
 

 
Abstract—This paper shows innovative VAD based on 

horizontal spectral entropy with long-span of time (HSELT) 
feature sets to improve mobile ASR performance in low 
signal-to-noise ratio (SNR) conditions. Due to the signal 
characteristics of nonstationary noise change with time, we 
need long-term information of the noisy speech signal to define 
a more robust decision rule yielding high accuracy. We find 
that HSELT measures can horizontally enhance the transition 
between speech and non-speech segments. Based on the above 
finds, we can use the HSELT measures to achieve high accuracy 
for detecting speech signal form various stationary and 
nonstationary noises. 

Index Terms—voice activity detection, horizontal spectral 
entropy, long-term, Mel-scaled filter bank 
 

I. INTRODUCTION 

n fact, in a mobile or portable environment, VAD 
mechanism has to distinguish active speech from noise 
with low signal to noise ratio (SNR). Most of these VAD 

algorithms assume that the background noise statistics are 
stationary over a longer period of time than those of noise. In 
general, no particular feature or specific set of features has 
been shown to perform uniformly well under different noise 
conditions. For example, energy-based features do not work 
well in low SNR [1] and, similarly, under colored noise, 
entropy measure fails to distinguish speech from noise with 
good accuracy due to the colored spectrum of speech [2]. 
Also SNR estimation is a critical component in many of the 
existing VAD schemes, which is particularly difficult in 
non-stationary noise [3]. Ramirez et al. [9] proposed the use 
of long-term spectral divergence between speech and noise 
for VAD, although they assign the VAD decision directly to 
the frame in the middle of the chosen long analysis window. 
In this letter, we propose innovative VAD based on horizontal 
spectral entropy with long-span of time (HSELT). Due to that 
 the HSELT measure can be used to discriminate noise from 
noisy speech signal and, hence, can be used as a potential 
feature for voice activity detection (VAD). First, the 17 
log-energies are derived through Mel-scaled filter bank and 
are composed of a lowest frequency (1-8 bark) part, a low 
frequency (9-12 bark) part, a high frequency (13-15 bark) 
part and a highest frequency (16-17 bark) part. Due to the 
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signal characteristics of nonstationary noise change with time, 
we need long-term information of the noisy speech signal to 
define a more robust decision rule yielding high accuracy.  
We find that HSELT measure can enhance the transition 
from non-speech to speech-only or from speech-only to 
non-speech. So, the HSELT measure can be used to detect 
the endpoint of speech signal. 

II. THE PROPOSED VAD METHOD 

A. Mel-Scale Filter Bank 

In fact, human ear perceives speech along a nonlinear scale in 
the frequency domain. Based on the finding, we use a filter 
bank, spaced uniformly on a nonlinear, warped frequency 
scale frequency and frequency (hertz), and described by the 
following equation [4]: 

=2595 log(1 700)mel f   (1) 

where mel  is the mel-frequency scale and f  is in hertz. The 
mel-scale filter bank of 17 bands are approximated by 
simulating 17 triangular bandpass filters, ( , )f k  
(1 17,  0 k 127)    , over a frequency range of 0-4KHz. 
With the mel-scale frequency bank, the energy of each 
frequency band for each time frame of a speech signal can be 
calculated. Consider a given time-domain noisy speech 
signal, ( , )timex m n , representing the magnitude of the 

thn point of the thm  frame. 
The spectrum, ( , )freqx m k , of this signal is first calculated by 

discrete Fourier transform (256-point DFT) 
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where ( , )freqx m k  is the magnitude of the thk  point of the 

spectrum of the thm  frame, is 256 in our system, and M  is 
the number of frames of the speech signal for analysis. 
The spectrum ( , )freqx m k  is then multiplied by the weighting 

factors ( , )f k  on the mel-scale frequency bank. We can sum 
the products for all k  to get the energy ( , )x m   of each 
frequency band   of the thm  frame 
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where ( , )f k  also represents the weighting factor of the 
frequency energy at the thk  point of the th  band. 
In fact, some undesired noise is resulted from our 
experiments that the energy ( , )x m   obtained in Eq.(3). 
Hence, a three-point median filter is further used to get the 
smoothed energy, ˆ( , )x m   
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Fig.1: The block diagram of the implemented system for the proposed VAD using HSELT measure 
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Finally, the energy, ( , )X m  , can be normalized by removing 
the frequency energy of the beginning interval, BGN , from 
the smoothed energy, ˆ( , )x m   
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where BGN  is the energy of the beginning interval estimated 
by averaging the frequency energy of the first five frames of 
the recording. 

B. Definition of the HSELT 

This subsection derives a parameter, which can estimate the 
degree of nonstationary of the signal. We find that HSELT 
measure can enhance the transition from non-speech to 
speech-only or from speech-only to non-speech. So, the 
HSELT measure can be used to enhance the endpoint of 
speech/non-speech signal. The HSELT measure at any time 
is computed using the last R  frame of the observed signal 

( )x n  with respect to the current frame of interest. The 

HSELT, ( , )HSELT m  , at frequency subband   for the thm  

frame is computed as follows: 

 
Fig.2: The view of HSELT measure: (a) Power spectrum amplitude for 4 kHz 
bandwidth signal. (b) Spectrogram for an entropy measure on the normalized 
short-time spectrum computed at frequency   over R  consecutive frames, ending at 

the thm  frame.  
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where ( , )X m   is normalized spectrum energy and is defined 

later, and ( , )HSELT m   is essentially an entropy measure on 

the normalized short-time spectrum computed at frequency 
subband   over R  consecutive frames, ending at the thm  

frame (as shown in Fig.2).  
In Fig.3, it shows the degrees of nonstationary between the 
non-speech frame and speech frame over R  consecutive 
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Fig.3: The degrees of non-stationary of the non-speech frame and speech frame.frames 
for specific frequency subband. We can find the degree of nonstationary 
during speech segment is larger than  
 

that during non-speech segment, especially at transition 
between non-speech and speech. So, we can detect the 
endpoint of speech/non-speech by horizontally get the 
entropy value over R  consecutive frames at specific 
frequency subband. 
In order to further describe the degree of nonstationary of the 
signal, we only check the four part-bands and reduce the 
complexity to determine a reliable HSELT value. So, we 
merge 17 critical subbands into four part-bands: 0~1kHz (LL 
part band: 1-8 bark), 1~2kHz (LH part band: 9-12 bark), 
2~3kHz (HL part band: 13-15 bark) and 3~4kHz (HH part 
band: 16-17 bark). Consequently, the HSELT parameter at 

thp  part band is computed as below: 

 

1
( , )

, , , .

pp

p

p

HSELT m HSELT
K

LL LH HL HH

 












 (7) 

where 
p

K  is subband number at thp  part-band. 

C. Part-Band Weighting Estimation 

Due to that the influence of noise upon to the detection 
performance, we need a parameter will help us sense how 
much the current part-band is corrupted by noise. In order  
 
to determine the part-band utility rate on p  part for thm  

frame, a posterior SNR, ( , )pot
pSNR m   is required, and it is 

formulated as: 
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where ( , )N S pP m   means power energy range from each part 

for the observed noisy speech signal. ( , )N pP m   is the 

estimated noise power on thp  part for thm  frame. 

Observing the Eq.(8), we know that the subband noise power 
spectrum has to be estimated while determining the value of a 
posterior SNR. Various methods [5] were proposed for 
tracking the minimum of the noisy speech power spectrum 
energy over a fixed search window length in order to estimate 
the noise-level quickly and accurately. To speed up the 
determination of local minimum of noisy speech spectrum 
over a search window size, Doblinger's efficient method [6] 
is used here, which is not constrained by any window length 
to update noise spectrum estimate.  

 
Fig.4: The plots of weights coefficients against a posterior SNR. 
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where min ( , )pP m   denotes the local minimum of power 

energy of the noisy speech.   and   are constants 
determined experimentally. 
After the value of a posterior SNR obtained, the part-band 
weight coefficient, ( , )pwef m  , is calculated by applying a 

sigmoid function: 

 ( , ) 1 1 exp 0.5 ( , ) ( , )p p pwef m SNR m m           (10) 

where ( , )pm   is a center-offset of the sigmoid function and 

is depended on part-band index. Therefore, we will use this 
information to weight each part-band. Fig.4 shows the plots 
of the weighting coefficients from Eq.(10) depending on  . 
Under the fixed value of a posterior SNR, the weighting 
coefficient decrease toward to zero when   is increasing. In 
addition, the values of the all parameter are determined by 
experimental test. According the fact that the speech 
components almost focus in lower frequency band, let the 
sigmoid function with largest   (such as 20  ) locate to 
highest frequency band (such as HH frequency part). On the 
contrary, let the sigmoid function with smallest   (such as 

5  ) locate to lowest frequency band (such as LL frequency 
part). So, the weighted HSELT measure is defined as below: 

( , ) ( , ) ( , )wef
p p pHSELT m HSELT m wef m    . (11) 

The combined-MLSIE, which comprises four part-bands, is 
expressed as below: 

( ) ( , )
p

HH
wef wef

comb p
LL

HSELT m HSELT m





  . (12) 

It is found that each HSELT feature parameter accurately 
indicates the boundary of speech activity under -5dB factory 
noise, especially at transition between speech and non-speech 
segments. Summing the four HSELT as a combined HSELT, 
we can determine an accuracy detection result. 

D. The VAD Decision 

Then, the voice activity is defined by the decision rules as 
shown below: 
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if ( ( )  )    

   ( )=1;

    update ;

else

    ( )=0;

wef
combHSELT m Th

VAD m

Th

VAD m



 (13) 

The threshold value Th  is updated by recursive equation. 

III. EXPERIMENTAL RESULTS 

To evaluate the advantages of the proposed HSELT feature 
sets for speech detection, we used a set of 12 sentences (about 
107 seconds) from 4 different speakers: two males and 
females from TIMIT database. The utterances as speech or 
non-speech frames are corrupted by four different types of 
background noise: white noise, factory noise, car noise and 
babble noise at different average SNR levels between clean 
and -5dB (from NOISEX database).  
All signals in the database were downsampled to 8-kHz, 
mono-channel and 16-bits per sample. These experiments 
were analyzed using speech pause hit-rate (HR0) and the 
speech hit-rate (HR1) (i.e., the fraction of all actual pause or 
speech frames, respectively). The proposed HSELT VAD is 
compared in terms of the average hit-rates (with optimal 
parameters) to state-of-the-art VAD methods, such as 
G.729B [7], AMR1 [13], AMR2 [8], ETSI AFE [12] and 
LTSD [9]. The optimal parameters for the proposed VAD 
were: 5

HH
  , 10

HL
  , 15

HL
  , 20

HH
  , and 5R  , 

while the filter bank decomposed the signal in 17
num

   for 

Mel-scaled subband. 
In order to quantify the speech/non-speech hit rates, we use 
the error norm of false alarm rates defined as: 

2 2(1 1) (1 0)normE HR HR     (14) 

Finally, we present an average speech/non-speech hit rates 
and overall false error norm for SNRs from clean to -5dB in 
Table I. It is found that the average value for HR1 of LTSD 
VAD is only comparable to the proposed HSELT VAD. The 
other VADs are inferior to the proposed HSELT VAD. In 
terms of HR0, the HR0 of proposed HSELT VAD is 
obviously superior to other VADs. So, the proposed HSELT 
achieved the minimum false alarm error norm, with a 40.90% 
value. 

IV. CONCLUSION 

Since the conventional VAD algorithm could not deal with 
the unknown noises under in low SNR environments, we 
proposed a novel voice activity detection based on HSELT to 
improve the drawback. HSELT VAD is composed of four 
components: mel-scaled filter bank, HSELT feature 
extraction, part-band weighting estimation, and the VAD 
decision. It is found that the proposed method use HSELT 
feature sets can increase accuracy of ASR in mobile 
communication corrupted by unknown noises. The proposed 
HSELT-based VAD method is evaluate at eleven types of 
noises and five types of signal to SNR conditions. We find 
that the accuracy of the proposed HSELT-based VAD 
scheme averaged over all noise and all SNRs is better than 
that other considered VAD when the error norm of false 
alarm rates is 40.9%. Experiments in a mobile environment 
showed the proposed HSELT method obtain the best 
behavior in  

 
Table I 

Average speech/non-speech hit rates and overall false error norm  
for SNRs from clean to -5dB 

 
Propose

d 
G.729 AMR1 AMR2 AFE LTSD 

HR1(%) 94.60% 
88.50

% 

94.20

% 

89.50

% 

92.50

% 

95.70

% 

HR0(%) 59.40% 
34.20

% 

36.10

% 

44.10

% 

43.30

% 

45.90

% 

Error 

norm(%) 
40.90% 

66.70

% 

64.10

% 

56.70

% 

57.20

% 
54.3% 

 
detecting non-speech with a 59.40% HR0 average value. In 
addition, the proposed VAD also attains a 94.60% HR1 
average value in speech detection. 
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