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Abstract—We present an algorithm and its software im-
plementation that computes implied volatilities for exchange-
traded stock options. The LR (Leisen-Reimer) binomial tree
is used for the underlying option pricing, which is adjusted
for dollar cash dividends. The Brent’s method is used as the
root-finding procedure. The option pricing procedure that is
at the core of the root-finding is optimised to maximise the
performance. Tests were made on call and put options traded
on the stocks of Microsoft Corporation and Apple Inc.. In 0.046
and 0.226 seconds, respectively, the implemented generator
finished computing the implied volatilities for 154 Microsoft
and 823 Apple call options.

Index Terms—Implied volatility, volatility surface generation,
LR binomial tree, Brent’s method, option pricing

I. I NTRODUCTION

I N the BSM (Black-Scholes-Merton) [1], [2] option pric-
ing model volatility is the standard deviation of the

continuous compounding return of the underlying stock in
one year’s time. It is a measure of the uncertainty about the
returns provided by the stock. In the settings of the original
BSM model volatility of a stock is assumed to be constant
during the lifetime of an option traded on the stock.

Given a stock and an option on the stock the volatility
implied by the option price and the BSM pricing model
can be computed using an iterative root-finding procedure.
Contrary to the assumption made by the BSM model that the
volatility is constant, the computed implied volatilities often
vary with strike prices and expirations. In practice, different
volatilities are used to price options having different strikes
and expirations. The general pattern of the variation with
strike in implied volatility for stock options is referred to
as a volatility skew. The volatility used to price a low-strike
option is higher than that used to price a high-strike option.
The changing of implied volatilities with time to expiration is
referred to as a volatility term structure. Combining volatility
skews for different expirations generates a surface of implied
volatilities that tabulates the volatilities appropriate as deter-
mined by the market for pricing options with certain strike
and expiration.

Because option price is monotonically increasing in
volatility, implied volatility computed from option price is
often used as a proxy for option value. To compare the
relative value of two options an investor needs only to look at
their implied volatilities. As a proxy for option value, implied
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volatility presents the market’s expectation of a stock’s future
price moves. A significant change in implied volatility means
that there may be a shift in the expectation of the market
towards a stock’s future price. This provides to investors
a tool for predicting the direction of a stock’s future price
moves.

Prices of exchange-traded stock options change in real
time. The computation of the implied volatilities for
exchange-traded options therefore should be performed with
minimum delay. To this purpose we have developed a
software that computes the implied volatilities from prices
of exchange-traded options for different strikes and expira-
tions. The underlying algorithm is able to handle multiple
dollar cash dividends that take place within the lifetime of
an option. To accelerate the computation the LR (Leisen-
Reimer) [3] binomial tree is used for the underlying option
pricing, because it has a much faster convergence speed than
the commonly-used CRR (Cox-Ross-Rubinstein ) [4] tree.
Brent’s method [5] is used as the root-finding algorithm
which takes the pricing procedure at its core and searches
for solutions on an iterative basis. Tests were made on an
Intel quad-core 3.4GHz Corei7-2600. Using a single thread
the software finished in 0.22 seconds generating implied
volatilities for 823 stock options.

Organisation of the rest of the paper:Section II gives a
brief background on exchange-traded stock options. Section
III discusses the volatility computation algorithm in detail.
This includes explanations on handling dollar cash dividends,
the LR tree pricing method, the root-finding procedure and
the optimisations to the option pricing procedure. Section IV
discusses how common range of strike prices are selected for
processing the options in the tests. Section V presents the test
results. Section VI draws the conclusion.

II. EXCHANGE-TRADED STOCK OPTIONS

Most stock options are traded on exchanges. Such
exchanges in the United States include the Chicago
Board Options Exchange (www.cboe.com) and NASDAQ
OMX (www.nasdaqtrader.com). Exchange-traded options are
American in style, which means they can be exercised at any
time before or on the expiration date. For American options
there is no closed-form pricing formula exist. Their prices
must be computed using numerical procedures. In this work
we use the binomial tree method.

Within the lifetime of many exchange-traded options cash
dividends will be paid out by the underlying stocks. Because
exchange-traded options are not adjusted for cash dividends
we need to take the effect of cash dividends on option prices
into consideration in the computation for implied volatili-
ties. Information about exchange-traded options are easily
accessible from the Internet. Fig. 1 shows a clipped screen
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Fig. 1: Option chains on Microsoft’s stock on July 13, 2012. All these options expire on August 17, 2012.

shot from Google Finance on vanilla call and put options
traded on the stock of Microsoft Corporation. Exchange-
traded options are often organised into chains. A chain
consists of options with different strike prices but the same
expiration date.

III. C OMPUTING IMPLIED VOLATILITIES

Computing the implied volatility of an option is to find
the right value for the volatility parameter which if fed into
an option pricing model will produce the option’s traded
price. The computation starts with an initial estimation for the
volatility. This initial estimation is fed into the option pricing
model to compute the option price under the estimation.
This price is then compared with the option’s traded price to
calculate a closer estimation according to the difference. This
procedure repeats until the option’s price computed under an
estimation for volatility becomes close enough to the option’s
traded price. At this point the estimation is treated as the
implied volatility of the option.

A. Binomial pricing with cash dividends

Since exchange-traded stock options are American-style
their prices must be computed by numerical procedures. For
this purpose we use the binomial method. Most of exchange-
traded options see within their lifetimes cash dividends paid
out by their underlying stocks. For this reason we follow
the method presented by John Hull [6] which incorporates
dollar dividends into the binomial pricing. The advantage of
this method is that it preserves the recombining structure of
binomial trees.

The method calculates the present value of all cash
dividends known to be paid out by the underlying stock
within the lifetime of the option. An recombining binomial
tree is then built where the root node corresponds to the
stock’s present price less the present value of all future cash
dividends. After the whole tree is built, discounted cash
dividends are added upon nodes of the tree at appropriate
time steps. In what follows, we discuss this method in detail
assuming a single dividend within the lifetime of the option.
But this method can be easily generalised to handle multiple
cash dividends.

SupposeD is the amount of cash dividend that is to be paid
out at the ex-dividend timeτ (measured in years). We user to
denote the annual continuously compound interest rate. The
present value of the cash dividend isDe−rτ . If S0 denotes
the present stock price, the uncertain componentS∗

0 of the
price is S∗

0 = S0 − De−rτ . We then build a recombining
binomial tree that models the dynamics ofS∗ – the uncertain
component of the stock price processS. This tree is rooted

at S∗
0 . We useu and d to denote the up-move and down-

move factors of the tree, respectively. On such a binomial
tree ajth node atith time step corresponds to the stock price
S∗
0u

jdi−j , wherej ∈ {0, 1, 2, . . . , i}. Note that atith time
step the number of nodes isi+1. Both indexesi andj start
from zero. Now based on this tree that modelsS∗ we convert
it to another tree that modelsS. Since there is a single cash
dividendD paid out at timeτ we addD’s discounted value
onto all nodes whose time horizon proceedsτ . At time stepi
the nodes in the modified tree correspond to the stock prices
S∗
0u

jdi−j +De−r(τ−i∆t), j = 0, 1, 2, . . . , i when i∆t < τ ,
andS∗

0u
jdi−j , j = 0, 1, 2, . . . , i wheni∆t > τ . The quantity

∆t is the length of time represented by one step of the tree.
If there are multiple cash dividends nodes at time stepi
need to be adjusted by the sum of the discounted values of
all future dividends. Fig. 2 shows an example where there
are two cash dividends within the lifetime of an option. The
dashed lines show the tree that modelsS∗, and the solid lines
show the modified tree that modelsS. The tree that models
S∗ is generated by the LR binomial tree method.

B. LR tree v.s. CRR tree

Fig. 3: Convergence comparison between the LR tree and the CRRtree
using an European put option. The parameters wereS0 = 40, K = 50,
r = 0.1, σ = 0.4 andT = 0.5.

In the computation for the implied volatilities the root-
finding procedure may need to run many iterations. In
each iteration the option price is evaluated under different
estimations of the volatility. It is therefore very important to
use an efficient option pricing procedure as it will be called
many times during the computation. In our work we use the
LR binomial tree [3] rather than the more common CRR tree
[4]. The LR tree converges much faster than the CRR tree.
Fig. 3 shows a comparison between the LR tree and the CRR
tree using a deep in-the-money European put option as an
example. It can be seen that the price computed by the LR
tree converges smoothly to the BS (Black-Scholes) price of
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S∗
0
=3.61

S0=4

t=0 T =0.5
Dividend 1
τ1=0.167

Dividend 2
τ2=0.333

Fig. 2: Binomial trees for an American call with two dividends. The parameters were set as: current stock priceS0 = 4, strike priceK = 4, interest rate
r = 0.1, volatility σ = 0.2, expirationT = 0.5, time stepsN = 7, ex-dividend timesτ1 = T/3, τ2 = 2T/3 and cash dividendsD1 = D2 = 0.2.

the option without the oscillation pattern demonstrated by
the CRR tree. Note that the LR-tree method works only on
odd numbers of time steps.

As before we denote the annual continuously compound
interest rate byr, the option’s expiration time byT , the
number of time steps byN , the strike price byK and the
uncertain component of the initial stock price byS∗

0 . The
up-move probabilityp, up-move factoru and down-move
factor d used with the LR-tree method are set through the
following equations.

d1 =
ln(S∗

0/K) + (r + σ2/2)T

σ
√
T

d2 =
ln(S∗

0/K) + (r − σ2/2)T

σ
√
T
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0 z = 0

−1 z < 0

p′ = h−1(d1)

p = h−1(d2)

u = exp(rT/N)
p′
p

d =
exp(rT/N)− pu

(1 − p)
(1)

C. The root-finding procedure

For the root-finding purpose we use Brent’s method [5]
which builds on an earlier algorithm proposed by Dekker
[7].

D. Optimisations

To minimise the runtime required by the binomial pricing
procedure we applied several source level optimisations to
the code. A binomial tree conceptually is a two-dimensional
structure. In main memory we store it in an one-dimensional
array because explicit construction of a whole binomial tree

is unnecessary. During the backward computation that starts
from the leaf nodes the one-dimensional array stores only
the option values represented by the nodes that are being
processed. When the computation proceeds from theith time
step to the(i−1)th step the values represented by the nodes
at theith step are overwritten. This saves the time and space
that are required by constructing a whole binomial tree.

On a binomial tree that modelsS∗, the uncertain com-
ponent of the stock price, at theith time step the nodes
represent the stock pricesS∗

0u
jdi−j , j = 0, 1, 2, . . . , i. But

we did not use these expressions to compute the stock
prices because using these expressions will cause lots of
repetitive work. Instead, we only use this expression once
when computing the stock priceS∗0

i represented by the
0th node at theith time step, and we haveS∗0

i = S∗
0d

i

becausej = 0. When computing the stock priceS∗1
i we

set it to be the product ofS∗0
i and the constantu/d, and

so S∗1
i = S∗0

i (u/d) = S∗
i ud

i−1, j = 1. When computing
S∗2
i we set it to beS∗2

i = S∗1
i (u/d) = S∗

i u
2di−2, j = 2.

Each new stock price is obtained by multiplying the constant
u/d onto the price that has just been computed. This avoids
the repetitive evaluation of the power expressionsuj and
di−j , and therefore significantly shortens the runtime of the
binomial pricing procedure.

The same binomial pricing procedure in our program
works both for European and American options and for
call and put options. But we did not use branching state-
ments to distinguish these situations. This is to avoid the
penalty brought about by the potential mis-predication on the
branching statements. To distinguish European and American
options a lookup table of two positions was used. The first
position of the table always stores zero, and the second stores
the payoff from an immediate exercise. In the case of an
European option an expected value is compared with the first
element of the table, and in the case of an American option it
is compared with the second. These two situations are unified
by using a lookup index whose value is 0 for European
options and 1 for American. To unify call and put options
we calculate their payoffs by the formulamax(I(S−K), 0),
whereI is 1 for calls and -1 for puts, andS andK are the
stock and strike prices, respectively.
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IV. I MPLEMENTATION

The programs in our work were written in C/C++. The
compiled generator takes as input a text file that lists infor-
mation about a stock, the option chains based on the stock
and interest rate term structure. The output of the generator is
a text file contains the computed implied volatilities arranged
in a tabular form with columns being the expiration dates and
rows the strike prices.

Options offered by the exchanges are organised into chains
for different expiration dates. For a particular expiration date
the call or put option chains contains a series of options. With
all other parameters being the same the options in a chain
differ in their strike prices. In most cases, the increment in
strike prices between each pair of successive options is a
fixed amount, which depends on the present price of the
stock. To build an implied volatility surface for a stock
that includes all the options in all the chains we need to
choose common strike prices for all the options. However, for
exchange-traded options the range of strike prices are often
different in different chains that expire on different dates.
Moreover, the strike price increment in different chains can
be different as well. All these irregularities pose problems
for the volatility computation.

To solve these problems we choose the minimum and
maximum strike prices that are found in all the option chains
on a stock as the lower and upper bounds of the range of
strike prices. The increment between each pair of strikes we
choose is a value that will include most of the options in all
the chains in the computation. In choosing the range of the
strikes and the increment call and put option chains are dealt
separately. Once a range of strikes and the increment have
been chosen the generator will go through this range starting
from the smallest strike price. For each strike price in the
range and an option chain the generator will find the option
with that strike price in the chain and compute the volatility
implied by its exchange-traded price. The generator repeats
this process until all the option chains listed in the input text
file have been processed. If a strike price in the range is
not found in an option chain the generator will by-pass this
strike price and proceed to the next. In the output text file
the generator will write a special symbol in the entry that
corresponds to the un-found strike price. If in any option
chain, an option’s strike price is not found in the range the
option will be ignored by the generator and no information
will be output for that option. This can happen if in some
option chain the strike prices follow an irregular increment
pattern.

V. TESTS

We made tests using options traded on the stock of
Microsoft Corporation (stock code MSFT) and Apple Inc.
(stock code AAPL). The information about the options were
collected on May 23, 2012, at which time Microsoft’s stock
was traded at $29.11 per share and Apple’s stock at $570.56
per share. For each of the two stocks we selected 6 call option
chains and 6 put option chains. The options in these chains
expired in 23, 58, 86, 121, 149 and 240 days, respectively.
These were converted to years when implied volatilities were
computed, assuming 365 days a year. The interest rates
corresponded to each of the expiration dates were 0.2397%,

0.3458%, 0.4588%, 0.5754%, 0.6525% and 0.8559%. The
range of strike price for the Microsoft options were minimum
$13, maximum $47 and increment $1, and the range for the
Apple options were $135, $960 and $5, respectively. At the
time the data were collected no dividend information was
available for Apple’s stock, but Microsoft would pay out $0.2
at two future dates within the lifetime of the options that had
the longest expiration. The distances of the two days to May
23, 2012 were 0.231 and 0.481 years, respectively.

The tests were made on an Intel quad-core 3.4GHz Corei7-
2600 processor under Ubuntu Linux 10.10 64-bit version.
The programs were compiled by Intel C/C++ compiler
icpc 12.0 for Linux with -O3 and -ipo optimisations. The
compiled generator finished in 0.046 seconds in computing
the implied volatilities for the 154 Microsoft call options,
and in 0.045 seconds for the same number of Microsoft
put options. The runtimes in processing the 823 Apple call
and 823 Apple put options were 0.226 and 0.222 seconds,
respectively. The timing results were obtained by running the
generator using a single thread. In all the computations the
number of time steps was fixed to 121 in the LR binomial
pricing.

From the computed implied volatilities we generated plots.
Fig. 4 shows the plots for the volatility skews (4(a)-(d))
and the volatility term structure (4(e)-(h)). Fig. 5 shows
the surfaces which combine the volatility skew and term
structure.

Volatility skew describes the relationship between implied
volatility and strike price. The typical pattern for volatility
skew, as it is shown by the curves in Fig. 4(c), is that implied
volatility decreases as strike price increases. This means that
the volatilities used to price options of low strike prices (i.e.,
deep in-the-money calls and deep out-of-the-money puts) are
higher than that used to price options of high strike prices
(i.e., deep out-of-the-money calls and deep in-the-money
puts). Three curves are plotted in each of the figures 4(a)-
(d). They are for options expiring in 86, 121 and 149 days,
respectively.

The volatility term structure describes the relationship
between implied volatility and time to expiration. Implied
volatility tends to be increasing as time to expiration in-
creases when short-dated volatilities are historically low. This
is the situation demonstrated by the curves in figures 4(g)-
(h). Similarly, implied volatility tends to be decreasing as
time to expiration increases when short-dated volatilities are
historically high. This seems to be the situation described by
the solid-line curve in Fig. 4(e). The curves plotted in each
of the figures 4(e)-(h) are for options with different strike
prices.

VI. CONCLUSION

We have presented an implied volatility generator that
computes implied volatilities for exchange-traded call and
put options. We use the binomial method as the underlying
option pricing model and implemented it using the LR trees.
The pricing process handles multiple dollar cash dividends
by separating a stock’s price into a certain component and
an uncertain component. The certain component consists of
the discounted value of all cash dividends. The uncertain
component is the stock’s price less this certain component.
To price an option of the stock a LR tree is first built using
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(a) MSFT call volatility skew for different expirations. (b) MSFT put volatility skew for different expirations.

(c) AAPL call volatility skew for different expirations. (d) AAPL put volatility skew for different expirations.

(e) MSFT call volatility term structure for different strikes. (f) MSFT put volatility term structure for different strikes.

(g) AAPL call volatility term structure for different strikes. (h) AAPL put volatility term structure for different strikes.

Fig. 4: Volatility skew and term structure for MSFT and AAPL call and put options. The x-axes in (a)-(d) are labelled by strike price, and in (e)-(h) are
labelled by expiration date.
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the present value of the uncertain component as root and then
the discounted value of the dividends are added upon nodes
of the tree at appropriate time steps. The Brent’s algorithm
was used as the root-finding method.

Source code level optimisation techniques were applied
to the option pricing procedure to minimise its runtime.
Tests were made on options traded on stocks of Microsoft
Corporation and Apple Inc.. From the computed results
implied volatility skew, term structure and surface were
plotted and presented. Some of the plots confirm to the well-
known pattern for volatility skew or term structure.
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