
 

 
Abstract—The Zigduino is an open-source Arduino compatible 
microcontroller platform with an integrated 802.15.4 radio. The 
Loosely-coupled Component Infrastructure (LooCI) is a 
component-based middleware for building sensor network 
applications that runs on the Contiki operating system, which 
provides IPv6 networking. In this paper, we describe our 
approach to, and experiences of porting the LooCI/Contiki 
stack to the Zigduino platform. 

 
Index Terms—LooCI; Contiki; Zigduino; WSN; AVR 

 

I. INTRODUCTION 

ireless Sensor Networks (WSN) consist of large 
numbers of tiny sensor devices with wireless 

communication capabilities which gather sensor data on the 
physical environment and transmit this data to more powerful 
servers for analysis [1]. Loosely-coupled Component 
Infrastructure (Loo-CI) is a middleware for building 
distributed component-based WSN applications. LooCI 
cleanly separates distribution concerns from component 
implementation, supporting application-level interoperability 
between heterogeneous WSN platforms, and provides a rich 
type system [2]. 

LooCI runs on the Contiki operating system that provides 
a specialized set of abstractions that can be used to build 
highly efficient embedded software. Specifically, Contiki 
provides dynamic loading and unloading of individual 
programs and services [1]. In this paper we report on our 
experiences of porting LooCI and Contiki platform to the 
Zigduino platform. 

 
LooCI is comprised of a runtime reconfigurable application 
level component model, a hierarchical type system and a 
distributed event bus. Its features promote safe and efficient 
application development, management and reconfiguration 
[2] Zigduino platform is an open sources Arduino-compatible 
 

Manuscript received December 25, 2012; revised January 30, 2013.  
David Olalekan Afolabi is with the Department of Computer Science and 

Software Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, China  
(e-mail: david.afolabi09@student.xjtlu.edu.cn). 

Zhun Shen is with IBM, Suzhou, China (e-mail: shenzhun@outlook.com) 
Ka Lok Man is with the Department of Computer Science and Software 

Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, China  (e-mail: 
ka.man@xjtlu.edu.cn). 

Hai-Ning Liang is with the Department of Computer Science and 
Software Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, China  
(e-mail: haining.liang@xjtlu.edu.cn). 

Nan Zhang is with the Department of Computer Science and Software 
Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, China  (e-mail: 
nan.zhang@xjtlu.edu.cn). 

Eng Gee Lim is with the Department of Electrical and Electronic 
Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, China  (e-mail: 
enggee.lim@xjtlu.edu.cn). 

*  Corresponding author 

microcontroller platform that addresses this problem by 
integrating an 802.15.4 radio, it has powerful wireless 
communication ability. LooCI is programmed by C and 
codes are host by Google Code, Zigduino and Contiki have 
good programming support. So we plan to port LooCI on 
Zigduino in order to widely spread LooCI on more open 
source hardware in WSN.  

The remainder of this paper is structured as follows. 
Section II provides background and discusses the motivation 
for this work. Section III presents implementation and 
evaluation. Section IV discusses our results. Finally Section 
V summarizes and discusses directions for future work. 

II. BACKGROUND AND MOTIVATION 

A. Hardware 

Arduino is one of the most common hardware platforms 
because of its small size, low cost and modularity; it is used 
not only for prototyping but also for creating interactive 
applications. Despite its many advantages, the basic Arduino 
platform lacks wireless connectivity, which makes it 

unsuitable for supporting WSN applications [4]. The 
Zigduino platform is an Arduino-compatible microcontroller 
platform that addresses this problem by integrating an 
802.15.4 radio. The Zigduino offers a reverse polarity SMA 
connector (RP-SMA) for an external antenna. All I/O pins on 
Zigduino are 5V compatible and can also runs at 3.3V. 
Zigduino is based around ATmega128RFA1, and has 128 KB 
of flash memory of which 2 KB is occupied by the boot 
loader. It also has 16 KB of SRAM and 4 KB of EEPROM, 
which can be accessed through the EEPROM library [5]. The 
picture below shows a production Zigduino kit with all 
components. 

 

Modelling and Analysis of LooCI Models in 
Zigduino 

David Olalekan Afolabi, Zhun Shen, Ka Lok Man*, Hai-Ning Liang, Nan Zhang and Eng Gee Lim 

W 

 
. 

 
Fig. 1.  A picture of the Zigduino components 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013



 

B. Contiki OS 

Contiki OS is designed to satisfy the need for lightweight 
mechanisms and abstractions that provide a rich enough 
execution environment while staying within the limitations of 
the constrained devices [1]. Typical sensor devices are 
equipped with 8-bit microcontrollers, code memory on the 
order of 100 kilobytes, and less than 20 kilobytes of RAM [1]. 
Contiki provides dynamic loading and unloading of 
individual programs and services that is used by LooCI to 
support Over The Air (OTA) component deployment. The 
kernel is event-driven, but the system supports preemptive 
multi-threading that can be applied on a per-process basis. 
Preemptive multi-threading is implemented as a library that 
is linked only with programs that explicitly require 
multi-threading [1]. This threading approach is used by 
LooCI to host multiple concurrently executing components. 
Contiki is implemented in the C language and has been 
ported to a number of microcontroller architectures, 
including the Atmel AVR, which is used on the Zigduino. 

C. A Loosely-coupled Component Infrastructure 

 The Loosely-coupled component infrastructure (LooCI) is 
composed of a runtime re-configurable component model, a 
hierarchical type system and a distributed event bus (see 
Figure 2). LooCI provides a clean separation of distribution 
concerns from component implementation, which allows 
components to be re-used in different network environment. 
LooCI also supports multiple languages and operating 
systems. Together, these features promote efficient 
application development, management and reconfiguration 
[2]. In addition, LooCI plays a role in managing application 
dynamism, which arises from evolving requirements, 
changing environmental conditions, mobility and unreliable 
networking [2]. 

III. IMPLEMENT AND EVALUATION 

According to existing work, LooCI runs on AVR Raven. 
The aim of this research is to identify a viable approach to 
port the LooCI component to the Zigduino platform. It 
presents several challenges and we have tackled them in a 
sequential manner [6]. First, we need to install Contiki on 
Zigduino, which was achieved using the Contiki port for 
Zigduino that is available on Github. The next challenge was 
to write the required code to show LEDs blinking on 
Zigduino platform. To overcome this challenge, we have 
relied on the Contiki 2.5 doc and have used and adapted both 
etime.h and process.h to create the new code. Then the shell 
function is also used to check whether the network can run 
using two Zigduino boards. Another challenge we have 
encountered in the process is to have a LooCI environment 
built into the elf file with a blink component. In order to 
evaluate the LooCI environment running well on Zigduino, 
shell modules in Contiki OS is also used to start and stop the 
blink component. The final challenge is to get the 
programming working for the LooCI’s wireless 
communication. In short, to evaluate the entire system, we 
have created a blank elf version LooCI image and deploy 
blank image on Contiki on Zigduino , then construct the blink 
component, and deployed this component over the air using 
the shell. At the end, the shell modules are used to start the 
blink component in order to check that LooCI component is 

successfully deployed on Zigduino. 
The final outcome is a complete port specific for the LooCI 

component. All functionalities of LooCI have been 
exhaustively tested through the help of already existing 
applications and by writing new ones.  

A LooCI component containing a “blinking lights” process 
has successfully been flushed to Zigduino and tested with 
positive results. In order to exemplify the architecture of 
LooCI and how to write application on LooCI, “Blinking 
Lights” component is listed as an example. 

 
1) Code 

#include "looci.h" 

#ifdef LOOCI_BLINK_DEBUG 

#include <stdio.h> 

#endif 

#ifdef BUILD_COMPONENT 

#undef PRINTF 

#define PRINTF(...) 

#endif 

 

COMPONENT(blink, "LED Blink"); 

AUTOSTART_COMPONENTS(&blink); 

COMPONENT_THREAD(blink, ev, data) 

{ 

 COMPONENT_BEGIN(); 

 static struct etimer et; 

 while(1) { 

 etimer_set(&et, CLOCK_SECOND * 2);                        

PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et)); 

}  

  COMPONENT_END(); 

} 

 

2) A code walk-trough 
Setting component up, requires that the Contiki and LooCI 

header files define the following information. 
#include "looci.h" 

#ifdef LOOCI_BLINK_DEBUG 

#include <stdio.h> 

#endif 

#ifdef BUILD_COMPONENT 

#undef PRINTF 

#define PRINTF(...) 

#endif 

 
Declaring the blink component itself and its human-readable 
component-type: 
COMPONENT(blink, "LED Blink"); 

 
General structure of a component has four macros, 
AUTOSTART_COMPONENT is used to run the blink component 
automatically. COMPONENT_THREAD(blink, ev, data) macro is the 
main method to run components, the first parameter blink is 
the name of the variable holding the component metadata as 
declared above; The second argument ev  is the low-level 
Contiki event type that caused the component execution to be 
scheduled and the third argument data is a pointer to extra 
data passed by the Contiki kernel. COMPONENT_START is used to 
start the component. COMPONENT_END is used to stop the 
component and clean the running space of this component. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013



 

Etimer_set(…) is a timer running every 2 times system clock. 
PROCESS_WAIT_EVENT_UNTIL()wakes us up using the timer. 
 
AUTOSTART_COMPONENTS(&blink); 
COMPONENT_THREAD(blink, ev, data) 
{ 

COMPONENT_BEGIN(); 

 static struct etimer et; 

 while(1) { 

 etimer_set(&et, CLOCK_SECOND * 2);         

PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et)); 

 }  

COMPONENT_END(); 

} 

IV. SUMMARY AND FUTURE WORK 

In this research, we attempt to find a suitable approach to port 
LooCI, a middleware for building distributed 
component-based wireless sensor network application, into 
the Zigdruino platform, an Arduino-compatible 
microcontroller environment that integrates an 802.15.4 radio 
on the board. In this paper, we describe our approach to 
migrate LooCI / Contiki running on the Raven platform to the 
Zigduino platform. These experiences show that it is possible 
to quickly port the LooCI component model to new 
platforms. 
 
Our future work will focus on evaluating the performance 
and efficiency of the LooCI/Zigduino port in comparison to 
other LooCI ports in terms of energy consumption and the 
efficiency of component installation, binding and execution. 

ACKNOWLEDGEMENTS 

The authors are pleased to acknowledge support from the 
iMinds-DistriNet research group of KU Leuven, Belgium, 
the authors of the original LooCI platform. In addition to this, 
this work was partially supported by the Xi'an 
Jiaotong-Liverpool University (China) Research 
Development Fund under Grants RDF10-01-27 and 
RDF10-02-03. 

REFERENCES 

[1] A. Dunkels, B. Gronvall, and T. Voigt, Contiki - a lightweight and 

flexible operating system for tiny networked sensors, In 29th Annual 

IEEE International Conference on Local Computer Networks (2004), 

pp. 455- 462. 

[2] D. Hughes, K. Thoelen, J. Maerien, N. Matthys, J. Del Cid, W. Horre, 

C. Huygens, S. Michiels, and W. Joosen, LooCI: The Loosely-coupled 

Component Infrastructure, In 11th IEEE International Symposium on 

Network Computing and Applications (NCA’12) (2012), pp.236-243. 

[3] W. Horre, D. Hughes, K.L. Man, S. Guan, B. Qian; T. Yu, H. Zhang, Z. 

Shen, M. Schellekens, and S. Hollands, Eliminating implicit 

dependencies in component models, IEEE 2nd nternational Conference 

on Networked Embedded Systems for Enterprise Applications 

(NESEA’11) (2011), pp.1-6. 

[4] V. Georgitzikis, O. Akribopoulos, I. Chatzigiannakis, Controlling 

Physical Objects via the Internet using the Arduino Platform over 

802.15.4 Networks, IEEE Latin America Transactions (Revista IEEE 

America Latina) (2012), vol.10, no.3, pp.1686-1689. 

[5] Logos-electro, Onlien:http://logos-electro.com/zigduino/ [accessed on 

December 2012]. 

[6] S. Alexandru, Porting the Core of the Contiki, (2007), Online: 

http://www.eecs.iu-bremen.de/archive/bsc-2007/stan.pdf [accessed on 

December 2012]. 
 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013




