



Abstract— The software industry is in a strong market

competition. The software development method to support the

present market with rapid requirement changes should reduce

the time to market with customer needs. Developers are able to

reduce the implementation time but to have adequate quality of

software spends much development time. In software quality

assurance, the solution to reduce time spend is using

automation testing. Many test case selection techniques such as

risk base by code, object, or model are commonly used in the

industry. This paper offers another test case selection technique

by detecting changes of use case descriptions.

Index Terms— use case description, test case, change impact

I. INTRODUCTION

HE software industry has many competitors due to

merging of new technologies and new requirements

from young generation user. New technologies drive the

software industry to produce many products to serve existing

users and pursue new users to invest their money using the

software. The software development methodology also

transforms to serve the rapid market changes as well. The

methodology being commonly used in the organization and

the company requires to reduce time in software production

such as the requirement gathering phase, the requirement

analysis phase, the software implementation phase, and the

software testing phase. The two keys of the software

production are to deliver user’s requirements and to deliver

good quality software. Due to the software can be changed,

many tools have been developing to support the effect of the

risk software management, the change management, and the

risk-based change analysis. The most accuracy change

impact analysis is detected the change in source code level

but it spends times to understand the code change and to

apply the change to the source code. The change detection in

the early phase improves much time reduction in the

development life cycle. At the beginning of development life

cycle, the requirement gathering phase is the appropriate

time to emphasize the change and the change impact in many

record forms such as system requirements documents, use

case diagrams, XML documents, and etc. The software

requirement changes impact the software quality mechanism

of the enhancement and existing features quality assurance.

Manuscript received December 26, 2012.

M. R. is with the Software Engineering Laboratory Center of Excellence

in Software Engineering, Faculty of Engineering, Chulalongkorn

University, Bangkok, Thailand (e-mail: monthawanr@gmail.com).

A new requirement implementation requires new test suite to

ensure software quality for the enhancement and the existing

test suite will be re-used to examine any failure in other

existing features. The empirical regression test selection

techniques [1] were very well-known in the past to perform a

testing by all test cases because it is the strongest way to

ensure software quality but it is the most cost consumption.

Another technique to select some test cases to perform

testing was introduced to reduce time consumption but it is

unable to fulfill the software quality because some cases

might be ignored even it was a main functionality. So the

change impact analysis is able to identify the software

impact and to select test cases more accuracy point of

changes. Another approach to detect the change impact is in

the requirement document such as use case by use case map

specification [2] and case spec [3] which the relationship

between requirement and test case has been created to figure

out the change impact and manually look through test cases

to identify the valid cases but the programming knowledge

of use case symbol transformation is required. This paper

proposes the solution to detect change impact on

requirement phase by using use case description to reduce

the symbol transformation and identify the test cases

received the change impact to reduce the time consumption

to perform testing.

The reminder of this paper is organized as follows:

Section 2 provides the background of Use Case Description

and change detection work in the past. Section 3, 4, and 5

describe Use Case Diagram, Use Case Description, and

XML Language respectively. Section 6 provides the test

case selection framework. Conclusion is presented in

Section 7.

II. BACKGROUND

Previous work [8] proposes an approach for generating

test cases from use case based on a decision table. The use

cases are reduced complexity and rearranged to be one-

column table style based on use case description by

Cockburn [6]. The input of use case description and the

result of test case generation are in XML format but it is

unable to detect the requirement changed. The framework

for change detection and re-used testing in requirement level

[9] doesn’t require any coding knowledge but the change

detected by Use Case Map (UCM) notation in formal

concept analysis does require coding knowledge. The most

effective changes detected in requirement level by the slicing

T. S. is with the Software Engineering Laboratory Center of Excellence

in Software Engineering, Faculty of Engineering, Chulalongkorn

University, Bangkok, Thailand (e-mail: Taratip.S@chula.ac.th).

A Test Case Selection from Using Use Case

Description Changes

Monthawan Raengkla, Taratip Suwannasart

T

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

analysis and dependency analysis in use case map

specification level [2]. However the changes of input and

output in use case description are excluded. Case Spec [3] is

a tool for software life cycle management. It is able to

support many input formats and also trace failure from e-

mail notification automatically. Whereas the mapping

requirement with test case and identifying change area in

related test case have to do manually.

III. USE CASE DIAGRAM

A use case diagram [4] portrays actors, use cases, and the

relationship among them.

A. Actor

An actor is a thing having role to play such as a person,

group of person, or a system. The actor name might be job

description or relationship. Figure 1 is a stick figure.

Fig. 1. An Actor

B. Use Case

A use case describes the interactions and activities of

system and actors. The use case connects a primary actor

and describes various scenario related to that actor. Figure 2

is an ellipse meant to a use case.

Fig. 2. A Use Case

C. Relations

 The relations are being in-use for two types between use

cases

Includes

A base use case calls another use case. The base use case

describes higher level than the included use case. In figure 3,

the arrow starts from base use case to included use case.

Fig. 3. An Include Relation

Extend

The base use case embeds an extension use case inside. The

extension use case states the internal point from the base use

case and outgrew scenario then pushes back the actor at the

interrupt point. In figure 4, the arrow starts from the

extension use case to the base use case. It reverts direction

of the include relation.

Fig. 4. An Extend Use Case

IV. USE CASE DESCRIPTION

A use case description [5] is the detail of use case which

is a part from the use case diagram. By the definition from

UML standard states various formats of use case description

as plain text, activity diagram, state machine, and etc.

Cockburn [6] proposes a use case description format as

“One-Column Table” which is simple to understand. Table 1

is a use case description in One-column table format.

TABLE I USE CASE DESCRIPTION IN ONE-COLUMN TABLE FORMAT

USE CASE # <the name is the goal as a short active verb phrase>

Context of use <a longer statement of the context of use if

needed>

Scope <what system is being considered black box under

design>

Level <one of summary, primary task, subfunction>

Primary Actor <a role name for the primary actor, or a

description>

Stakeholder

and interests

Stakeholder Interests

<stakeholder

name>

<put here the interest of the

stakeholder>

<stakeholder

name>

<put here the interest of the

stakeholder>

Preconditions <what we expect is already the state of the world>

Minimal

Guarantees

<the interests as protected on any exit>

Success

Guarantees

<the interests as satisfied on a successful ending>

Trigger <the action upon the system that starts the use

case>

Description Step Action

1 <put here the steps of the scenario

from trigger to goal delivery and any

cleanup after>

2 <…>

3

Extensions Step Branching Action

1a <condition causing branching>:

1a1 <action or name of sub use case>

1a2 <…>

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

V. XML LANGUAGE

XML language [7] is a language to be used in the

communication between different systems, especially data

part. The well-known formedness constraint should be as

follows:

A. Start-tags And End-tags

An element should consist of start-tag, end-tag and

content (as optional if it is empty-element). The start- and

end-tag define the element’s type. The start-tag should

appear for every element with an unique name and the name

should not contain a < or any external entities. The end-tag

should contain the same name as start-tag. The text between

start- and end-tag is an element’s content but the element

could have start-tag immediately followed by end-tag for

empty element. For example,

<name>John Doe</name>

B. Element Type Declarations

The element type must be declared only once. The

element content should be contained in the properly order

start- and end-tag. For example;

<customer>

<name>John Doe

<id></name>123

</id>

</customer>

C. Type Name

A type name in the same start- and end-tag should have

the same case. The XML interprets the name different for

case-sensitive between, for example, <customer> and

<Customer>

D. Attribute Form

An attribute could be added into start-tag after element

type. The attribute should be declared with its value inside

quote symbol. For example; <patient name=”John

Doe”></patient>

E. Text Declaration

The document text must have XML declaration at the

beginning of document. It contains the version information

or encoding declarations. The grammar should be start with

a ?. For example;

<?xml version=”1.0”?>

<customer>

<name>John Doe</name>

<id>123</id>

</customer>

VI. TEST CASE SELECTION FRAMEWORK

This paper proposes a framework to classify valid and

invalid test cases for re-using test cases in software

development to reduce time in the development life cycle.

Figure 5 describes the test case selection framework.

Fig. 5. Conceptual of Use Case Description Change Detection Tool

The component and functionality are described as follows;

A. Input Data

The input data contains 3 sections.

Use case description

A use case description comprises a use case ID, a use case

name, an actor, an input, an output, a procedure, a success

scenario, and an alternative scenario. The use case

description should;

1) Normalize the included by identify the interrupt point

with {UC+<use case ID>} or extend relation by indentify

the interrupt point with {ExToUC+<use case ID>}.

2) Transform one-column table into XML document in

well-formedness.

Test cases

A test case comprises a test case ID, a use case ID, a test

case name, a prerequisite, an input, a procedure, and an

output.

Requirement Validation Matrix

A requirement validation matrix is mapping between use

cases and test cases.

B. Use Case Description Change Detector

The scope of use case description change impact consists

of 3 parts:

Use case description input

The change of use case description input is detected the

different of number, type, and size in the input items.

Use case description output

The change of use case description output is detected the

different number, type, and size in the output items.

Use case description procedure

The change of use case description procedure is detected

the different number, sequence, condition, and loop in the

procedures.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

C. Test Case Impact Analyser

The test case impact determines the change of related use

case descriptions and the test cases mapping by the

requirement validation matrix.

D. Test Case Selector

The conditions to identify valid and invalid test case are

listed as follows;

Use case description input change

The input of use case description related to the input of

test case is going to be invalid if the change affects the test

case.

Use case description output change

The output of use case description related to the output of

test case is going to be invalid if the change of output affects

the test case.

Use case description procedure change

The procedure in use case description related to procedure

in test case is going to be invalid if the change of procedure

affects the test case.

E. Outcome

The various change from use case description impacts the

test case validation. The result is the test case identification

status to keep valid test cases being re-used in the

development and to mark invalid test cases to being further

proceed.

VII. CONCLUSION

This paper proposes the use case description change

detection framework and test case validation identification

methodology for test case re-using of software change

implementation.

In section 6, we propose a test case selection framework.

Our framework can automatically detect the change in use

case descriptions and identify the test case impact. As a

result, the test cases status differentiates test cases which are

ready to be re-used or require an update test case before re-

use them.

Furthermore, we have applied our framework to develop a

tool which will be our future work.

REFERENCES

[1] Graves Todd L., Harrold Mary Jean, Kim Jung-Min, Porter Adam,

Rothermel Gregg, “Empirical study of regression test selection

techniques”, (1998) Proceedings - International Conference on

Software Engineering, pp. 188-197.

[2] Hassine, J., Rilling, J., & Hewitt, J. (2005), “Change Impact Analysis

for Requirement Evolution using Use Case Maps”, Information

Systems.

[3] GODA SOFTWARE. "CASE Spec 10.0", September 2011, Available

from: http://www.analysttool.com/index.htm

[4] Alan D.,Barbara W.,David T., “Systems Analysis and Design with

UML: An Object-Oriented Approach”, John Wiley & Sons, Inc.,

Third Edition

[5] Coleman, D., “A Use Case Template: Draft for discussion”, Fusion

Newsletter, April 1998, September 2011, Available from:

http://www.hpl.hp.com/fusion/md_newsletters.html.

[6] Cockburn. A., “Writing Effective Use cases”, United States of

America: Addison-Wesley. 2000.

[7] W3C Recommendation, “Extensible Markup Language (XML) 1.0

(Fifth Edition)”, Tim Bray, Textuality and Netscape

<tbray@textuality.com>, Jean Paoli, Microsoft

<jeanpa@microsoft.com>, C. M. Sperberg-McQueen, W3C

<cmsmcq@w3.org>, Eve Maler, Sun Microsystems, Inc.

<eve.maler@east.sun.com>, Fran?ois Yergeau, 26 November 2008,

September 2011, Available from: http://www.w3.org/TR/REC-xml/

[8] Setapong Leeraharattanarak, “An Approach For Automatically

Generating Test Cases From Use Cases” , A Thesis for the Degree of

Master of Science in Computer Science Department of Computer

Engineering Faculty of Engineering Chulalongkorn University, 2004.

[9] Shiri, M., Hassine, J., & Rilling, J. (2007), “A Requirement Level

Modification Analysis Support Framework”, Third International

IEEE Workshop on Software Evolvability 2007, 67-74. Ieee.G. O.

Young, “Synthetic structure of industrial plastics (Book style with

paper title and editor),” in Plastics, 2nd ed. vol. 3, J. Peters, Ed.

New York: McGraw-Hill, 1964, pp. 15–64.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

