

Abstract—Software effort and cost estimation are

necessary at the early stage of the software development life
cycle for the project manager to be able to successfully plan
for the software project. Unfortunately, most of the
estimation models depend on details that will be available at
the later stage of the development process. This paper
proposes to use Function Point Analysis in application with
dataflow diagram to solve this timing critical problem. The
proposed methodology was validated through the graduate
student software projects at the Chulalongkorn University
Business School. Although the results were disappointed but
some interesting insights are worth looking into.

Index Terms—software effort estimations, early stage
software effort estimation, early stage Function Point Analysis,
software effort empirical evidence.

I. INTRODUCTION

oftware effort and cost estimation are necessary at the
early stage of the software development life cycle for

the project manager to be able to successfully plan for the
software project. Unfortunately, most of the estimation
models depend on details that will be available at the later
stage of the development process. For example, the object
oriented estimation models depend on the UML models –
Use cases, Class diagrams and so on, which will not be
available until the design stage. This situation –the need for
information at the early stage but is available at the later, is
referred to as software estimation paradox [1]. This paper
proposes to use dataflow diagram to solve this timing
critical problem. At the requirement stage, the DFD can be
used to depict the functionality of the software system. The
information available in the dataflow can be used to obtain
Function Points and serve as the basis for software effort
estimation.

This article is organized as follows. Section II overviews
the software effort estimation methods related to our
proposed methodologies i.e., Function Point Analysis, early
Function Points, the Function Points estimation from data
flow diagram method and COCOMO cost estimation model.
Section III describes the proposed methodology. Section IV
presents the empirical results. The discussions and the
conclusions for this research are presented in section V and
VI respectively.

T. Arnuphaptrairong is with the Department of Statistics, Chulalongkorn

Business School, Chulalongkorn University, Bangkok 10250 Thailand (e-
mail: Tharwon@acc.chula.ac.th).

II. OVERVIEW OF RELATED LITERATURE

This section reviews the software effort and cost
estimation methods related to our proposed methodologies
i.e., Function Point analysis, early Function Points,
Function Points estimation from data flow diagram method
and COCOMO cost estimation model.

A. Function Point Analysis

Function Points (FP) was originated in 1979 and widely
accepted with a lot of variants, from both academics and
practitioner [2]. The research in this area is also known as
Function Point Analysis (FPA) or Function Size
Measurement (FSM). The FP measurement could be
classified into FP counting and estimation [3].

Function Point was introduced by Albrecht [4], the

concept is based on the idea that the functionality of the
software delivered is the driver of the size of the software
(Line of Codes). In other words, the more the functions
delivered, the more the Line of Codes. The functionality
size is measured in terms of Function Points (FP).

FPA assumes that a software program comprises of

functions or processes. In turn, each function or process
consists of five unique components or function types as
shown in Figure 1. The five function types are External
Input (EI), External Output (EO), External Query (EQ),
Internal Logical File (ILF), and External Interface File
(EIF).

Each of these five function types is individually assessed

for complexity and given a Function Points value which
varies from 3 (for simple external inputs) to 15 (for complex
internal files). The Function Points values are based the
complexity of the feature being counted.

The low, average and high complexity level of ILF and

EIF are based on the number of Record Element Type
(RET) and Data Element Type (DET). A Record Element
Type (RET) is a subgroup of the data element (record) of an
ILF or ELF. A data element type is a unique non-repeated
data field.

The complexity level of EI and EO and EQ are based on

the number of File Type Referenced (FTR) and Data
Element Type (DET). A File Type Referenced (FTR) is an
ILF or EIF.

Tharwon Arnuphaptrairong

Early Stage Software Effort Estimation Using
Function Point Analysis: Empirical Evidence

S

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

Fig. 1. The Albrecht five function types

The Unadjusted Function Points (UFP) or Unadjusted

Function Points Counts (UFC) is calculated as follows [4]:
The sum of all the occurrences is computed by

multiplying each function count (N) with a Function Point
weighting (W) in Table I, and then the UFP is attained by
adding up all the values as follows:

 UFP =

5

1i

3

1j
ijijWN

Where Nij is the number of the occurrences of each
function type i of the five types and Wij is the
corresponding complexity function point weighting value j
of the 3 levels –low, average and high.

TABLE I

THE FUNCTION POINT WEIGHTS

 Complexity

Function Type Low Average High

External Input 3 4 6

External Output 4 5 7

External Inquiry 3 4 6

Internal Logical File 7 10 15

External Interface File 5 7 10

The Function Point values obtained can be used directly

for estimating the software project effort and cost. But in
some cases, it may need further adjustments with the
software development environment factors.

In order to find adjusted FP, UFP is multiplied by

technical complexity factors (TCF) which can be calculated
by the formula:

 TCF = 0.65 + (sum of factors) / 100

There are 14 technical complexity factors --data
communications, performance, heavily used configuration,

transaction rate, online data entry, end user efficiency,
online update, complex processing, reusability, installation
ease, operations ease, multiple sites, facilitate change,
distributed functions. Each complexity factor is rated on the
basis of its degree of influence from no influence (0) to very
influential (5). The adjusted Function Points (FP) or
Function Point Counts (FC) is then derived as follows:

FP = UFP x TCF

The International Function Point User Group (IFPUG) is

the organization establishes the standards for the Function
Point Size Measurement to ensure that function points
counting are the same and comparable across organizations.
The counting manual can be found at http://www.ifpug.otg.

The International Standard Organization (ISO), in 1996,

established the common standard, in order to support the
consistency and promote the use of this Function Size
Measurement (FSM). The updated versions are maintained.
Besides the IFPUG FPA, three other FPA variants are also
certified methods by ISO --Mk II, NESMA, and COSMIC
FFP.

B. Early Function Points

 Early Function Points (EFP) and Extended

Function Points (XFP) were proposed by Meli [5], to
anticipate for the need of software size estimate at the early
stage of the development life cycle. The method requires the
estimator to put in knowledge at different detail levels of a
particular application. Functionalities are classified as:
Macrofunction, Function, Microfunction, and Functional
Primitive. Each type of functionality is assigned a set of FP
value (minimum, average, and maximum). The Early
Function Points (EFP) and Extended Function Points
(XFP) are considered not very easy to used.

C. Function Points estimation from data flow diagram
method

Functionality is the heart of FPA. One stream of research
proposed that functionalities can be retrieved using
Structured Analysis (SA) which expressed in the form of
Dataflow Diagram (DFD) for process modeling and Entity
Relationship Diagram (ERD) for data modeling.

DFD was proposed as the estimator for FPA by a number

of papers using either DFD alone or together with ERD [6]-
[12].

Rask [6, 7] introduced the algorithm for counting the
Function Points using specification from DFD and ERD
data model. The automated system was also built.

O’brien and Jones [8] proposed a set of counting rules to

incorporate Structured Analysis and Design Method
(SSADM) into Function Point Analysis. DFD, together with
I/O structure diagram, Enquiring Access Path (EAP) and

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

Effect Correspondence Diagram (ECD) were applied to the
counting rules for the Mark II FPA.

Shoval and Feldman [9] applied Mark II Function Points

with Architectural Design of Information System Based on
structural Analysis (ADISSA). The proposed method counts
the attributes of all inputs and outputs from the Dataflow
Diagram (DFD) of the system to be built and all of the
relations in the database from the database design process,
and then plugs in all the numbers in the Mark II model.

DFD was found also proposed to be used together with

ERD in [10]. Lamma et al. [11] to solve the problem of
counting error, a system for automating the counting is built
and called FUN (FUNction points measurement). The
system used the specification of a software system from
Entity Relationship Diagram and Dataflow diagram to
estimate software Function Points. Later, the system was
automated by Grammantieri et al [12].

D. COCOMO Cost Estimation Model

COCOMO (Constructive Cost Model) was originated by
Boehm in 1985 [13]. The model was based statistical
analysis of data of 63 software development projects. By
performing regression analysis on the of 63 software
development projects, the following basic model software
development effort estimation model was derived:

 Effort = c (size) k

Where:

effort was measured in person month (pm) or the number
of person months, a person month is of 152 person hours,

Size is the estimated size of the software, measured in
kdsi (Kilo Source Instructions) and

c and k are constants.

III. THE PROPOSED METHODOLOGY

One of the problems associated with FPA is the need for
the early stage of the software development life cycle [5,
14]. According to IFPUG standard counting rules Functions
specification should already be clear at least from 15 to 40%
before FPs can be obtained. Otherwise it would not be
possible to identify EI, EO, EQ, ILF and EIF [5, 15].

This research proposes to handle this problem by utilizing

functional requirements available in the DFD at the
requirement determination stage --early stage of the
development life cycle. Using DFD is not new. At least two
algorithms using DFD had been proposed for FP counts [6,
9]. To attain the FP counts using DFD, the proposed method
adapted the method proposed by [6, 9].

The proposed method is to count for only EI, EO and ILF

where EI is the data flow from external entity into the
system, EO is data flow from the system to external entity,
and the ILF is the file used inside the system. The DFD of
the sales order system shown in Fig. 2 will be used to
demonstrate how the proposed method works.

There are 3 functions, --Fill Order, Create Invoice and

Apply Payment in the sale order system.

The Fill Order function consists of 1 EI (order from

customer), 1 EO (packing list), and 3 ILF (customer file,
product file, and order file)

The Create Invoice function consists of 1 EI (completed

orders from warehouse), 1 EO (invoice), and 4 ILFs
(customer file, product file, order file, and accounts
receivable file)

The Apply Payment function consists of 1 EI (payment

from customer), 3 EOs (cash receipt entry, bank deposit and
commission report), and 1 ILF (accounts receivable file)

The numbers of Function Point counts of this software

are then achieved by applying corresponding FP weightings
to the EI, EO and ILF as follows:

 FP =

3

1i

3

1j
ijijWN

FP = (1*3 + 1*4 + 3*7) + (1*3 + 1*4 + 4*7)
+ (1*3 + 3*4 + 1*7)

 = 28 + 35 + 22
 = 85

Next, the size of the software is attained by multiplying

the FP counts with the average number of line of codes per
function point of the programming language used [16] to
transform the FP counts to number of line of codes (LOC).
Suppose that this software is to be implemented with C++,
the average number of line of codes per function point for
C++ is 53. The number of line of codes (LOC) for this
software is calculated as follows:

 LOC = 85 * 53
 = 4,505

And the required effort is then estimated using COCOMO

cost estimation model as follows:

 Effort = c * (size) k

 = 2.4 * (4.505) 1.05
 = 11.66 person months

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

Fig. 2. First level DFD of a Sales Order System

IV. EMPIRICAL VALIDATION

The proposed methodology was validated with graduate
student projects in the master program in Business Software
Development at the Department of Statistics, CBS Business
School, Chulalongkorn University. The graduate students
are required to have at least three year of experience in the
software industry for the admission. After finishing 36
credits of course works, the students are required to have a 6
credits master project to develope a business software
package.

 A batch of the 25 graduating students of the master
program was asked to participate in the experiment using
the proposed methodology described in section III. When
the students passed the project proposal, a questionnaire was
distributed to each student to ask for the following
information: student identification, name, programming
experience, project name, start date, number of functions
appeared in the DFD, languages and tools used, and the
estimated function points. Finished date and actual effort in
man hours used for the software projects were filled out in
the same form by the students again when the projects were
completed.

Fifteen students returned the final results. Table II shows
the background data of the projects. The table shows the

name of the software developed, languages and tools used,
number of functions in the software, and the actual man
hours spent in developing the software. FP-EST is the
estimated unadjusted Function Points from DFD with the
algorithm as explained in section III. On average, there are
of 8 functions, 305.4 Function Points and 534 man hours
employed per project.

Of the 15 questionnaires, two students did not return the

final actual effort used for the projects. This resulted in only
13 usable project data sets. The analysis was carried on with
the 13 projects. From the data gather in table II, the software
size in source line of codes (LOC) was calculated by
multiplying language factors (58 LOC for C#, 28 LOC for
VB.net and 56 LOC for PHP). Then, the COCOMO model
was used to find the effort needed to develop the software
with c=2.4, and k=1.05 (Basic COCOMO Model).

The estimated effort obtained in person months was then

multiplied by 152 to get the man hours. The accuracy of the
estimation was measured using MRE (Magnitude of
Relative Error) which is the absolute value of (estimated
man hours – actual man hours / actual man hours). The
results are shown in Table III. The results from table III
show very high MRE with average of 1624.31%. The
figures also show over estimates of the estimated effort for
all projects. Two projects --3 and 13 are obviously outliers.
With the two outliner projects removed, the MRE was
improve to 517.84%

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

 TABLE III

THE RESULTS FROM THE ANALYSIS

No. Language FP-EST LOC per FP
Estimated

KLOC
Estimated

Man months
Estimated
Man hours Actual man hours MRE (%)

1 C#.net 207 58.00 12.01 32.63 4959.33 400.00 1139.83

2 VB.net 564 28.00 15.79 43.51 6613.23 1016.00 550.91

3 C#.net 1321 58.00 76.62 228.43 34721.80 560.00 6100.32

4 PHP 83 56.00 4.65 12.05 1830.98 640.00 186.09

5 VB.net 220 28.00 6.16 16.19 2461.02 240.00 925.42

6 PHP 65 56.00 3.64 9.32 1416.48 400.00 254.12

7 C#.net 254 58.00 14.73 40.45 6147.94 458.00 1242.34

8 C#.net 186 58.00 10.79 29.16 4432.44 384.00 1054.28

9 VB.net 112 28.00 3.14 7.97 1211.29 550.00 120.24

10 VB.net 110 28.00 3.08 7.82 1188.59 600.00 98.10

11 VB.net 268 28.00 7.50 19.92 3027.70 520.00 482.25

12 C#.net 154 58.00 8.93 23.92 3635.39 1080.00 236.61

13 VB.net 707 28.00 19.80 55.16 8384.19 95.00 8725.46

 Average 1624.31

TABLE II

PROJECT BACKGROUND DATA

No. Software Language and Tool used
No of

Functions FP-EST Man hours

1
Tap Water Production Maintenance and Service Using
GPS System C#.net, VS-Studio 5 207 400

2 Investment Support System
VB.net, ASP.NET, SQL
server 12 564 1016

3
Software Inspection processing Compliance Support
System C#.net, VS-Studio 9 1321 560

4 Thai Language Data Mining for Marketing Research PHP, SQL server 4 83 640

5 Vegetable Box Project Management Software VB.net, SQL server 8 220 240

6 Personal Loan Follow up Management System ASP.NET 9 139 N/A

7 Intelligent Room Assignment Dormitory System PHP, SQL server 5 65 400

8 Software Supporting Buffet Business Via Web C#.net, VS-Studio 9 254 458

9 Visual Challenge Library Support System C#.net, ASP.NET,VS-Studio 7 186 384

10 Beauty Business Information System VB.net, SQL server 12 112 550

11
Gold Retailing Business Information System Using
RFID VB.net, SQL server 11 110 600

12 Appraisal System VB.net, C++,SQL server 5 268 520

13 Primary School Teaching Support System C#.net, VS-Studio 7 154 1080

14 Electronic Menu Restaurant Support System VB.net, Java Script 8 707 95

15
Software for Visual Challenge person travelling with
public transportation C#, Java,VB.net 9 191 N/A

 Average 8 305.4 534

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

V. DISCUSSION

It may not be surprised with the disappointed results of
high MRE. However, the high MRE percentages are similar
to the work of Kemerer “An Empirical Validation of
Software Cost Estimation Model” [18].

The high MRE percentages may be attributed to many
factors, including the followings:

1. COCOMO Model and its parameters
2. Programming language factors
3. One person student project
4. Small sample size
5. others

A. COCOMO Model

It may be hypothesized that the parameters of the
COCOMO Model (i.e., the values of c and k) were not fit
well with the experimental environment. This is probably
because the parameters of the COCOMO model were
discovered by performing the regression analysis on
software project data gather in the USA. This indicates the
need for localization.

B. Programming language factors

The programming language factors used to converse
Function points to number of Source Line of Codes is
another question. The programming language conversion
table by Caper Jones [16] also produced using software
project data gather in the States. This is consistent with the
findings of Rollo in [17].

C. One person student project

The software projects used in this research were one
person graduate student projects which are different from
the real world project in many aspects, especially the
number of team members.

D. Small sample size

Probably with small sample size of 13 or 11 (when the
outliners were removed) is the bigger problem. Small
sample limits the probing into the above speculations.

E. Others

Other factor that may contribute to the high MRE is
the type of software application. It may need to be adjusted
with the Technical Complexity Factors (TCF) [3].

V. CONCLUSIONS

The findings of this study show high MRE percentages.
However, the results are similar to the prior work, for
example, the work of Kemerer [18] and Miyasaki and Mori
[19]. The results reveal the potential to explore into many
issues, for example, the COCOMO Model and its
parameters, and the programming language factors. The
implication from this research is probably that one
organization should maintain and calibrate its own software
project data [20, 21]. And to reduce the variation due to the
COCOMO Model parameters and the programming
language factors, one organization may maintain and
analyze its own Function Points productivity of a specific

programming language and use its own FP productivity to
estimate the effort and cost need instead.

REFERENCES
[1] B.W. Boehm, “Software engineering economics,” IEEE Transaction

of Software Engineering, vol.10, no.1, pp. 4-21, 1984.
[2] C. Gencel and O. Demirors, “Functional size measurement revisited,”

ACM Transaction on Software Engineering and methodology, vol.17,
no. 3, pp.15.1-15.36, June 2008.

[3] R. Meli and L. Santillo, “Function point estimation methods: a
comparative overview,” in FESMA '99 Conference proceedings,
Amsterdam, 4-8 October, 1999.

[4] A. J. Albrecht, “Measuring application development productivity,” in
Proceeding of the IBM Applications Development Symposium,
California, October 14-17, 1979, pp. 83-92.

[5] R. Meli, “Early and extended function point: a new method for
function points estimation,” IFPUG Fall Conference, September, 15-
19, Arizona, 1997.

[6] R. Rask, “Algorithm for counting unadjusted function points from
dataflow diagram” Technical report, University of Joensuu, 1991.

[7] R. Rask, “Counting function points from SA descriptions,” The
Papers of the Third Annual Oregon Workshop on Software Metrics
(Ed. W. Harrision), Oregon, March 17-19, 1991.

[8] S. J. Obrien, and D. A. Jones, “Function points in SSADM,” Software
Quality Journal, vol. 2, no. 1, pp.1-11, 1993.

[9] P. Shoval, and O. Feldman, “Combining function points estimation
model with ADISSA methodology for system analysis and design,” in
Proceeding of ICCSSE”96, 1996, pp.3-8.

[10] F. Gramantieri, E. Lamma, P. Mello, and F. Riguzzi, “A system for
measuring function points from specification,” Technical Report,
Universitra di Bologna, 1997.

[11] E. Lamma, P. Mello and F. Riguzzi, “A system for measuring
function points from an ER-DFD specification,” The Computer
Journal, vol. 47, no.3, pp.358-372, 2004.

[12] F. Gramantieri, E. Lamma, P. Mello, and F. Riguzzi, “A System for
Measuring Function Points from Specifications,” DEIS – Universita
di Bologna, Bologna. and Dipartimento di Ingegneria, Ferrara, Tech.
Rep DEIS-LIA-97-006, 1997.

[13] B.W. Boehm, Software Estimation with COCOMO II, Upper Saddle
River, NJ, Prentice Hall, 2002.

[14] J. Wu, and X. Cai, “A Software Size Measurement Model for Large-
Scale Business Applications,” in Proceedings of 2008 International
Conference on Computer Science and Software Engineering, 2008,
pp.39-42.

[15] R. Meli and L. Santillo, “Function Point Estimation Methods: a
Comparative Overview,” in FESMA’99 Conference Proceedings,
Amsterdam, 1999.

[16] C. Jones, Applied Software Measurement, Assuring Productivity and
Quality, 2ed, McGraw-Hill, 1997.

[17] A. L. Rollo, “Functional Size Measurement and COCOMO –A
Synergistic Approach,” Proceeding of Software Measurement
European Forum, 2006.

[18] C.F. Kremer, “An Empirical Validation of Software Cost Estimation
Models,” Communication of the ACM, vol. 30, no. 3, pp.416-429,
1987.

[19] Y. Miyazaki and K. Mori, “COCOMO Evaluation and Tailoring,” in
Proceeding of ICSE’ 85 Proceeding of the 8th International
Conference of Software Engineering, 1985, pp.292-299.

[20] M. Aguiar, COCOMO II Local Calibration Using Function Points, TI
Metricas, Available at:
http://csse.usc.edu/events/2005/COCOMO/presentations/CIILocalCal
ibrationPaper.pdf

[21] B. Clark, S. Davnani-Chulani, and B. Boehm, “Calibrating the
COCOMO II Post-Architecture Model,” in Proceeding of ICSE’ 98
Proceeding of the 20th International Conference of Software
Engineering, 1998, pp.477-480.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

