


Abstract— Information is a critical asset of an organization.
This is why reducing the chance of data loss must be a primary
concern. This research focuses on the risk assessment issue in
physical level of data implementation, which includes
identifying risk factors and assigning a hazard level. This
research will investigate how to predict the chance of incorrect
data based on breaking risk assessment constraints using a
state machine diagram. The diagram represents the status of
the data when that data must change as a result of a program
execution. The advantages of this research include helping
software development teams identify what risks may occur in
different scenarios, and helping reduce development cost by
allowing them to minimize those risks.

 Index Terms— Risk Assessment, Relational database,
Schema-base constraint, State Machine Diagram

I. INTRODUCTION

deally all applications usually use relational database
databases that include correct constraints processing. But
today some applications still generate inconsistent data in

immature relational databases by breaking schema
constraints. Changing the RDBMS is not always possible in
practice for a variety of reasons, such as during software
migration when only one application is changed but others
still require the old RDBMS.

This is why researchers are trying to solve this problem
by using better code patterns in applications [9]. The code
pattern solution is useful, but once data is already corrupted
and the program has been already written. It is too late to fix
the problem with only a code pattern solution. These
problems will usually show up when the application is
almost done. Applications using MySQL's popular
MYISAM storage engine are one example where the logic
to enforce constraints must be put into the application code
because the engine does not enforce constraints.

Ramez Elmasri classifies database constraints into three
groups: Inherent model-based constraints, schema-based
constraints, and semantic constraints. The research focuses
on schema-based constraints which can be represented in the
Data Definition Language (DDL) created in the software

Manuscript received Jan 08, 2013.
Kanjana Eiamsaard is with the Software Engineering Laboratory, Center

of Excellence in Software Engineering Department of Computer
Engineering, Faculty of Engineering Chulalongkorn University, Thailand
; e-mail: Kanjana.E@student.chula.ac.th

Nakornthip Prompoon is with the Software Engineering Laboratory,
Center of Excellence in Software Engineering Department of Computer
Engineering, Faculty of Engineering Chulalongkorn University, Thailand
;e-mail: Nakornthip.S@chula.ac.th

design phase. The schema-based constraints contain 4
constraints: domain constraints, key constraints, NULL
constraints, and referential integrity constraints [3].
Applications created which obey all of these constraints will
never allow inconsistent data to be stored in the database.
However, in practical, there is always the case that these
constraints may do not enforce.
 The paper is structured as follows. Section 2 presents
underlying concepts. Section 3 mentions some related
works. Section 4 proposes our approaches. Section 5
describes the application of our proposed approach. Finally,
the paper ends with conclusions and future works in section
6.

II. UNDERLYING CONCEPTS

A. Risk

Boehm defined the terms risk factor as the probability of
loss or injury and its severity of undesired event [1].
Meanwhile NASA also defined Risk factor as the
combination of the probability that a program or project will
experience an undesired event such as safety mishap,
compromise of security, or system component failure; and
the consequence, impact, or severity of the undesired event
were it to occur [2]. Risk exposure is defined by the
relationship shown here:

ܨܴ ൌ ܲሺܷܱሻ ∗ ሺܷܱሻ (1)ܮ	
 Risk factor : ܨܴ
ܲሺܷܱሻ : A probability of loss or injury
 ሺܷܱሻ : Impact or severity of the undesired eventܮ

When an injury happens on a project, the resulting hazard
level of each project may be different. NAZA classified the
hazard level into four levels:
1) Catastrophic means the loss of an entire system.
2) Critical means the system sustained major damage.
3) Moderate means the system sustained minor damage.
4) Negligible means the system was under stress, but no
system damage occurred.

B. Schema-based constraints

Constraints are one of many attributes that relational
databases must be concerned. The types of constraints this
paper will consider are [3]:
1) A domain constraint specifies the type of each attribute.
2) An entity constraint specifies whether the value of each
attribute can be NULL or not.

Risk Assessment for Relational Database
Schema-based Constraint Using State Machine

Diagram

Kanjana Eiamsaard1, Nakornthip Prompoon2

I

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

3) A key constraint specifies that all elements of a set are
distinct. This means no two rows have the same
combination of values for these attributes.
4) A referential integrity constraint specifies a relationship
between two tables and is used to maintain the consistency
of data among rows in the two relations.

C. State machine diagram

A state machine diagram is used for representing the
changing status of a system, sub-system or an object. Each
object will respond to an event and change to another state
depending on the event. There are many kinds of state
machine diagrams but this paragraph will discuss only
“Change event state machine diagram”. This diagram is the
satisfaction of a Boolean expression that depends on a
designated attribute value. It is important because it focuses
the model on the true dependency—an effect that occurs
when a given condition is satisfied [8].

III. RELATED WORKS

A. Architectural-Level Risk Analysis Using UML

This research considers a dynamic risk factor by not only
considering risk in a component but also considering risk in
the connections between components. The algorithm
evaluates the hazard level with a hazard analysis. Then it
applies a Markov model to analyze the risk of various
scenarios in each use case. Finally, it shows a critical
component and/or connection which the developer must
verify will work correctly [5].

B. Generating test data from state-based specifications

This research generates test data by using full predicate
coverage criterion [7]. It also presents a prescriptive
approach that uses an expression parse tree. An expression
parse tree is a binary tree that has binary and unary operators
for internal nodes and variables and constants at leaf nodes.
The tree’s node consists of AND (∧) OR (∨) and NOT (~).
An output from this method is the “Truth table” which it
will be used as test data. The method to generate the truth
table is described below:

First, a test clause is chosen. Next, the parse tree is
walked from the test clause up to the root, then from the root
down to each clause. While walking up a tree, if a given
clause’s parent is OR, its sibling must have the value of
False. If its parent is AND, its sibling must have the value of
True. If a node is the inverse operator NOT, the parent node
is given the inverse value of the child node. This is repeated
for each node between the test clause and the root. Once the
root is reached, values are propagated down the unmarked
subtrees using a simple tree walk. If an AND node has the
value True, then both children must have the value True; if
an AND node has the value of False, then at least one child
must have the value False (which one is arbitrary). If an OR
node has the value of False, then both children must have
the value False; if an OR node has the value of True, then at
least one child must have the value True (which one is
arbitrary). If a node is the inverse operator NOT, the child
node is given the inverse value of the parent node. For
example, the truth table for ሺܣ ∨ ሻܤ ∧ :is shown in table 1 ܥ

Table I. The truth table for ሺܣ ∨ ሻܤ ∧ [7] ܥ
 ሺܤ ∨ ܣሻ ∧ ܥ
1 T F T
2 F F T
3 F T T
4 F F T
5 T T T
6 T T F

 After test data is generated, it will be considered with
triggering events inside a state machine diagram. This paper
suggests implementing this by assuming two versions of the
triggering event variable, ܺ and ܺ′, where ܺ represents the
before-value of ܺ and ܺ′ represents its after-value. Finally,
expression rules are used with the triggering event as shown
here:
- @ܶሺܺሻ ൌ ~ܺ ∧ ܺ′
- @ܶሺܺ ∧ ܻሻ ൌ ~ሺܺ ∧ ܻሻ ∧ ሺܺ′ ∧ ܻ′ሻ	= ሺ~ܺ ∧ ~ܻሻ ∧ ሺܺ′ ∧ ܻ′ሻ
- @ܶሺܺ ∨ ܻሻ ൌ ~ሺܺ ∨ ܻሻ ∧ ሺܺ′ ∨ ܻ′ሻ = ሺ~ܺ ∧ ~ܻሻ ∧ ሺܺ′ ∨ ܻ′ሻ
ሺܺሻܨ@ - ൌ ܺ ∧ ~ܺ′
ሺܺܨ@ - ∧ ܻሻ ൌ ሺܺ ∧ ܻሻ ∧ ~ሺܺ′ ∧ ܻ′ሻ = ሺܺ ∧ ܻሻ ∧ ሺ~ܺ′ ∨ ~ܻ′ሻ
ሺܺܨ@ - ∨ ܻሻ ൌ ሺܺ ∨ ܻሻ ∧ ~ሺܺ′ ∨ ܻ′ሻ = ሺܺ ∨ ܻሻ ∧ ሺ~ܺ′ ∧ ~ܻ′ሻ

@ܶ or @ܨ : An event which causing ܺ′ݏ content change.
@ܶሺܺሻ : An event which changes from false state to
new state
 .content change ݏ′ܺ ሺܺሻ : An event which causingܨ@
ܺ	ܽ݊݀	ܺ′ : These two variables represent the value before
and after event.

C. Test cases generation from a state chart diagram

This research proposed the approach to generating test
case which related to the full predicate coverage criteria,
consists of 2 steps [8].
1) Considering the condition of the state transition from

UML specification.
A condition of the state transition is represented in table,

which consists of “Parent state”, “Current state”,
“Condition” and “Destination state”. For example, given the
considered state machine diagram in Fig. 1, a corresponding
table of the state transition is shown in Table 2.

Fig 1. An example state machine diagram.

Table II. A condition of the state transition

P
ar

en
t

st
at

e
C

ur
re

nt

st
at

e

Event condition

D
es

tin
at

io
n

st
at

e

C1 C2 … Cn

- S1 t @ࢀ - - S3
S2 S3 @ࡲ - - F S4

After a table of the state transition is created, then the
expressions are generated. From Table 2, two expressions
are generated:

૛ሻ࡯ሺࢀ@ (1 ∧ 1࡯ ൌ 2ܥ~ ∧ ′2ܥ ∧ 1ܥ

૚ሻ࡯ሺࢀ@ (2 ∧ ݊࡯ ൌ 1ܥ~ ∧ ′1ܥ ∧ ݊ܥ

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

Finally, a test specification is generated using a generated
expression as shown in Table 3.

Table III. Test specification from a state machine diagram.
Pr

ed
ic

at
e

N
o.

Pa
re

nt
 S

ta
te

C
ur

re
nt

St

at
e

E
ve

nt

co
nd

it
io

n

D
es

ti
na

ti
on

St

at
e

P1 - S1 ~2ܥ ∧ ′2ܥ ∧ S3 1ܥ

P2 S2 S3 ~1ܥ ∧ ′1ܥ ∧ S4 ݊ܥ

2) Considering each predicate to generate test case

specification.
In this step the truth table is modified to be a test case

specification by following an algorithm which was proposed
by Offutt [7] as shown in Table 4.

Table IV. Test specification generated from a state machine

diagram.

P
re

di
ca

te

N
O

.
Pa

re
nt

St

at
e

C
ur

re
nt

St

at
e

C
1

C
2

…
…

.

C
n

A
ft

er
 v

al
ue

D
es

ti
na

ti
on

St

at
e

P1 - S1 t F 2ܥ′=True S3

 S1 t T 2ܥ′=True S1

 S1 f F 2ܥ′=True S1

 S1 t F 2ܥ′=False S1

IV. OUR APPROACH FOR RISK ASSESSMENT FOR

RELATIONAL DATABASE SCHEMA-BASED CONSTRAINT

USING STATE MACHINE DIAGRAM

This proposed approach is to be used for evaluating risk in
various scenarios which are related to changing data in a
database in the case where there may be occurrences of
breaking any kind of schema-based constraints. It considers
risk factors in each scenario by not only considering them in
a component but also considering them in the connections
between components. In this paper, a "scenario" means an
event in software which effects data stored in a database. A
"component" means part of a scenario which represents a
kind of schema-based constraint. The events may come
from the insert, delete and update operation. After both
scenarios and components are created, their risk factors are
computed by using a risk factor model. Finally, hazard
analysis is adapted to identify severity levels for each
component that will be described later. All of the steps can
be represented with an activity diagram as shown in Fig. 2

This paper also presents an algorithm that shows how to
calculate the risk factor as shown in Fig. 3

Fig 2. Activity diagram of the proposed risk

assessment approach

Fig 3. Risk assessment algorithm

Algorithm: Risk assessment for relational database schema-
based constraint using behavioral state machine diagram.
Input: State machine diagram in XML format and Entity
relationship diagram in DDL format.
Output: Rank of scenario’s risk factors and the summary of all
scenario risk factors.
Pre-condition: Syntax of state machine diagram is correct
according to the UML2.0 specification.

1. For each scenario
 1.1 For each component
 1.1.1 Identify risk factor
 1.1.2 Define the hazard score by using the number of
attributes and relations from entity relationship diagram
(ER)
 1.1.3 Calculate risk factor
 1.2 For each connector
 1.2.1 Identify risk factor
 1.2.2 Define the hazard score by using the number of

relations which relate to connectors from entity relationship
diagram (ER)

 1.2.3 Calculate risk factor
 1.3 Create state machine diagram of the normal

execution software and state machine diagram of software with
absorbing state

 1.4 Apply Markov model to generate state machine
diagram from step 1.3

 1.5 Summarize risk factors
2. Rank the scenarios in order by risk factor score

Post-condition: The risk factor score from the algorithm will be
captured in a form that can be used in the risk management
process.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

 The activity diagram in Fig. 2 is explained step by step as
follows:
1. Create a state machine diagram for each component of
each scenario. This step will generate a state machine
diagram of components in scenarios effects the data in a
relational database.
2. Risk Assessment consists of two steps:
2.1. Component risk assessment is calculated by using a
model as shown here:

ݎ	 ௜݂
௫ ൌ ܥܱܷܲ ௜ܵ 	 ∙ ௜ (2)ݐݒݏ

ݎ ௜݂
௫ : Risk factor of component i in scenario x

ܥܱܷܲ ௜ܵ : A probability of loss or injury of component i
 ௜ : Impact or severity of the undesired event ofݐݒݏ

component i
There are six steps for calculating the probability and

severity for the model:
2.1.1. Calculate the probability of a satisfactory component
(PSC) transition from state p to q by using full predicate
coverage criterion which will generate a number of test case
as shown here:

௣௤ܥܵܲ ൌ 	
|்௥௨௘்௘௦௧஼௔௦௘௦೛೜|

|்௢௧௔௟்௘௦௧஼௔௦௘௦೛೜|
 (3)

 ௣௤| : The number of test cases whichݏ݁ݏܽܥݐݏ݁ܶ݁ݑݎܶ|

make a correct transition from state p to q.
 ௣௤| : The total number of test casesݏ݁ݏܽܥݐݏ݈݁ܶܽݐ݋ܶ|

generated.
2.1.2. Calculate the probability of a satisfactory path
through the state machine diagram using this formula:

௜௡௜௧௜௔௟ି௙௜௡௔௟ܥܵܲ ൌ ∏ ௉೔௉೔శభܥܵܲ
௡ିଵ
௜ୀଵ (4)

 ௜௡௜௧௜௔௟ି௙௜௡௔௟ : A probability of a satisfactory path throughܥܵܲ

the state machine diagram from the initial node to the
destination node.
 ௉೔௉೔శభ : A probability of a satisfactory transition betweenܥܵܲ

states. The result of this formula is the probability of state i
multiplied by the probability of state (i+1).
2.1.3. Calculate the probability of an unsatisfactory path
through the state machine diagram using this formula:

௜௡௜௧௜௔௟ି௙௜௡௔௟ܥܷܲ ൌ 1 െ ௜௡௜௧௜௔௟ି௙௜௡௔௟ (5)ܥܵܲ

2.1.4. Calculate the probability of an unsatisfactory
outcome (PUOC) using this formula:

୧ܥܱܷܲ ൌ ∑ ቈ൤ ௉௉ೖ
∑ ௉௉೗
೘
೗సభ

൨ ∙ ൫ܷܲܥ௜௡௜௧௜௔௟ି௙௜௡௔௟൯௞቉
௠
௞ୀଵ (6)

 ୧: A probability of unsatisfactory outcome ofܥܱܷܲ
component i in each scenario.
݉ : The number of possible paths in a state machine
diagram.
݇: The number of the path in state machine diagram.
ܲ ௞ܲ: A product of the number of test cases in the kth path.
∑ ܲ ௟ܲ
௠
௟ୀଵ : A summary of the product of number of test cases

in each possible path.

൫ܷܲܥ௜௡௜௧௜௔௟ି௙௜௡௔௟൯௞: The probability that the kth path will be

unsatisfactory.

2.1.5. Normalize ܷܱܲܥ୧ to make it appropriate for the
scenario x (ܵ୶) by using this formula:

୧ܵܥܱܷܲ ൌ 	
௉௉஼೔

∑ ௉௉஼ೕ
೙
ೕసభ

	 ∙ (7)	௜ܥܱܷܲ	

 ௜: The total number of test cases generated forܥܲܲ
component i.
∑ ௝ܥܲܲ
௡
௝ୀଵ : The total number of test cases generated for

every component in the same scenario.
2.1.6. Define the hazard score by using an entity
relationship diagram. This score is calculated as shown in
Fig. 4.

Fig 4. Activity diagram for identifying hazard score.

2.2. Connector’s risk assessment.
Using the formula from Goseva-Popstojanova [5], each

connector risk factor is calculated using the following
formula.

௜௝ܥܱܧ
௫ ൌ

|ெ ೔்ೕ
ೣ|೔.ೕചೄೣ,೔ಯೕ

|ெ்ೣ|
 (8)

2.3. Scenario’s risk assessment
This step creates a scenario model based on state-based

modeling. After the state machine diagram of each scenario
is created, then the Markov property is applied on the state
machine diagram in order to identify the probability of the
transition one state to another.
2.3.1. Scenario’s risk assessment.

This model is represented by a control flow graph that
contains a single start node and terminating node. The other
nodes are used for representing an executable’s software
components. Those components are related to database
schema-based constraints. Then a probability matrix is
created by applying Markov property, so it means a
probability of transition from component i to component j.
This matrix is named as ܲ௫ and its formula is shown here:

௜௝݌
௫ ൌ

௡೔ೕ
ೣ

∑ ௡೔ೕ
ೣ

ೕ
 (9)

2.3.2. Create a software’s scenario risk model
Each transition of a scenario risk model is used to

compute a probability in the transition probability matrix

పܲఫ
௫തതതതത. This matrix represents the case where a component i

does not fail, and then the control is transferred to the
component j, and finally the interaction between i and j does
not fail. A formula for creating the transition probability
matrix is shown here:

పܲఫ
௫തതതതത ൌ 	 ሺ1 െ ݎ ௜݂

௫ሻ ∙ ௜௝݌
௫ ∙ ሺ1 െ ݎ ௜݂௝

௫ሻ (10)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

After a software execution state machine diagram is
created, it will be combined with abnormal execution states
which imply hazard levels when software execution fails. A
state machine contains (n+1) transient nodes where n is the
number of components and a starting node, and (m+1)
absorbing nodes where m is the number of failure nodes and
a terminating node. Then a probability matrix is created by
applying the Markov property on the state machine diagram.
This matrix is named as ܲ௫തതതത and shown here:

ܲ௫തതതത ൌ 	 ቂܳ
௫ ௫ܥ

0 ܫ
ቃ (11)

ܲ௫തതതത: The transition probability of all components in the
scenario risk model.
ܳ௫ : The (n+1) by (n+1) matrix of probability of transition
from component to component.
 ௫: The (m+1) by (m+1) matrix of probability of transitionܥ
from a component to failure node.
0: The (m+1) by (n+1) zero matrix.
 .The (m+1) by (m+1) identity matrix :ܫ

Each variable of the above formula is provided by the
previous formulas. Therefore, it is possible to compute all
probabilities of the transition matrix. Next, matrix ܣ௫ is
defined to represent a probability that starting from a
transient node will transition to an absorbing node. The
formula used for generating matrix ܣ௫ is shown here:

௫ܣ ൌ 	 ሺ	ܫ െ	ܳ௫ሻିଵ	ܥ௫ (12)

Finally, the total probability of transition from a transient

node to each kind of failure node is computed, and it is used
to compute a risk factor score for the considering scenario.
2.4. Rank the scenario order by risk factor score

This last step of risk assessment occurs when various
scenario’s risk factors in the software are calculated. A
scenario risk factor score is ordered, so it will be easy to use
in the risk management process.

V. THE APPLICATION OF THE PROPOSED APPROACH

This section describes the application of the proposed risk
assessment approach using an employee management
system as our case study. The system operation consists of
inserts, updates and deletes of employee records. Therefore,
an insert of an employee record which considers schema
based constraints is used for demonstrating this approach.
The entity relationship of an employee management system
is shown in Fig. 5.

Apart from an ER diagram, which is used in the
generation of a state machine diagram, a class diagram
generated from data manipulation aspect as shown in Fig. 6
is also an essential diagram which must be considered.

When an object is created from “EmpEntity” class in Fig.
6, this object’s attributes and methods are related to the
changing data in a database. Therefore, a state machine
diagram of an object is created as shown in Fig. 7 – 10.

Fig 5. Employee management system’s entity

relationship diagram

Fig 6. Class diagram of data manipulation layer

1) A component is created for checking NULL value of an
employee’s data which is related to an “Entity constraint” or
“NULL constraint”. This component is used to check if a
NULL value was used. A state machine diagram of this
component is shown in Fig. 7

Fig 7. A state machine diagram of the checking for a

NULL value in the employee record.
2) A component is created for checking domain of an
employee’s data which is related to a domain constraint.
This means before inserting any data into the database, the
variable contents must have the correct data type. A state
machine diagram of this component is shown in Fig. 8.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

Fig 8. A state machine diagram for checking a

domain constraint of an employee’s data.

3) A component is created for checking an employee code
which is related to “Key constraint”. In this case, an
employee code (SSN) is a primary key, so the application
must ensure SSN is a unique value before inserting an
employee’s data into the database. A state machine diagram
of this component is shown Fig. 9.

Fig 9. A state machine diagram for checking a key
constraint in an employee’s data.

4) A component is created for checking a leader employee
code and department code which is related to a “Referential
integrity constraint”. This means that the application must
ensure the exist of the Super_Ssn in the Employee table and
Dno in the Department table before inserting an employee’s
data into the database. A state machine diagram of this
component is shown in Fig 9.

Fig 10. A state machine diagram for checking a referential

integrity constraint in an employee’s data.

After applying our proposed approach, the result of

risk assessment is presented in Table 5 – 8.

Table V. The probability of the satisfied outcomes after
enforcing the NULL constraint.

No. Current State Destination State ܲܵܥ௣௤

1 Waiting for query ValidationNullEm
pInfo

0.333333
333

2 ValidationNullEmpI
nfo

addEmpInfoQuery
Complete

0.777777
778

3 ValidationNullEmpI
nfo

nullValueExist
0.333333
333

4 nullValueExist
Waiting for query

0.333333
333

5 addEmpInfoQueryC
omplete

Waiting for next
process

0.333333
333

Table VI. The probability of the satisfied outcomes after

enforcing the domain constraint.

No. Current State Destination State ܲܵܥ௣௤

1 Waiting for query ValidationEmpInfo 0.333333
333

2 ValidationEmpInfo validDomainAddEm
pSQL

0.071428
6

3 ValidationEmpInfo invalidAddEmpSQL 0.846153
8

4 invalidAddEmpSQ
L

Waiting for query 0.333333
333

5 validDomainAddE
mpSQL

Waiting for next
process

0.333333
333

Table VII. The probability of the satisfied outcomes after

enforcing the key constraint.
No. Current State Destination State ܲܵܥ௣௤

1 Waiting for query ValidationSsnisKey 0.333333333

2 ValidationSsnisKey SsnValid 0.25

3 ValidationSsnisKey SsnisDuplicate 0.25

4 SsnisDuplicate Waiting for query 0.333333333

5 SsnValid waiting for next
process

0.333333333

Table VIII. The probability of the satisfied outcomes after

enforcing the referential integrity constraint.
No. Current State Destination State ܲܵܥ௣௤

1 Waiting for query ValidationRefkey 0.333333333
2 ValidationRefkey RefkeyValid 0.2

3 ValidationRefkey Reference missing 0.6
4 Reference

missing Waiting for query
0.333333333

5 RefkeyValid waiting for next
process

0.333333333

Then, a connector’s risk assessment is computed and the
result of the ܥܱܧ௜௝

௫ is shown in Table 9.
The next step is to generate scenario risk factors

composed of two steps.
1. Generate software behavioral model and calculate a
probability of transition between nodes. An example of the
insertion operation of an employee’s data using state
machine is shown in Fig. 11 and risk factor for connections
between components is shown in Table 10.
2. Generate software’s scenario risk model and calculate a
probability that starting from a transient node to an
absorbing node (ܣ௫). The result is shown in Fig. 12.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

Fig 11. A software behavioral model for inserting employee’s data

Fig 12. A software’s scenario risk model for inserting employee’s data

Table IX. Risk factor for the connection between components.

 Receiver
Sender

S Idle
Entity
valid

Domain
valid

Key
valid

Ref
valid

T

S 0 0.090909091 0 0 0 0 0

Idle 0 0 0.090909091 0 0 0 0

Entity valid 0 0.090909091 0 0.090909091 0 0 0

Domain valid 0 0.090909091 0 0 0.090909091 0.090909091 0

Key valid 0 0.090909091 0 0 0 0.090909091 0

Ref valid 0 0.090909091 0 0 0 0 0

T 0 0 0 0 0 0 0

Table X. A probability of transition between two transient nodes of inserting employee’s data scenario.

 Receiver
Sender

S Idle
Entity
valid

Domain
valid

Key
valid

Ref
valid

T

S 0 1 0 0 0 0 0
Idle 0 0 1 0 0 0 0

Entity valid 0 0.5 0 0.5 0 0 0
Domain valid 0 0.33 0 0 0.33 0.33 0

Key valid 0 0.5 0 0 0 0.5 0
Ref valid 0 0.5 0 0 0 0 0.5

T 0 0 0 0 0 0 1

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

Finally, ܣ௫ will be generated using formula (10) and
those scores will be used for ranking various scenarios in the
software.

VI. CONCLUSION AND FUTURE WORK

The proposed risk assessment approach is to calculate the
probability that an application will be breaking the schema-
based constraints in a relational database using state
machine diagram. Ideally this approach will be used for
evaluating a scenario’s risk factor which covers the
evaluation of component and connection’s risk factor. For
evaluating component and connection risk factors we apply
a full predicate coverage to generate an unsatisfactory
probability. In addition, the number of attributes and
relations of the database’s schema are used for identification
of the hazard level. Finally, a scenario’s risk factor is
calculated using the component and connection’s risk factor.
The advantage of this approach is an acquisition of scenario
risk factors which will be used in the risk management
process.

To make this approach possible to use, the next step is
developing a tool that implements the proposed approach.
The result of this tool would be the ordered list of the
scenario’s risk factors which may cause inaccuracy of data
in the relational database. This tool requires input of state
machine diagrams in the XML format and the database’s
schema in DDL format.

REFERENCES
[1] B.W. Boehm, “Software risk management: principle and practices”,

IEEE Software, vol. 08, no.1, pp. 32-41, Jan 1991.

[2] NASA Technical Std. NASA-STD-8719.13A, Software Safety,
March 2004,pp. 26-27.

[3] Ramez Elmasri, Shamkant B. Navathe, “Fundamentals of database
systems sixth edition”, pp 67-74.

[4] James Rumbaugh, Ivar Jacobson, Grady Booch “The Unified
Modeling Language Reference Manual Second Edition” USA,
Addison-Wesley, 2005, pp 79-89.

[5] Katerina Goseva-Popstojanova, Ahmed Hassan, Ajith Guedem
“Architectural-Level Risk Analysis Using UML”, IEEE transactions
on software, vol. 29, no. 10, Oct 2003

[6] Akekachai Tangsuksant and Nakornthip Prompoon, “Risk
Assessment Framework based on Goal-oriented Requirements
Engineering and Object Behavioral Model”

[7] Jeff Offutt, Shaoying Liu, Aynur Abdurazik and Paul Ammann
Generating test data from state-based specifications, Springer-Verlag
Berlin Heidelberg, February 2003

[8] Karunee Bowornprasirtkul and Nakornthip Prompoon, “Test cases
generation from a state chart diagram”, 2004

[9] Hongyu Zhang, Hee Beng Kuan Tanc, Lu Zhangd, Xi Lina,b, Xiaoyin
Wangd, Chun Zhangd and Hong Meid (2011,December). “Checking
enforcement of integrity constraints in database applications based on
code patterns”, Journal [Systems and Software], vol. 84(12), pp 2253-
2264

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

