
Applying Exception Handling Patterns for
User Interface Customization

in Software Games Modification

Abstract -There may be1 an error that usually occurs during
the use of software. It may appear in different forms and may
result in different effects. Developer should perform software
verification and validation and make correction in order to
reduce the chance of software mulfunction. In software game,
end user is allowed to modify software especially interface
customization. This may easily cause an error. This research
presents a method for error detection and management for
software game modification using exception handling patterns
and game engine. The proposed method can be applied to
other similar software types.

Index Terms: Game Engine, Design Pattern, Software Games
Modification, User Interface Customization

I. INTRODUCTION

oftware development is a continuous improvement in
term of product features in order to earn the software
satisfies the change of user requirements. Usually

developer makes software feature extension by developing
a plug-in package so it can perform according to the change
of requirements. However, in software game development,
there is a chace that an end user may modifiy feature of
software game to meet his/her requirements during
software exection. The software development that allow
end user to modifiy the program is called “End User
Programming” which in game industry is known as
software modification or Mod.

The Mod is widely popular because it extends the
software lifetime and improve software fearture from
inputting innovative ideas and specific requirements which
are generated by the end users. There are a supporting
facilities help perform game modification such as game
engine, tool, user manual and game developer social
network. In some game engine, there are floders that
provide set of add-on files or script files that user can
modify. The modified code can be replaced the existing one
automatically.

However, during software modification an error may
occur in differnts ways such as software crash or some

 Manuscript received Jan 08, 2013; revised Feb 05, 2013.

Thitipong Tengtrirat is with the Software Engineering Laboratory,
Center of Excellence in Software Engineering Department of Computer
Engineering, Faculty of Engineering Chulalongkorn University, Thailand;
e-mail: Thitipongt.T@student.chula.ac.th

Nakornthip Prompoon is with the Software Engineering Laboratory,
Center of Excellence in Software Engineering Department of Computer
Engineering, Faculty of Engineering Chulalongkorn University Thailand;
e-mail: Nakornthip.S@chula.ac.th

object disappeared. Therefore, an error detection and
management is a challenge issue.

There are three concerns have been point out from [1]:
Firstly, error management is a capability to identify fault
localization and to provide a method to handel each fault
occurs. Secondly, software monitoring is a capability that
can help monitor the result of the program during
execution. For example, it may provide a pop up message
informs the status of its execution so the user can see the
result once he/she has been updated game engine. Lastly,
alert system is a capability informs users the potential
discrepancies beween the before- and the after-
modification.

Execption handling is an importation method and
widely accepted among developer since it can help detect
an error and manage such error in a predefined way for
differen scenarios. There is a research proposed exception
hadleing patterns for unsatisfied contitions occur in
business processes using Little-JIL [2]. The proposed
patterns can be able to apply in software programming
phase as well since programmer has to use an exception
handling method to help manage an error.

Thus, this research paper present a method for error
detection and management for software game modification
using exception handling patterns and game engine.

In this paper, there will be show background in section
II and related work in Section III then, we describe our
approach in Section IV and, finally we give the conclusion
of this work.

II. BACKGROUND

A. Game Engine

Game engine is the design structure to assist the software
development process. The focus of game engine
development is that it must be simple to learn and use.
Game engine development is a core of game development
since it always includes special features that can be
inherited to the next game [2, 3, 4]. The special feature
includes functional requirements and non-functional
requirements. Furthermore, the game engine has been
designed in a variety of features to serve various user
needs. For example, the game engine may allow user to
select different types of user interface devices such as
mouse, joystick or keyboard.

B. Mod or Modification
Game developers develop elements such as game rules,

behavioral, character based on the game engine. The game
engine allows new game rules or game components to be

Thitipong Tengtrirat and Nakornthip Prompoon

S

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

created from plug-ins [5,6] or by reusing elements. Some
game engines have provided channels for ease of use, such
as script languages or support tools for simple use, which
can be used to create a new game, called a modification or
Mod.
 The Mod is an innovation idea occurring from the end
user concept or the end user gaming experience. The
requirements for game modification comes from a specific
group of user. The results of mod are not a new creation,
but rather only the extension of the original game. Some of
them can work stand-alone but mod relies on the original
system. Mods also lead to the gathering of end users in
development, leading to new learning in social groups with
different cultures. In some cases, the mod may be a
prototype of game in the next generation. Mods have been
divided into 4 categories:

1) User Interface Customization
The game players or the end users can customize the

interface to meet the user requirements in these areas: a)
Customize the interface to create the unique or personalized
interface that meets the user requirements, b) Customize the
display to improve the performance and/or the functionality
of the usage, and c) Customize the interface to support the
new modules when newer modules or newer functions are
released that may affect the user interface.

2) Game Conversions
 The game functions or game rules can be customized by
the game players or the end users.
 3) Machinima

The game engine can be customized the game for other
functions such as to create cinematic productions or
movies.

4) Hacking Closed Game Systems
The end users customize the games against the copyright

software for a malicious intent towards other users or other
systems, or sometimes, to create some advantages to the
users that are more than what the developers originally
allowed.

 C. End User Software Engineer

Software users tend to have new differing idea or
extended idea from the original implementation’s features.

This is a specific need from the specific group of users.
Thus, there is a collaboration for developemt of users who
have the same specific requirements called End User
Programming or End User Development [7,8].

There are simple tools that the end user programmer or
developers can use to make program changes such as
spreadsheet. however, this type of programming can create
subsequent problems or bugs because of inadequate user’s
skills or the high level of program’s complexity. In order
to solve or prevent these problems, there is a need for a new
type of software engineer which is called the end user
software engineer.

The end user software engineering is based on software
engineer principles but it does not cover the software life
cycle, instead focusing on limiting errors from End user
software development, allowing users to participate in
software development success.

End user software engineering allows end users to learn
and understand of errors so that they will correct errors to a
certain extent. As a result, production of software will be
more reliable and completely satisfactory for the end users.

D. Model View Present Pattern: MVP

MVP is a pattern developed from the
Model/View/Controller Pattern (MVC) [9] because the
MVC pattern allows for viewing access to the Model
component. This functionality requires the view to have a
logic as a component. The view also has more dependency
with the user interface, that is, when the code is changed, it
affects the user interface. This makes the system to be
more complex, harder to test, and harder to maintain.

MVP Pattern is a model that separates control or logic
from view, called the Presenter, making the view only for
presentation and interface with user .The presenter is
mainly responsible for receiving input data from the view
to manage cccessibility between the view and model, as
shown in Figure 1.

The relationship between the view and presenter is
similar to the Decorator Pattern. The presenter is related to
the view in the components, where one view can have more
than one presenter. The MVP pattern has the presenter
operates and sends results to view. The non-dependency
between them allows the View and presenter to be less
complex, and one presenter can be reused with different
views

.

III. Related Work

Ali Gokalp Peker [11] presented the process of game
engine design in order to conform to design goal and design
strategies. The processes was composed of 5 procedures: 1)
defining features of the game engine; 2) defining a set of
design goals and strategies; 3) extracting design goals from
features; 4) defining design patterns and 5) integrating all
defined patterns and forming the complete design of the
game engine. An example of design goal, design strategis
and suggested design evaluation are shown in Table I.

 There is another research[11] using Little-JIL for
exception handeling patterns illustration. Little-JIL is a
hierarchically-scoped process language with a graphical
syntax and semantics that are precisely defined by finite
state machines. It can be used to explain a runtime
environment that allows execution on a distributed
platform.

The basic unit of Little-JIL processes is the step,
represented graphically by an iconic black bar as is shown
in Fig 2. [12] Little-JIL use 2 types of symbols to represent
normal behavioral, called substep, and exceptional
behavioral as shown in Fig 3.

1) Substep part
Little-JIL substep decomposition is represented by

having substep icons connected to the left side of the parent
step icon by edges. The edges are annotated with
specifications of the artifacts that are passed as parameters
between the parent and child steps. Each parent step
specifies the execution order of its substeps using one of
the four sequencing icons, shown in Figure 3. They appear
in the step bar above the point where the substep edges are
attached. There are four different sequencing icons: (1)
Sequential which indicates that the substeps are executed in
order from left to right (2) Parallel which indicates that the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

substeps can be executed in any order. (3) A choice which
allows any one of the substeps to be executed. (4) Try
which indicates that the substeps are executed left to right
until one succeeds.

2) Exception Handling Mechanisms
The parent step may offer exception handling facilities to
its descendant steps. These facilities are defined by
exception handlers connected to the parent by edges
attached to the right side of the parent’s step bar
immediately below an ‘X’. Each exception edge is
annotated to identify the type of exception that it handles.
There are four exception continuation icons:

(1) Completion the step to which the exception handler
is attached is finished, and execution continues as specified
by its parent.

(2) Continuation the step to which the exception handler
is attached should proceed with its execution as though the
substep that threw the exception had succeeded.

(3) Restarts the step to which the handler is attached.
(4) Rethrow the handler to propagate the triggering

exception up to an enclosing scope as in a usual
programming language

Barbara Staudt [2] apply exception handling patterns for
managing the business operation of an error in order to
work effectively. These were controlled with 3
characteristics,

1) Presenter: Manage exception by offering another
presentation to replace the existing object presented in one
screen.

2) Insert: Manage exception by inserting an operation
that is suitable for a particular scenario. The insertion must
ensure that the system still work as usual.

3) Aborting: To cancel the operation by inserting
operation to manage cancel operation.

Exception handling pattern is a design pattern used to
manage exception flow of processes and to controlled the
operation with greater accuracy and flexibility. The
exception handling pattern categories is listed in Table II
[2] [12].

IV. Defined Exception Handling Method for Mod
Our research objective is to apply exception handling

patterns to control errors caused by game modification
operated by end user software engineer for game engine
design.

From our analysis of problems occure during Mod, we
can indentify the causes the problems into 2 types; 1) from
user perform the modification and 2) from the design of
game engine that does not provide a sufficient fuction to
handle such error.

We proposed a framework help reduce the game
modification error is presented in details as shown in Fig 4.

.A. Identify Candidate Customization Types of User
Interface.

 This step starts from the study of Mod method from
various sources such as related research papers [5, 6] and
then analyze the possible ways of game design
customization in order to identify user interface Mod types
as shown in Table III. and the feasible errors may occur
according to each type as shown in Table III.

In each customization case, errors can occur in a variety
of formats and may need different method to fix them.
Using exception handling patterns may help resolve the
error as shown in Table IV.
B. Select a Candidate Game Design Engine for Mod

According to the research work by Ali Gokalp Peker
[1], we use all procedures for game design game to our
research environment for game software modification. We
focus on the two strategies, usability and adaptability, by
adding features called extension support composed of 3
sections are integrated in an extend support module. all
existing features from game engine will be migrated to the
extend support module as a seperate center for game
modification process.

1) Extension Management Section. User must modify
game engine according to his/her needs using the existing
one. 2) Addition Management section. User can add new
features to create the additional module. 3) Addition
Feature Management. The module can be created by user
input new module in a game engine level by modifying the
existing extend support module as shown in Fig 5.

From [11] that used MVP patterns for user interface
presentation, we would like to perform the modification in
order to comfrom to the defined strategies. Thus, another
extend MVP is contructed and Bridge pattern is selected to
use in order for existing MVP can calls Extend MVP once
there is a modification as shown in Fig 6.

C Apply Exception Handling Pattern in Game Design Engine

Bridge pattern can be used to detect whether there is a
modification occurring. If it is, then Extend MVP will
activate to perform the similar assigned task as the
correspond MVP as shown in Fig 7. From Fig 7, there are 4
patterns used for modification for the defined strategies. 1)
MVP Pattern of the engine. It is a main function for
controlling the input and output process of the system. 2)
Bridge Pattern. It is use as a middle man provding the
interfaces between MVP pattern and Extend MVP pattern.
3) Exception Handling. It help filter and monitor the result
of modification in extend MVP. Exception Pattern is
chosen for a specific case of error. 4) Extend MVP. It
perfroms the function on behalf of MVP once there is a
modification.

The description of the pattern characteristic at the
behavioral level consists of the system functionality along
with the applications to use the pattern to monitor the
unwanted conditions or errors that could have been created
during the interface modification or customization during
mod. The guidelines to resolve the occurred errors using
the analysis with Little-JIL diagram to show the structure,
sample cases and functionality of pattern are shown in the
Table V.

In order to illustrate our concept, an example of user
satisfaction case is elaborated in detail using pattern format
as shown in table VI. In addition, by applying with Little-
Jill, the result of how exception handeling will be
performed for each substep is shown in Fig. 8.

D. Pattern Implementation Evaluation
Tools are developed using open source sofware based on

the proposed design patterns, in order to test whether the
implementation according to the design patterns can
perform according to the pattern objective. There are 4

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

steps for pattern implementation evaluation: 1) Define the
objective of testing. The activities and procedures defined
within the framework are covers all substeps and executed
correctly. 2) Design and specify the evaluation criteria. Test
cases are generated according to the control error. 3) Test
the selected game. The selected game is tested by adding a
Mod and pattern based on the design test case. 4) Check the
test results. The test results are evaluated based on
evaluation criteria using a checklist covers all feasible
scenarios. If the test result does not meet the expect result,
the proposed pattern are needed to redesign. An example of
evaluation details is shown in Table VII.

V. CONCLUSIONS AND FUTURE WORK

This paper presents an approach for the application of
exception handling patterns in the design of the game
engine in order to support the improvement of game
software, based on the principles of End user software
engineering. The paper focuses on filtering errors and
presenting approaches to fix errors, in order to assist the
end users to be able to perform the development
successfully. The proposed design patern can be used as a
reference pattern for development by game developers. In
the future, apart from user satisfaction, other proposed
patterns will be further designed in details and tested
whether they can operate according to the pattern objective.
Our proposed framework can be applied in other exception
handlings such as synchronization between two parallel
operations from different machine performed by different
game players..

REFERENCE

[1] Burnett, M., Cook, C., Rothermel, G., ”End-User Software
Engineering”. Communications of the ACM 47(9) 2004, 53–58

[2] Barbara Staudt Lerner and Stefan Christov, "Exception Handling
Patterns for Process Modeling", IEEE Transactions on Software
Engineering, Vol. 36, No. 2, March/April 2010, p.162-183

[3] Stephen Tang and Martin Hanneghan, Game Content Model:
Stephen Tang and Martin Hanneghan "An Ontology for
Documenting Serious Game Design", 2011 Developments in E-
systems Engineering, p. 431-431

[4] Seung Hun Lee , Gum Hee Lee , Hyun Hoon , Doo Heon Song
and Sung Yul Rhew, "An Empirical Model of the Game Software
Development Processes", Proceedings of the 4th International
Conference on Software Engineering Research, Management and
Applications (SERA’06)

[5] Magy Seif El-Nasr and Brian K Smith,"Learning Through Game
Modding" .ACM Computers in Entertainment, Vol. 4, No. 1,
January 2006, p.1-20

[6] Walt Scacchi, "Modding as a Basis for Developing Game
Systems". 1st International Workshop on Games and Software
Engineering, GAS 2011, p. 5-8

[7] M. Burnett. “What is end-user software engineering and why does
it matter?”, In 2nd International Symposium on End-User
Development 2009, p 15–28

[8] Andrew J.Ko.”, The State of the art in end-user software
engineering”. ACM Computer Survey 2011(21)

[9] Model View Presenter (MVP) VS Model View Controller
(MVC).
Available:http://blog.vuscode.com/malovicn/archive/2007/12/18/
model-view-presenter-mvp-vs-model-view-controller-mvc.aspx .
[Last Accessed: September 03, 2012].

[10] Martin Hunter, “The MVPC Software Design Pattern”, Tidying
the House 2006, p 1-5

[11] Ali Gokalp Peker and Tolga Can,"A Design Goal and Design
Pattern Based Approach for Development of Game Engines for
Mobile Platforms". The 16th International Conference on
Computer Games, 2011

[12] Barbara Staudt Lerner,Stefan Christov, Alexander Wise,Leon J.
Osterweil, ”Exception Handling Patterns for Processes”. WEH
'08, Proceedings of the 4th International Workshop on Exception
Handling, p 55-61

Table I Example of design goal, strategies and evaluation [11]

Design Goal Design strategy Evaluation
(1) Usability Can be defined as readability and intuitiveness of the game

engine and the game implemented on it. It helps reduce
learning curve and increase productivity.

Can user predict the expected results after entering any action?
Are there any diagram or tool used to simplify the presentation?

(2) Efficiency Should use underlying platform efficient, in terms of
power, memory and performance. It can make the design
more complex.

Are there any tool used help measure power consumption of reference
implementation?
Does the design concern memory efficiency and consumption?

(3) Portability Design goal for multi-platform support such as strategies
that assist in the adaptation of programs to target
environment.

Are there a comparison evaluation between the typical platform and the
different target platforms?

(4)
Adaptability

Ensured in different levels of game engine design or
different configuration by using abstraction or in runtime
level by using a script language.

Does the design using the appropriate design pattern such as using the
adapter pattern for input controller design?

Table II Categories of exception handling patterns [2]

Category Pattern name Intent
1. Presenter:
Trying other
alternatives

 Use alternative operation
Ordered Alternatives The same functionality as a normal operation.
Unordered Alternatives The different functionality as a normal operation.

2. Insert:
Inserting
behavior

 Insert and check operation
Immediate Fixing Adding steps to fix the process.
Deferred Fixing Adding steps to fix the process action must be taken to record the error and possibly provide partial

fixing
Retry Adding steps to fix the process and return to the conditions operation.
Exception-Driven
Rework

Check and insert modified behavior. It will continue when success all required conditions.

 3. Aborting:
Cancelling
behavior

 Insert for checking operation
Reject To ignore when the conditions operation failed.
Compensate To reverse action back to the previous step if the condition fails.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

Table III Show Category purpose and Example of user interface customize
User Interface

Customization Category
Customized Case Examples

1. Customize unique
interface

Satisfaction Customization aesthetic. Example: change the image

Specific applications For exposure to that work. Example : adds event voice , change color for apparent
2. Customizing the display Function Customize for operation with new display or work function.

Performance Reducing the activity of the user. Example: Merge button
3. Customize interface
cause of expansion modules

Adapt Add the new interface or add the new display.
Maintenance When you add function but they are affected with the interface. Customized to work properly.

Table IV Structures, examples and pattern usage for satisfaction modifications

Pattern Purpose (To handle errors that
occur in the case).

Guidelines for resolving errors that occur.

User satisfaction Customization for uniqueness The mod can be used to display another display screen that is unique or different from the
original model.

Specific
applications

Customization for specific
display

Upon error, cancel the customized form, and use the default to enable continued operation.

Function Inserting additional operations Cancelling the operation or adjusting the order of operation to return to normal operation
(which may result in cancelling the customization or partial use of customization)

Performance Re-order operations Filtering operations that work properly, and perform only those operations to return to
normal operation.

Adaptation Adding new functionality Cancel the customized operation and display of the system. Report the error to the user.
Maintenance Editing a specific function Report the error to the user.

Table V Troubleshooting and applied exception handling pattern

Modification type Troubleshooting Applied pattern

Filtering errors

Display alternative Present
Insert Behavior Insert

Display errors to the user Cancel the operation Aborting

Table VI Example of User Satisfaction Case

Objective Mod can adapt other methods in order for interface customization can operate properly by choosing the alternate options in many levels and
cancelling the previous steps.

Application. Use exception handling pattern when the system cannot operate, to choose a similar operation. For operations related to other steps, when
cancelling the operation, the other steps should be undone to allow the job followed appropriately. For example, when changing Pictures and
setting new picture position, if the alignment is correct, but the image is too large,The system must resize the image and re-align with the
image.

Structure Step Name Substep and Description
Normal flow Use Default: Use default system instead of mod.

Use Extension: Activate the extension.
Checker: Make decisions on the use of extensions.

Ordered
Alternative

Extension Checker: Examines the operation under the condition of the extension.
Ordered Alternative: The choice of other extensions which behave in the same format as the source. The behavior of the
alternative is to run indefinitely until the defined condition is detected. In case of the happening of the unsatisfied
condition, the system will use the default to replace the mod and report the error message.

Unordered
Alternative

Extension Checker: Examines the operation under the condition of the extension.
Unordered Alternative: The choice of other extensions which behave in differnt format from the source. The behavior of
the alternative is to run indefinitely until the defined condition is detected. In case of the happening of the unsatisfied
condition, the system will use the default to replace the mod and report the error message.

Compensate Extension Checker: Examines the operation under the condition of the extension.
Use Default: Use default system instead of mod.
Compensate: Modify operations to use the default system instead of the mod according to the relevant conditions.

Example
(Shown in
Figure 9)

 Customizating the interface by changing the background of the game menu, using a file with a GIF extension. First, the system will store the
default configuration of the game without customization as the default value and store the customization (mod), before determining whether
there has been modification. Second, determine if the mod is allowed to operate by checking the file extension from the given priority of
conditione.g., JPEG and GIF. For example, Check extension file set priorities. If Mod finds files under the specified conditions then the Mod
is allowed to operate. If the Mod is not under the specified conditions, then the system will use default values without the Mod. After doing
this step, the system will check the next condition, the size of the image, based on the priorities defined. If the mod does not pass the condition,
the system is returned back to the default value. Repeat until the conditions specified for image authentication are completed, and replace the
stored default values with the modified values.

Table VII: Design Pattern Evaluation for User Satisfaction Case.

Operation Form of customization Errors expected to occur Display when using patterns

Customizating background image. Change background image. Black Screen or image not displayed o Display correctly.
o Use the default before customizeation.
o Cancel the operation of the system and
report the results to the user.

Display distortion
System crashes

Customizatign Cursor Change Cursor image. Cursor loss
Cursor distortion
System crashes

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

Fig 1. MVP Pattern [10]

Fig 2. Little-JIL Syntax [12]

Fig 3. Little-JIL Sequencing Icons and Exception Continuation Icons

[12]

Fig 4. The proposed framework of applying exception handleing for a
software game modification performs by end user software engineer

Fig 5 feature component of game engine

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

Fig 6 Class Diagram Show Engine Structure

Fig 7 Class Diagram Show Dataflow of Extend Structure in Game Engine

Fig 8 Little-Jill Diagram Showing Mod Management from Exception Handling Pattern for Game Mod for Satisfaction

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

