
 

 
Abstract—Analysis of repeated measures data for the 

purpose of prediction is not an easy task particularly when the 
problem under consideration is highly nonlinear, number of 
subjects is large and the sample available to learn the model is 
small. The efficacy of the ANN for subject level treatment has 
been studied here empirically. Data were generated through a 
random coefficient model and a few nonlinear mixed effect 
models. For ANN feedforward backprop has been tried. 
Simulations have been conducted with varying number of 
covariates and parameters (both common and subject 
dependent), number of subjects and different sizes of repeated 
measures. ANN has demonstrated considerable promise.  
 

Index Terms—ANN learning, longitudinal analysis, mixed 
effect model, panel data, random coefficient model. 
 

I. INTRODUCTION 

EPEATED measures data refer to the data generated 
through observing a number of subjects repeatedly 

under various experimental conditions. A common type of 
repeated measures data are longitudinal data where each 
subject or individual is observed at different time points. 
The biggest advantage of analyzing repeated measures or 
longitudinal data is that each subject is observed for several 
occasions. For any given set of repeated measures the data 
for all the subjects together refer to a common problem. 
Therefore it is natural to assume that data for all the subjects 
share a common characteristic referred as common effect 
and the data for any one subject differ from that for another 
so far as the two subjects differ in their individual 
characteristics. For example, if we consider the effect of 
nutrition on health of any individual it is expected that each 
person would improve her or his health given additional 
nutritional inputs, but the growth rate would differ from 
person to person. Further for each person there may be a 
different point in the nutritional input level wherefrom there 
will be a gradual decline in health for any additional 
nutrition. This difference in growth rate, point of retardation 
and rate of decline between any two individuals is due to 
what is known as subject specific effect. For repeated 
measures or longitudinal data often the number of data 
points (measurements) for any given subject would be too 
inadequate to learn the underlying model using the data 
meant for that subject alone. Further, if one does succeed in  
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achieving a model specific to each subject it may not serve 
any good purpose towards understanding the common 
characteristics that apply to the given problem. Continuing 
on the previous example, the effect of different nutritional 
inputs (carbohydrates, proteins and vitamins) on human 
health (body weight, height, resistance to diseases, etc.) 
would be captured differently. It will not be possible for 
doctors to suggest common approaches to health, nor would 
it be feasible to suggest different emphasis to individual 
patients from the common approach. Similar kind of things 
would occur while curing a disease by applying single or 
multiple doses of different drugs (particularly if some drugs 
are newly introduced). All these mean learning a separate 
model for each subject in general is not feasible given the 
amount of data, and even if it is feasible does not serve the 
purpose. Finally, the analysis of repeated measures data for 
the purpose of prediction is a challenging problem 
particularly when the problem under consideration is highly 
nonlinear, number of subjects is large and the sample 
available to learn the model is small. 

One of the earliest methods proposed for analyzing 
repeated measures data or longitudinal data was a mixed-
effect ANOVA or univariate repeated-measures ANOVA, 
with a single random subject effect. The linear mixed-effects 
model is the most widely used method for analyzing 
longitudinal data. The linear mixed-effects model proposed 
by Laird and Ware included the univariate repeated-
measures ANOVA and growth curve models for 
longitudinal data as special cases [1]. When the longitudinal 
response is discrete, linear models are no longer appropriate 
for relating changes in the mean response to independent 
variables. Instead, extensions of generalized linear models 
have been developed [2]. Here three broad, but quite 
distinct, classes of regression models have been considered 
for longitudinal data: (i) marginal or population averaged 
model [15], [16] (ii) random-effects or subject-specific 
model and (iii) transition model [17]. Following the same 
basic ideas as in linear mixed-effects models, generalized 
linear models can be extended to longitudinal data by 
allowing a subset of the regression coefficients to vary 
randomly from one individual to another [10]-[13]. These 
models are known as generalized linear mixed models 
(GLMMs). In contrast to the marginal and generalized linear 
mixed models which allow for non-linearity in a restricted 
way, in non-linear mixed-effect models (NLME) the mean 
response is assumed to be non-linear in the regression 
parameters and the random effects [3]-[5], [14]. 

Artificial Neural Network (ANN) has been proved in 
many cases to be superior in terms of predictive capability 
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compared to various statistical methods for modeling cross 
sectional or series data where the actual relationship 
between the variables cannot be specified or is not known a 
priori. It provides a flexible nonlinear modeling technique 
without requiring any or much domain knowledge about the 
inter-relationship between the variables. It provides a 
flexible class of models in an unrestricted manner and it 
learns automatically from the training data to estimate the 
parameters (weights) unlike statistical models where the 
actual form of the model has to be provided. However, not 
much work has been done for the analysis of repeated 
measures or longitudinal data using neural networks. 
Differently from conventional longitudinal or panel models 
a standard ANN does not include temporal correlation. 
Therefore the main question is how can ANN recognize and 
treat the time or subject correlation in the data? Two 
approaches were used in [6] and [7] to capture the time 
effect or subject effect in the model. The first approach uses 
time or subject dummy variables as inputs along with other 
covariates. The second one employs a variable that identifies 
– by means of a text (string) variable – the time points 
concerned. This approach is made possible by internally 
rescaling the text variable, e.g., year value is associated with 
a numerical value within (0, 1), therefore identifying year-
specific intercepts for time. In these papers no specific 
architecture of ANN for longitudinal data had been 
considered. Tandon et al. [8] propose a neural network 
designed for longitudinal data called mixed effects neural 
network (MENN). Here the progression of Alzheimer’s 
disease has been studied using MENN which generalize the 
mixed effect model by incorporating a general nonlinear 
function of the input variables. A modified likelihood 
function has been formed using some matrix transformation 
and a modified backpropagation algorithm and an iteration 
procedure has been used to maximize the likelihood 
function and thus the weights have been estimated. But here 
ANN hadn’t been allowed to learn automatically from the 
data, only a specific form of the model (network having only 
the input layer and the output layer along with random 
subject effect) has been assumed. None of these works refer 
to purely repeated measures data. Here we have looked into 
the capability of ANN to model repeated measures data. 

 
Contribution 

There are two main objectives of the present work are to 
find out: a) the utility of ANN for modeling repeated 
measures data particularly for prediction, and b) how the 
subject effects can be incorporated in the ANN architecture. 
For this purpose the most popular ANN architecture, namely 
feed-forward multi-layer ANN with back propagation 
learning has been used. The method has been tried on four 
different reasonably difficult problems, one linear, and three 
non-linear (two rational functions and one posynomial 
function – polynomial with real powers), simulations based 
on Random Coefficient model and Nonlinear Mixed Effect 
model. We have tried the functions with varying number of 
input variables and varying number of parameters per 
subject. We have also tested the method to see the 
effectiveness of the model when the number of repeated 
observations available for a subject ranges from being ‘very 
small’ to ‘small’ compared to the problem complexity.  

In the next section there is a brief discussion on Random 
coefficient model and Nonlinear mixed effect model. The 
experimental set up for the simulations are presented in 
sections III. Section IV talks about the ANN architectures 
used for analyzing repeated measures data, particularly the 
one which gives a special treatment to the subjects 
separately from the input variables. Section V discusses the 
performance measures for prediction. Finally, the last two 
sections contain the analysis of the experimental results and 
conclusions. 

II. RANDOM COEFFICIENT & NLME MODELS 
In Random Coefficient model the parameters are assumed 

to be drawn randomly from a given distribution: 
'( ) , 1(1) , 1(1) , ~ ( , )ij ij i iE y x i s j tβ β β= = = Σ  

Here iβ  is randomly selected from a distribution with mean 
vector β and dispersion matrix ∑ .  

The Nonlinear Mixed Effect model (NLME) has been 
developed in two stages: a model for intra-subject variability 
and a model for inter-subject variability. 

Stage 1:  Intra-subject model: This specifies the mean and 
covariance structure for a given subject. Here it is assumed 
that the mean response can be expressed in terms of a non-
linear regression function of covariates and regression 
parameters: ( ) ( , )ij ij iE y f x β= . Although the functional 
form, f(.), is the same for all subjects, differences between 
subjects in their longitudinal response trajectories are 
accommodated by allowing for different β i

ijx
 as well as 

differences in the covariates, .  
Stage 2:  Inter-subject model: The second-stage model 

characterizes inter-subject variation in regression parameters 
β i ( , , )i i ig A bβ β=given by, , where Ai’s are the covariates. 
The random effects bi ∑ ~ (0, ), β is the fixed effect 
parameter and g(·) is a known vector-valued function. 

III. SIMULATION EXPERIMENTS 
Experiments are conducted on repeated measures data 

reflecting different scenarios. For the parameter space both 
random coefficient model and NLME (see above) are 
considered. The data simulation also considers the notion 
that two main effects may drive the response variable of the 
repeated measure data: 1) Common Effect: This effect is 
common affecting all subjects in the same manner, 2) 
Subject Specific Effect: This effect depends on a particular 
subject and it varies from subject to subject. It is regarded as 
created by some unobserved factors. Common effect can be 
captured by taking the same parameter(s) across different 
subjects. The parameters are varied from one subject to 
another but kept same for different repeated measures for a 
particular subject in the case of Subject specific effect. Here 
the parameters have been drawn randomly from Normal 
distribution with a mean (common effect) and a standard 
deviation (subject specific effect). The data have been 
simulated using four different models: one linear and three 
non-linear (two rational functions and one posynomial): 

1) LINEAR model: Here the simulation is performed 
based on random coefficient model with varying number 
independent variables (3, 4, 7 and 10):  
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'( ) , 1(1) , 1(1) ,

( , ,..., ) ', ( , ,..., ) '1 2 1 2
~ ( , ), ~ ( 10,10)

E y b x i s j tij i ij
b b b b x x x xi i i ik ij ij ij kij
b N x Unifi ij

α

β

= + = =

= =

∑ −

 

Each independent variable has been drawn randomly 
from Uniform (-10, 10) distribution and α is the fixed 
parameter and N denotes the Normal or Gaussian 
distribution. Here, x’s are input variables, y’s are output, i is 
the subject index, j the observation index and b’s stand for 
parameter values coming from normal distribution  with 
parameters β and ∑ . Similar notations have been followed 
throughout. 

2) RATIONAL1 model: Here the simulation is based 

around a rational function 
2

( 2)(2 1)( )
1

x xf x
x

− +
=

+
 (used in 

many examples in [9]) and the concept of NLME model: 
1 2

2
3

( )( 1)
( ) , 1(1) , 1(1) ,

( , , ) ' ~ ( , ), ~ ( 12,12)1 2 3

ij i i ij

i ij

x b b x
E y i s j tij b x
b b b b N x Unifi i i i ijβ

− +
= = =

+

= ∑ −

 

There is only one independent variable which has been 
drawn randomly from Uniform (-12, 12) distribution. 

3) RATIONAL2 model: This is same as RATIONAL1 
except with an extra additive parameter (This is also a 
rational function, apparently more complex than Rational1.): 

1 2
42

3

( )( 1)
( ) , 1(1) , 1(1) ,

( , , , ) ' ~ ( , ), ~ ( 12,12)1 2 3 4

ij i i ij
i

i ij

x b b x
E y b i s j tij b x
b b b b b N x Unifi i i i i ijβ

− +
= + = =

+

= ∑ −

 

4) POSYNOMIAL model: This simulation is based on a 
polynomial with non integer powers which are random 
variables: 

1 2 3
1 1 2 2 3 3( ) , 1(1) , 1(1) ,

( , , ) ' ~ ( , ),1 2 3
~ (0,4), 1(1)3

i i ib b b
ij ij ij ijE y x x x i s j t

b b b b Ni i i i
x Unif kkij

α α α

β

= + + = =

= ∑

=

 

Here three independent variables have been used and each 
drawn randomly from Uniform (0, 4) distribution and 

1 2 3, ,α α α are three fixed parameters. 
The above models are simulated without using any 

additive noise to the response variable. Also the ∑  matrix is 
taken to be a diagonal matrix i.e., the subject specific 
parameters bi ’s are assumed to be independently distributed.  

IV. ANN ARCHITECTURE 
The simulated data have been fitted by different 

feedforward architectures with backprop training and the 
error function is optimized using Levenverg-Marquardt 
method (for computation NN toolbox of MATLAB 2012A 
has been used). Sigmoid and linear activation functions are 
considered for the hidden layers and the output layer 
respectively. Different sizes of training sets (alongwith cross 
validation sets for early stopping) are experimented with. 
We have mainly tried to see the efficacy of ANN when the 
sample size is very small or small with respect to the 
complexity of the problem attempted. Testing data sizes 
have also been varied. 

Subjects are fed to the network as dummy variable. For 
example, if we have 4 subjects, subject 1 is taken as [1 0 0 
0], subject 2 as [0 1 0 0], subject 3 as [0 0 1 0] and subject 4 
as [0 0 0 1], i.e. for any data row (or, example) only the 
corresponding subject node gives positive response, other 
subject nodes or subject lines remain inactive. 

Fig. 1 gives ANN1 which is the traditional feedforward 
ANN architecture with a single hidden layer for repeated 
measures data, where both the covariates and subjects inputs 
are connected in the same way to the only hidden layer: 

2 1
' ' ' ' ' ' '
0 0

1 1
( );

j j j

k k

i j ji i j
j i

y h u u w x w sξ ξ
= =

= + = + +∑ ∑  

where, '
j

s be the jth

ix

 component of the subject level 

connection, is the ith
iy input, is the output, 'w  , 'ξ  are 

the input layer to 1st hidden layer and 1st

'
0ξ

 hidden layer to 
output layer weights respectively,  and '

0jw  are bias 
terms, h(.) is the transfer function of the hidden layer, k1 be 
the number of independent variables and k2

 

 be the number 
of nodes in the hidden layer. Here the common effect and 
the subject specific effect are learned simultaneously. 

 
 

 
 
In ANN2 subject specific effects are treated differently 

from as compared to the common effect. Here independent 
variables are connected from input layer to the first hidden 
layer but the subject inputs are connected directly to the 2nd

2

1 1

0 2
1

1 0 0
1 1

( );

( ) ;

l

i k k
k

l k

k kj j k k j ji i j
j i

y h z

z h u s u w x w

ξ ξ

ψ ψ

=

= =

= +

= + + = +

∑

∑ ∑

 
hidden layer, which is connected to the output layer (see 
Fig. 2): 

 

where, ks be the kth

w
 component for the subject level 

connection, ,ψ , ξ  are input layer to 1st hidden layer, 1st 
hidden layer to 2nd hidden layer and 2nd

0ξ
 layer to output layer 

weights respectively, , 0kψ , 0jw are bias terms, h1(.) and 
h2(.) be transfer functions and l1 and l2 be the number of 
nodes of the 1st and 2nd hidden layer respectively.  Here the 

 
Fig. 1: ANN1 - Identical treatment to common effect and subject 
specific effects. 

 
Fig. 2: ANN2 - Treatment differs from common effect to subject 
specific effects.  
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common effect is first learned through 1st hidden layer and 
then the subject specific effect is learned and these two 
effects are superimposed at 2nd

V. PERFORMANCE METRICS 

 hidden layer. 

Results obtained from the ANN models have been 
verified using well known performance metrics such as 
RMSE (Root mean square error), MAPE (Mean absolute 
percentage error) and Normalized Mean Square error 
(NMSE). The measures are given below:   

i)  RMSE: 21 ˆ( )i i
i

y y
n

−∑  

ii) MAPE: 
ˆ1 100i i

i i

y y
n y

−
×∑  

iii) NMSE: 

2

2

ˆ( )

( )

i i
i

i
i

y y

y y

−

−

∑

∑
 

ˆ,i iy y  are the ith

As the response variables from various simulated models 
are in different scale, it is necessary to use a scale free 
performance measure for comparing the results. RMSE is 
highly dependent on the range of the response variable. 
Though MAPE doesn’t depend on the magnitude of the 
response variable but it could be severely affected by 
response variable values which are close to zero. NMSE 
which is scale free and is proportional to RMSE has been 
preferred for comparison here. NMSE=1 indicates all the 
predictions have converged to the mean prediction, and 
hence NMSE << 1 is preferable. 

 observed and predicted variable 
respectively. 

VI. ANALYSIS AND FINDINGS 
Two ANN models (given in Fig. 1 and Fig. 2) have been 

attempted on the four simulated problems (see above): 
LINEAR, RATIONAL1, RATIONAL2 and 
POSYNOMIAL (Refer to Table I through Table III). A 
large number of simulations have been performed 
considering complexity of the models and learning issues 
involved. Yet one has to admit that in this limited scope 
experiment only some selected simulations were carried out 
to have a primary understanding of the issues involved. In 
the experimental set up presented, each case represents one 
problem (e.g. LINEAR) with a given function complexity 
and sample complexity (discussed below). Thus, a total of 
thirteen cases (problem variants) have been attempted: 
LINEAR - 7, RATIONAL1 - 2, RATIONAL2 - 2 and 
POSYNOMIAL – 2. For each case both ANN1 and ANN2 
have been experimented and the best architecture obtained is 
presented. For each ANN model, a set of architectures have 
been tried. For each architecture, the ANN learning has 
occurred based on training sample along with the cross 
validation sample for early stopping. Moreover, for each 
architecture tried for any case, the ANN solution has been 
obtained fifty times, every time starting with a new random 
initial weight vector as selected by the ANN software. The 
performance for any case for any given architecture is thus 

based on 50 runs, and the median performance (NMSE) has 
been used here. 

The problem complexity in a repeated measures analysis 
depends on the function or problem such as linear or non-
linear along with its number of arguments chosen, i.e. 
number of input variables, number of subject independent 
parameters, number of subjects and number of subject 
specific parameters. The total function complexity can be 
split into three things: generic function complexity, size 
complexity (input variables and subject independent 
parameters) and subject complexity (number of subjects and 
subject specific parameters). In an ANN experiment the 
learning capability arises from three sources, one is called 
the modeling complexity which is basically ANN 
architecture with sizes (correspondingly implying the 
number of free parameters in the model – the weight vector 
size), the second is the training sample complexity (this 
includes the size of the training set as well as that of the 
cross validation set used for early stopping the training to 
avoid over training) and last is the generalization sample 
complexity which is nothing but size of the test set. Bigger 
the test set more reliable is the performance measure 

obtained. 
Now let’s analyze the performance of two ANN models, 

ANN1 (single hidden layer with equal emphasis to variables 
and subjects) and ANN2 (two hidden layers with special 
emphasis to differentiate subject specific effects from 
common effects) for predicting from repeated measures data 
for four simulated functions. 

LINEAR is a linear random coefficient model. For this 
simulation the number of independent variables (inputs) has 
varied: 3, 4, 7 and 10 and a total of seven variants have been 
tried (see Table 1). For all these 7 cases, as expected, it has 
been observed that as the number of nodes in a hidden layer 
increases the performance improves for both ANN1 and 
ANN2, i.e. NMSE decreases. Also a drastic fall in NMSE 
has been observed after a certain number of hidden nodes in 

Table I 
PERFORMANCE FOR LINEAR MODEL 

C
as

e 

#Inputsa, 
#Subjectsb, 
#Subject 
specific 

parametersc 

#Obs. per 
Subjectd- 

#Training, 
#Validation, 

#Testing 

ANN1 ANN2 

NMSEe 
(%) 
(two 

cases) N
et

w
or

k 
Si

ze
f 

NMSE 
(%) 
(two 

cases) N
et

w
or

k 
Si

ze
g 

1 3, 25, 3 25, 10, 200 21.50 3 26.17 3, 3 
0.34 4 0.19 3, 4 

2 3, 100, 3 6, 2, 2 20.86 3 26.23 6, 3 
0.24 4 0.37 6, 4 

3 4, 25, 4 60, 20, 20 10.23 4 11.70 4, 4 
0.17 5 0.12 4, 5 

4 7, 25, 7 60, 20, 20 2.12 7 3.50 7, 7 
0.14 8 0.15 7, 8 

5 7, 25, 7 25, 10, 200 21.38 6 1.22 7, 7 
0.40 7 0.25 7, 8 

6 10, 25, 10 25, 10, 200 13.27 9 51.38 9, 10 
0.20 10 51.13 9, 9 

7 10, 25, 10 60, 20, 20 12.88 9 15.74 10, 9 
0.14 10 0.19 10, 10 

a No. of independent variables/ covariates, b No. of subjects, c No. of 
subject specific parameters (here for each case no. of fixed parameters is 
1), d No. of repeated measurements for each subject for training, 
validation and testing set, e Median NMSE over 50 runs for two best 
architectures upto the point where a drastic improvement in performance 
(<1%) occurs, f No. of nodes in hidden layer, g No. of nodes in 1st and 
2nd hidden layer respectively.  
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each case (except case 6 for ANN2), e.g. for Case 1 the 
ANN1 with 3 hidden nodes gives NMSE of 21.50% and 
with 4 nodes it gives 0.34% and with ANN2 having (3, 3) 
architecture – 3 in the first hidden layer and 3 in the second 
hidden layer – the NMSE is 26.17% but with (3, 4) it 
reduces drastically to 0.19%. Note that in this case there are 
3 input variables, 1 subject independent parameter, 3 subject 
level parameters, 25 subjects, training set and cross 
validation set sizes per subject are 25 and 10 respectively 
and test set size is 200 (i.e. overall 625, 250 and 5000  
training, cross validation and testing set sizes). The 
performance obtained in LINEAR model is very good 
throughout irrespective of ANN1 or ANN2, NMSE ranges 
from 0.12% to 0.40%, except case 6 all are 0.40% or less. 
Performance for ANN1 and ANN2 are comparable, though 
ANN1 complexity is less. This seems possible because the 
linear model is relatively simple. But it is to be noted that 
ANN2 has not given satisfactory result for Case 6. For this 
case ANN1 also required a large size network. The Case 6 is 
the most complex linear problem in terms of function size 
and subject complexity and also (training) sample 
complexity. ANN2 possibly requires a sufficiently big 
network for which the sample is too small. This observation 
is amply supported by good performance demonstrated by 
ANN2 for Case 5 (with less function size and subject 
complexity, but same sample complexity) as well as for 
Case 7 (with same function size and subject complexity, but 
less sample complexity). 

Finally, it can be seen as the problem complexity 
increases the ANN model (ANN1 or ANN2) needs to be 
bigger. However, more experiments are required to draw 
further conclusions regarding effects of subject complexity 
and sample complexity on the ANN modeling capability.  

Coming to RATIONAL1 and RATIONAL2, ANN2 gives 
significantly better result than ANN1. This is important, 
because it tells subject specific treatment is required when 
the problem becomes little complex. Further, for the rational 
functions (apparently more difficult to learn), the training set 
size plays a significant role– compare case 1 and 2 for 
RATIONAL1, NMSE is 18.34% (training size 6) and 7.31% 
(training size 60). Similarly also for RATIONAL2 – 11.56% 
vs. 4.66%.   

 
In POSYNOMIAL the result however is a bit mixed, in 

one case ANN1 (0.37%) is slightly better than ANN2 
(0.49%) when training size is 60, in the other case ANN2  

 
(1.55%) beats well ANN1 (2.45%) when training size is 25 
– which is a harder problem because of smaller training set. 
Thus on the whole here also it looks like that ANN2 
outperforms ANN1, but more evidence needs to be 
collected.  

The efficiency of ANN for the rational functions is the 
worst, possibly indicating that these are harder functions to 
learn. In general we can say that ANN can be used to solve a 
reasonably complex problem in repeated measures domain. 
The solution complexity depends on all aspects of the 
function complexity as well as sample complexity. Subject 
level treatments are necessary for prediction purpose. It 
further appears that specialized treatment to subjects 
different from that to independent variables for ANN 
modeling of repeated measures data give additional power 
to ANN in at least some problem areas if not all.   

VII. CONCLUSIONS AND FUTURE DIRECTIONS 
The objective of this work is to provide effective ANN 

model for predicting repeated measures data. There are 
currently huge literatures where ANN technique has been 
successfully used to predict cross-sectional or time series 
data. But there is a shortage of study regarding the use of 
ANN in analyzing longitudinal or repeated measures data. 
ANN has been studied here empirically for its effectiveness 
for learning in general and for predicting capability in 
particular by trying on several functions of varying 
complexity (both functional and subject level) under the 
constraint availability of adequate samples to learn from. 
Functions have been simulated based on statistical models 
such as random coefficient model and nonlinear mixed 
effect model. For ANN, the most popular feedforward 
architecture with backpropagation learning has been 
considered. Further, the study has been directed towards 
introducing the subject level connections in the network.  

In general, results obtained are quite satisfactory. It has 
been empirically established that special attention to catch 
the subject effects separated from the common effects 
through network connections has considerable scope of 
improvement. This study could be an important first step 
towards determining latent subject effects. The ANN 
learning also has been found to respond logically towards 
the function complexity, subject complexity and sample 
complexity. 

The study will be more complete if further experiments 
are conducted to look into the issues more deeply, 
particularly to find improvement along the line of ANN2, 
especially when the sample size is too limited. Attempts 
should be made to develop confidence bounds over the 
performance of ANN models using methods like Bootstrap. 
Going beyond simulations one should look for opportunities 

 
Table III 

PERFORMANCE FOR POSYNOMIAL MODEL 

C
as

e 

#Inputs, 
#Subjects, 
#Subject 
specific 

parametersa 

#Obs. per 
Subject -

#Training, 
#Validation, 

#Testing 

ANN1 ANN2 

Best 
NMSE 

(%) N
et

w
or

k 
Si

ze
 Best 

NMSE 
(%) N

et
w

or
k 

Si
ze

 

1 3, 25, 3 60, 20, 20 0.37 9 0.49 8, 5 
2 3, 25, 3 25, 10, 200 2.45 9 1.55 8, 5 

a  No. fixed parameter 

Table II 
PERFORMANCE FOR 

RATIONAL1 (R1) and RATIONAL2 (R2) MODEL 

C
as

e  

#Inputs, 
#Subjects, 
#Subject 
specific 

parametersa 

#Obs. per 
Subject -

#Training, 
#Validation, 

#Testing 

ANN1 ANN2 

Best 
NMSEb 

(%)  

N
et

w
or

k 
Si

ze
 

Best 
NMSE 

(%)  

N
et

w
or

k 
Si

ze
 

1 (R1) 1, 100, 3 6, 2, 2 81.51 6 18.34 7, 2 
2 (R1) 1, 100, 3 60, 20, 20 11.11 9 7.31 7, 5 
3 (R2) 1, 100, 4 6, 2, 2 59.97 6 11.56 8, 2 
4 (R2) 1, 100, 4 60, 20, 20 7.10 9 4.66 7, 5 

a  No fixed parameter, b  Best performance based on median NMSE 
over 50 runs (for ANN1 upto size 9  and for ANN2 upto size 8, 5 
have been tried). This set-up is also followed for POSYNOMIAL. 
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to apply these concepts to real life problems. Also in the 
present only the balanced case, where each subject has same 
number of samples to learn from, has been attempted. One 
needs to investigate the unbalanced case which could be a 
tricky job. Also special attention may be required to increase 
the accuracy of the ANN model for small samples or highly 
complex functions for repeated measures data. In the present 
study noise has been avoided in the simulated data which is 
a restriction. One more important issue of study would be 
the performance metric which is especially suitable for 
repeated measures analysis. The simulated models include 
random parameters but ANN parameters (weights) come out 
as fixed. So there is a scope to consider the ANN parameters 
as random one similar to the mixed effect model. Finally, 
the ANN methods for repeated data should give hints for 
longitudinal data analysis.  
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