to present a system which starting from the acquisition of 
synchronous RGB-D video streams uses both color and 
depth information to establish a spatio-temporal consistency 
in the unstructured data. We assume the dynamic three-
dimensional content to be stored in the form of 3D point 
clouds coupled with its color information. A Microsoft 
Kinect camera implicitly provides this information. Unlike a 
setup of stereo cameras to reconstruct the depth, the major 
advantage of Kinect is that it provides the depth information 
from one sensor. Thus in principal only four Kinects can 
provide full 360o reconstruction of a real-world object, 
whereas traditional acquisition systems comprising of color 
cameras required eight or more cameras for the similar 
reconstruction. Our spatio-temporal reconstruction method 
is not limited to the data from Kinect cameras. It can be 
easily applied to any dynamic three-dimensional content 
that is in the form of point clouds with the available color 
information. The main contributions of our work are: 
 1) A system for automatic acquisition of time-varying 
RGB-D data with a new algorithm for background 
subtraction using 3D point clouds. 

2) A color and depth based landmark sampling method 
that is used to establish spatial and temporal coherence 
between consecutive frames of dynamic three-dimensional 
point clouds. The point cloud data with the color 
information can be estimated from color multi-view video 
data or RGB-D multi-view data from Microsoft Kinect. 

II. MULTI-VIEW VIDEO ACQUISITION 

Our acquisition system is comprised of six Microsoft Kinect 
cameras. Four cameras are placed around the real-world 
person with each making an angle of 90o with the adjacent 
corner cameras. Two cameras are placed on left and right 

between the corner cameras. They make an angle of 180o 

with respect to each other and an angle of 45o with their 
adjacent corner cameras. This arrangement gives us 360o 
coverage of the real-world actor and allows the recording of 
a dynamic scene within an area of 2m x 3m. Since Kinect 
projects an infrared pattern to reconstruct depth information, 
having two or more Kinects recording at the same time can 
cause interference in the depth estimation. Ideal placement 
of two Kinects would be with a separation of 180o. For our 
work, we do not try to reduce the interference in any way 
under the assumption that the depth information for a point 
not recorded by one camera due to interference will be 
compensated by one of the other cameras recording the 
same point. Our results validate this assumption. In addition 
to the data from our acquisition system, we also use data 
from Ahmed et al. [1] to validate our algorithm. 
 The Kinect provides two video data streams, one color 
stream and one depth stream. Both streams are of the 
resolution 640x480 with the frame rate of 30 frames per 
second. Using the new Microsoft Kinect SDK it is possible 
to obtain a higher resolution depth stream but at the cost of 
lower frame rate. For our work, high-speed recording is 
more important therefore we decided to use the lower 
quality of video streams. Our acquisition setup is software 
synchronized and does not require any hardware trigger. To 
minimize I/O overhead that comes with writing video data 
to the storage device, the video streams are captured in the 
high-speed system memory buffer and the writing is 
performed once the recording is finished. 
 Once the acquisition is completed we acquire sequence of 
color and depth images of a person performing some 
motion. For each frame we record six color images (Fig. 1) 
and six depth images (Fig. 2).  
 

   

   
Fig. 1. One color frame captured from the RGB camera. 

 

   

   
Figure 2: One depth frame captured from the depth camera. 

 

III. CALIBRATION AND BACKGROUND SUBTRACTION 

A multi-view acquisition system requires both local and 
global calibration. Local calibration provides camera 
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specific parameters, or intrinsic parameters. On the other 
hand, the global calibration or extrinsic parameters provide 
the spatial mapping between the cameras.  

For a Microsoft Kinect, which has two sensors, there is 
an additional level of local calibration. In the first step, both 
the depth and color sensors have to be calibrated to estimate 
their intrinsic parameters. Secondly, a mapping should be 
established between the depth and color sensors so that 
color data can be projected on the depth data. Finally, depth 
values are mapped to real-world distances in order to get 3D 
positions in a global coordinate system. 

The intrinsic parameters are obtained using Matlab 
Camera Calibration toolkit. We record a checkerboard from 
both color and infrared sensors to facilitate this calibration. 
To convert the depth data to meters we employ the method 
proposed by Nicolas Burrus [5]. We use the Kinect RGB 
Demo software to do the full internal calibration. Using the 
internal calibration we obtain a 3D point cloud for each 
camera along with its mapping to the color data. An 
example of the 3D point cloud with depth to color mapping 
can be seen in Fig. 3. 

 
Figure 3: A dynamic 3D point cloud from one camera with the depth to 
color mapping. 

 
We perform the global calibration between the six 

cameras by means of the Iterative Closest Point (ICP) 
algorithm that minimizes the distance between the six point 
clouds. The SIFT [12] features obtained from the color data 
and correspondences from the recorded checkerboard are 
used to initialize the ICP method. We make use of OpenCV 
for extracting corner points from the checkerboard and the 
Point Cloud Library [14] for the ICP. 

After merging the point clouds in a global coordinate 
system, we segment the moving actor by estimating the 
bounding box of the dynamic scene geometry of the entire 
sequence. This is achieved by finding the correspondences 
between every tenth frames for all cameras in the RGB 
images using SIFT. Using the mapping between the depth 
and RGB images, we find the 3D points that exhibit motion 
over these frames. These dynamic points are then used to 
estimate an axis aligned bounding box. We compute one 
bounding box for the whole sequence. It is possible to 
generate a bounding box for every n frames to make 
segmentation more precise. After estimation, the bounding 
box is slightly scaled to make it a conservative estimate. We 
found this method to be more robust than a pure RGB image 
or depth image based segmentation. Depth-image-based 
segmentation is straightforward and simple but due to the 
noisy nature of depth data from the Kinect sensor, we found 

a number of false positives over the complete scene. The 
results of global registration and background subtraction can 
be seen in Fig. 4 and 5. After segmentation, we also perform 
simple Gaussian filtering to remove outliers and random 
noise using the Point Cloud Library. 

 
Figure 4: Result from the global calibration. Point clouds from six cameras 
are merged in a global coordinate system. The cameras (shown in circle) 
and their corresponding point clouds are color-coded. 

 

 
Figure 5: Result from the background subtraction. The estimated bounding 
box used to segment the model is shown along with the complete 3D 
model. It can be seen that the segmentation works really well in separating 
the foreground from the background. 

IV. TEMPORALLY COHERENT 3D ANIMATION 

RECONSTRUCTION 

As explained in the previous sections, from local and global 
calibrations we obtain dynamic 3D point clouds of the real 
world actor. This dynamic representation is not temporally 
coherent because each frame of the dynamic data is 
independent of the other. In addition to the data from our 
acquisition system, we use data from Ahmed et al. [1]. 
Given the visual hull representation from the data, the 3D 
point clouds are extracted and the color images are 
projected onto the 3D data using the camera calibration 
parameters. Our method, explained below, that reconstructs 
spatio-temporally consistent 3D animation works equally 
well on both data sets. 
 Generating temporally consistent dynamic scene 
representation has a number of benefits. It is useful in terms 
of visualization, as the appearance of the model does not 
change from one frame to the next. In addition, it allows 
analyzing a number of attributes of the dynamic data, e.g. 
motion, gesture or action. Given the temporal coherence 
data can be easily compressed and its transmission is 
simplified by means of some parameterization unlike the 
non-coherent data, which requires all the frames to be 
transmitted individually. 
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 While our work on global calibration establishes the 
spatial correspondence for one frame between six cameras, 
we have developed a new method to establish temporal 
correspondence between two consecutive frames of the 
dynamic point cloud. Starting from the first two frames, this 
temporal correspondence is tracked over the sequence to 
generate a spatio-temporally coherent 3D animation. 
 Our temporal coherence extraction scheme is based on 
matching landmarks over two consecutive frames. The 
process comprises of two steps: 

1) Establishing reliable landmarks on each frame 
2) Matching landmarks accurately 

These two steps are not discreet; rather we propose an 
iterative process that first establishes a rough 
correspondence between two frames and then refine it to get 
an accurate match. 
 In the first step we extract SIFT features from each color 
image for the frames t0 and t1. Where t0 is the first frame of 
the animation and t1 is the second frame of the animation. 
Matching of the feature points gives us a reliable matching 
in the RGB data for each of the six cameras. Since we have 
depth to RGB mapping, we can directly find the mapping of 
a 3D point at t0 to the corresponding 3D point at t1. 
Unfortunately the 3D correspondences are not accurate 
because depth to RGB mapping is many-to-one. Thus 
multiple 3D points match to a single pixel in the RGB 
image. Given a number of mappings from 3D points at t0 to 
t1, we use the approach proposed by Tevs et al. [15] to 
randomly choose one of the mapping as the landmark. This 
gives us the first rough map between the two point clouds. 
 In the second step, we start an iterative process that 
randomly picks one of the matching M0 to M1 found in the 
first step. Here we are assuming that M0 is not just a single 
3D point but a set of all 3D points that can potentially match 
to corresponding 3D points M1 at frame #1. It is to be noted 
that in the first step we chose just one of the matching 
randomly as the coarse matching to facilitate the iterative 
process. Given the coarse matching from M0 to M1 we 
search for three non-collinear nearest landmarks in the two 
point clouds with respect to the Euclidean distance. In 
practice we never found three nearest collinear landmarks 
but in case the three landmarks are collinear, the one at the 
farthest is to be discarded and the next closest one is to be 
selected. The non-collinear matches are required because 
once found we use the three 3D positions on each frame to 
construct a plane with normal pointing outwards to the point 
cloud. Assuming the nearest landmarks at frame #0 are L00, 
L01 and L02 and on frame #1 are L10, L11 and L12. We find 
two planes at each frame P0 and P1 with their normal being 
n0 and n1 respectively. Given the two planes, their normal 
and the root points, it is trivial to parameterize the matching 
points M0 and M1 with respect to P0 and P1: 

M0 = L00 + u(L01-L00)+v(L02-L00)          (1) 
M1 = L10 + u(L11-L10)+v(L12-L10)          (2) 

Where u and v are the two parameters that define the 
projection of each 3D position in M0 and M1 on P0 and P1. It 
is to be noted that the root points L00 and L10 are chosen 
randomly. This assumption is important because this step is 
repeated multiple times and the random selection reduces 
the bias in the estimation. Given the parameterization in 
Equations 1 and 2, for all 3D positions within the landmark 
matches M0 to M1 that are obtained in the first step, we 
define the new match that has the  minimum distance within 

the parameterized space, i.e. its u and v coordinates at t0 and 
t1.  The second step is repeated multiple times, with the 
starting point chosen at random, and the root points also 
chosen at random. As shown by Tevs et al. [15] that the 
random sampling with an iterative process is sufficient to 
correctly establish an unbiased mapping, thus we obtain a 
correct matching of two frames using a geometric based 
mapping algorithm which uses color based matching as the 
starting point. The iterative process stops when the 
matching points are stabilized over the sequence of 5 
iterations. 
 Once the mapping between t0 and t1 is established, it is 
propagated to the mapping between t1 and t2, ideally till the 
end of the sequence or unless it degenerates. 

V. RESULTS 

We use two types of data sets to validate our method. First 
data set is acquired through our multi Kinects acquisition 
setup which is described in detail in the earlier sections. We 
recorded three sequences using six Kinects where the actor 
performs a slow rotating motion, a medium walking motion 
and a fast boxing motion. We use this data set to verify our 
background subtraction approach. Fig. 1 and 2 show the 
captured color and depth images for one frame. Fig. 3 shows 
that 3D point cloud with the color information, whereas Fig. 
4 and 5 shows the results from global calibration and 
background subtraction. It can be seen that we manage to 
separate the moving actor reliably from the static 
background. 
 Our spatio-temporal reconstruction method manages to 
track more than 180 frames from the slow motion, around 
150 frames from the medium motion and 130 frames from 
the fast motion. This is expected because as the motion gets 
faster it introduces motion blur in the color data which 
results in lower number of landmarks thus affecting the 
matching. Additionally, Kinect’s depth sensor provides the 
depth data marred with a very high random noise. We try to 
remove this noise using the simple Gaussian filtering but it 
is still not completely eliminated. Thus for the faster motion 
there are far more outliers compared to the slower motion. 
 We also validated our approach on the data from Ahmed 
et al. [1]. Our method managed to track both sequences 
reliably as their data is noise free with high quality of color 
images. Fig 6a shows two frames from the walking 
sequences without any temporal coherence. Fig. 6b shows 
the same two frames generated from our spatio-temporal 3D 
animation reconstruction method. In the non-coherent 
animation the point cloud visibly changes over the two 
frames and the effect is really pronounced over the complete 
animation. The spatio-temporal 3D animation on the other 
hand tracks the single point cloud over the whole sequence 
that results in a visually smoother animation, which can be 
used in a number of applications. 
 Our method is subject to couple of limitations. One of the 
major limitations is the quality of the color data. If the 
number of SIFT features are low then our method is suspect 
to producing incorrect results because of a low number of 
landmarks. We use three nearest landmarks based on 
Euclidean distance for our iterative random sampling based 
matching algorithm. If the number of landmarks is low then 
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the matching plane will have incorrect orientations over the 
two frames and the matching will go meaningless. Ideally 
Geodesic distance should be used instead of Euclidean 
distance similar to Ahmed et al. [1], but it requires a surface 
representation. Since we are dealing with the point clouds 
with a very high random noise, therefore the surface 
reconstruction is not an option. A true dynamic surface 
reconstruction from the depth data acquired by Kinect is a 
complete research problem in itself. Other possibility would 
be to estimate the pose skeleton and also use the nearest 
joint position as a landmark. We are planning to extend our 
work in this direction. 
 Despite the limitations, we show that it is possible to 
reconstruct spatio-temporally coherent 3D animation from 
3D dynamic point clouds using both color and depth 
information. 

VI. CONCLUSION 

We presented a method to reconstruct spatio-temporal 3D 
animation from dynamic point clouds using a color and 
depth based landmark sampling approach. We showed that 
data from multiple Kinects can be used to create a dynamic 
representation of a real-world object that can be merged 
together to capture the object from 360o. Our new method 
for background subtraction reliably separates the foreground 
dynamic object from the static background. Our system can 
incorporate any number of cameras, as we demonstrated that 
not only it works for the data acquired using Kinects but 
also through the traditional acquisition system comprising of 
color cameras. Our works leads to a number of exciting 
directions in the future. We plan to use new Microsoft’s 
Kinect SDK to capture not only the depth but also the pose 
of the human actor. This information can greatly enhance 
the landmark sampling algorithm. In addition we would also 
like to explore 3D surface reconstruction from the dynamic 
3D point cloud data. The spatio-temporal 3D animation can 
also be used for the motion analysis, compression and 
parameterization of the 3D video data. 
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(a) 

 
(b) 

Figure 6: Two non-coherent consecutive frames of 3D point cloud are 
shown in (a). Whereas (b) shows the same two frames generated using 
landmark sampling method to reconstruct spatio-temporally coherent 3D 
animation. It can be observed that the point clouds do not change in the 
coherent animation. This result is especially visible in the legs and feet. 
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