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Abstract—In this paper a theoretical study was made of the 

electron Landé factor (g-factor) in self-assembled 

semiconductor quantum dots. Using two different models for 

the Rashba spin-orbit interaction (full three dimensional and 

"adiabatic" two dimensional) and previously proposed 

mapping method the impact of the spin-orbit interaction on the 

g-factor anisotropy has been investigated. The study is suited to 

clarify the important question of which approximation can 

explain and reproduce the build-in three dimensional 

anisotropy of the electron g-factor in semiconductor quantum 

dots. We theoretically show that the full three dimensional 

description is essential in g-factor simulations. The simulated 

magnitude of the electron g-factor and the factor anisotropy 

ratio are in a good agreement with the experimental 

observations. 

 

Index Terms—Quantum dot, Landé factor, spin-orbit 

interaction 

 

I. INTRODUCTION 

DVANCES in modern semiconductor technologies 

make it possible to produce semiconductor nano-

objects within a wide range of geometrical shapes and 

material parameters (quantum dots, nano-rings, quantum dot 

molecules, quantum dot posts, nano-rods, etc.), investigate 

their properties in details, and use them for various 

applications (see for instance [1]-[3] and references therein).  

Those nano-objects are thought to be very promising for 

practical use in optics [4], quantum information processing 

[5], nano-biology, nano-medicine [6], etc. Therefore, the 

knowledge database on the physical properties of 

semiconductor nano-sized objects with respect to their 

transport, magnetic and optical applications recently has 

increased considerably.  

Semiconductor quantum dots [1], [7], [8] are among the 

most promising candidates those can be used as building 

elements of quantum memory and quantum processors [9]. 

Selective manipulation of isolated and entangled spins is the 
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most important requirements to the realization of a spin 

qubit based quantum register. In this direction, electron spin 

control via the Landé g-factor modulation is thus highly 

desirable for the realization of individual qubits [10], [11]. 

Actually we can tune the magnetic response of the electrons 

confined in quantum dots (modifying the g-factor) by a 

proper engineering of the structure. Therefore, it is 

important to develop a microscopic understanding of how 

the material and geometrical parameters of the quantum dots 

influence the magnetic response of an individual electron 

confined in the dots. 

Under application of an external magnetic field B the 

degenerated electronic ground state splits due to the Zeeman 

effect into two states with energies E+ and E- (indexes  

refer to the electronic spin polarization along the magnetic 

field direction). For a moderate magnetic field the difference 

 = E+ - E-  increases linearly with B and the electron 

effective g-factor can be defined as: g=/BB (B is the 

Bohr magneton).  Among several phenomena known to affect 

g-factors for electrons confined in quantum dots the spin-

orbit interaction can play a significant role in the formation 

of the effective g-factor anisotropy. The spin-orbit 

interaction in III-V semiconductor self-assembled quantum 

dots is a result of the symmetry breaking and electron 

confinement as well. Within the envelop function 

approximation the spin-orbit interaction is introduced in the 

effective one electronic band Hamiltonian as the Rashba 

[12], [13] and Dresselhaus [14] terms. In general the 

anisotropy of the spin-orbit interaction leads to the 

anisotropic effective g-factor. The spin-orbit interaction in 

any forms is essentially three dimensional (3D) interaction 

which is presented by three non-coplanar vectors: the 

effective build-in (or external) electric field, electron 

momentum operator, and vector of the Pauli (spin) matrixes. 

Contrary to this fact, most of the one band simulations use 

only the two dimensional (2D) approximation (“adiabatic 

approximation” [15]) for the spin-orbit interaction  (see for 

instance [16]-[21] and references therein). However, the 

adiabatic approximation is relevant to a proposition 

(postulate) that the inherently 3D problem can be presented 

by a coupled quasi-separable 1D+2D problem. At the same 

time for relatively small nano-objects or nano-objects with 

rapid changes of their shape profiles the value of the 

accumulated error of this approximation cannot be clarified 

easily and it always requires for a special investigation [22]. 

In addition, the 2D approximation obviously needs specified 

direction and magnitude of the effective build-in (or 

external) electric field and cannot explain the build-in 3D 
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anisotropy of the electron g-factor in semiconductor 

quantum dots. 

In this paper, within the effective one electron band 

approximation and in the present of the Rashba spin-orbit 

interaction, we investigate theoretically the issue of the full 

3D description of the electron anisotropic g-factor in lens 

shaped semiconductor quantum dots of different sizes. 

Taking into account the spin-orbit interaction, lattice strain, 

and piezoelectric polarization we simulate the electron g-

factors and compare results with those obtained within the 

2D approximation for the spin-orbit interaction. Our 

simulation results clearly show that only the 3D description 

can lead to simulation results which are appropriate for 

experiments with small quantum dots. 

II. THEORETICAL MODEL 

A. Effective one electronic band Hamiltonian  

We describe single electron energy states in III-V 

embedded (into semiconductor matrix) semiconductor self-

assembled quantum dots in the presence of the external 

magnetic B and electric F fields using the effective one 

electronic band Hamiltonian [23], [24] including the Rashba 

spin-orbit interaction [13], [14], [25], 
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I2 is the identity matrix of size 2, r = (x,y,z) is the three-

dimensional radius vector, 
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is the momentum operator for electrons, r stands for the 

spatial gradient, A(r) is the vector potential of the magnetic 

field B = curl A, 
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are the electron energy and position dependent electron 

effective mass and the material Landé factor, 

 

 
     

1
2

2

Δ)(

12

2

3














rrrr
r

GGb EEm
P


 

 

mb(r) are the position dependent momentum matrix element 

and the electron effective mass at the bottom of the 

conducting band, EG(r) and (r) stand for the position 

dependent energy gap and the spin-orbit splitting in the 

valence band in the system, V(r) is the actual electronic 

confinement potential,   is the vector of the Pauli matrixes, 

m0 and e are the free electron mass and charge. Last item in 

(1) describes the Rashba spin-orbit interaction in the system 

within the full 3D description 

 

     Πσrr r  ˆ,Ĥ3D
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or the 2D approximation 
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correspondingly. The coefficients in (2) and (3) are defined 

according to [13], [14] and [25] as the following 
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We note that in the 2D approximation the electric field is 

restricted to be parallel to z-axis – the system growth 

direction (see Fig. 1). 

 

B. Effects of strain and piezoelectricity 

The actual confinement electronic potential V(r) should 

include three main components [1], [26]-[28]:  Vc(r) – 

quantum confinement part of the potential induced by the 

electronic band offset for the quantum dot, V(r) – the 

change of the electronic potential induced by the strain,  and 

Vp(r) – potential induced by the piezoelectric field. 

Therefore the potential can be written as  

 

       ,rrrr pc VVVV               (4) 

 

where the strain part in the linear theory is defined as 
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ac(r) stands for the position dependent conducting band 

hydrostatic deformation constant, and ij is a component of 

the strain tensor due to the lattice mismatch in the quantum 

dot structure. In addition the strain changes the effective 

position dependent band gap in the dot: 
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where aG(r) is the position dependent band gap hydrostatic 

deformation constant. 

The piezoelectric potential can be obtained by solving the 

following Poisson equation [27], [28]: 
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where  
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is the polarization induced by strain field,  (r) and e14(r) 

stand for the position dependent relative permittivity and 

piezoelectric constant, and 0 is the vacuum permittivity. 

The strain tensor’s components in equilibrium can be 

obtained by solving the load free Navier’s equations for the 

stress tensor  [29]: 
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where in the linear theory the stress ij and ij strain tensors 

components are constitutively connected by: 
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and Cij;kl(r) are position dependent compliances of the 

semiconductor materials. For the case of III-V cubic crystal 

semiconductors Cij;kl(r) is presented by the parameters 

C11(r), C12(r), and C44(r) [27], [29]. The system lattice 

mismatch is given by 
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in the dot and zero otherwise (aM and aD stand for the 

material lattice constants in the semiconductor matrix and 

dot correspondingly). 

 

C. Mapping of the system parameters  

To obtain coherent and comprehensive description of all 

position dependent geometrical and material parameters 

introduced above we map realistic geometry of quantum dots 

on the smooth three dimensional quantum confinement 

potential [30]-[32]. First we assume that a self-assembled 

lens shaped quantum dot was grown starting from a flat 

substrate parallel to the x-y plane and we can model the dot’s 

shape profile by a function h(x,y). The function reproduces 

the local dot’s height (along the z direction) at the actual 

position on the x-y plane. For a lens-shaped circular quantum 

dot (see Fig. 1) we can present this function as 
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RB and h0 are the dot's base radius and maximal height. 

The three-dimensional smooth quantum confinement 

potential for electrons Vc(r) in the quantum dot can be 

obtained by the composition- and geometry dependent 

profile of the local conducting band offset: 
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In this expression, T(x) = tanh(x), Ec = Ec,out - Ec,in is the 

overall conducting band offset between the inner and outer 

semiconductor materials in the quantum dot heterostructure, 

and subscripts “in” and “out” denote the actual material 

parameters ( the conducting band bottom energy) inside and 

outside the dot. The slope and range (the degree of 

smoothness) of the potential change at the boundaries of the 

dot are controlled by a parameter a. The expression (8) 

obviously describes a three-dimensional hard wall potential 

when a  0. The three-dimensional confinement potential 

(8) reflects in a very obvious and natural way the smooth 

variations of the material parameters across the boundaries 

of the dot [see Figs. 2(a) and 2(b)]. 

Using (8) we define the mapping function  
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This function accumulates information about the dot shape 

and local material content of the system. Now we can 

present all position dependent geometrical and material 

parameters in (1)-(6) as the following 

     
Fig.1.  Embedded lens shaped quantum dot. 
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where D refers to an appropriate parameter from the set {mb, 

EG, , ac, aG, , e14, Cij, aD, Ec }. After substituting all the 

parameters the system of the non-linear equations (1)-(6) has 

to be solved numerically. 

III. SIMULATION RESULTS AND DISCUSSION 

To simulate the g-factor of an electron confined in self-

assembled semiconductor lens shaped quantum dots we 

adopt realistic geometry [33] and material parameters for 

InxGa1-xAs/GaAs nano-structures [26]-[28], [34]. All 

relevant input material parameters has been collected in 

Table I. We consider two In0.6Ga0.4As quantum dots of 

different sizes embedded into GaAs matrix (see Fig 1): D1 – 

h0 =1.7 nm, RB = 10 nm; D2 - h0 = 4 nm, RB = 20 nm.  

 

 
 

The mapped quantum confinement potentials for electrons 

in our quantum dots are shown in Fig. 2 in their projections 

onto the x-z-plane. The potentials carefully reproduce all 

known three-dimensional experimental geometry and 

composition data in our system. 

 

 

For an electronic state confined in the quantum dot the wave 

function is presented by the two component spinor 
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where n stands for the main quantum number,  refers to 

the spin polarization. The envelop wave functions Fn, 

should satisfy the Schrödinger equation 
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The Hamiltonian (1) incorporated with equations (4)-(9)) 

is taken separately for two different types of the spin-orbit 

interaction: 3D which is defined by (2) and 2D which is 

defined by (3). The energy of the electron ground states with 

different spin polarizations are obtained numerically from 

self-consistent solutions of the full three-dimensional 

eigenvalue problem (10). We use the nonlinear iterative 

method [35] and the COMSOL finite element analysis, 

solver, and simulation software [36]. 

Using the ground state energy for different spin 

polarization E0,  we calculate the diagonal components of 

the electron g-factor tensor gi = gii (i=x,y,z) and the factor 

anisotropy ratio P = (gx-gz)/(gx+gz) for D1 and D2 dots (for 

P the absolute values of the electron g-factor components 

are used to emphasize deviations from isotropy). 

 

 

According to our simulation results without the Rashba 

spin-orbit interaction and external electric fields the electron 

g-factor for the small dot  D1 has the value of -0.463 with 

P0. For the dot D2 the g-factor has the value of -1.617 with 

P0 as well. The situation changes drastically when we 

impose the Rashba term into our Hamiltonian (without 

TABLE I 

MATERIAL PARAMETERS  

Parame

ter 
InAs GaAs 

mb 0.023 m0 0.067 m0 

EG 0.420 eV 1.519 eV 

 0.390 eV 0.341 eV 

ac -5.080 eV -8.013 eV  

aG -6.080 eV -8.233 eV 

 14.55 13.13 

e14 -0.045 C/m2 -0.16 C/m2 

C11 83.3 GPa 118.8 GPa 

C12 45.3 GPa 53.8 GPa 

C44 39.6 GPa 59.4 GPa 

aM(D) 6.0553 A 5.6503 A 

Ec -0.77 eV 0 eV 

Material constant Din(out) for InxGa1-xAs compound are obtained 

according to: Dx = xDInAs + (1-x)DGaAs [27]. 

x(nm)

z(nm)

x(nm)

z(nm)

V(eV)V(eV)

 
Fig. 2.  Projections of the electronic quantum confinement potential on 

(x,0,z) plane. (a) small dot – D1 and (b) large dot D2. 
 

Fig. 3.  Anisotropy ratio vs external electric field (obtained within 3D and 

2D descriptions for the Rashba spin-orbit interaction). (a) small dot – D1 

and (b) large dot - D2.  

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013



 

 

 

external electric fields). Using the full 3D description (2) we 

obtain in this case gx = -0.482, gz = -0.457, and P=2.8% for 

D1, and gx = -1.635, gz = -1.457, and P=1.95% for D2. At 

the same time the use of the 2D model (3) for the Rashba 

spin-orbit interaction leads to the same g-factors and P like 

they are without the spin-orbit interaction. 

We should note that for the D1 quantum dot the values of 

g-factor components and P obtained in our simulation within 

the full 3D description (2) are close to those discovered 

experimentally in [37]. 

When an external electric field F is applied along the 

system z-direction, the 2D model (3) of the Rashba spin-

orbit interaction can generate some changes in the g-factor 

components and can stimulate very modest anisotropy in the 

magnetic response of the system. In Fig. 3 we show that for 

the 2D model (3) the g-factor anisotropy can reach 

measurable values only for relatively large external electric 

fields both for the small and large dots. At the same time 

within the full 3D description (2) for the small and large 

quantum dots the electron g-factor anisotropy is gradually 

growing with increase of the electric field magnitude. 

IV. CONCLUSION 

In conclusion, using the effective one electronic band 

Hamiltonian, two different models for Rashba spin-orbit 

interaction (full 3D and "adiabatic" 2D), and mapping 

method we simulated the electron g-factors in small self-

assembled semiconductor lens shaped quantum dots. Lattice 

strain, piezoelectric polarization, and external electric fields 

were taking into account. In this paper we obtained the g-

factor components and the factor anisotropy ratio for two 

InxGa1-xAs/GaAs quantum dots of different sizes. We argued 

that the commonly used two dimensional 2D approximation 

cannot explain the build-in 3D anisotropy of the electron g-

factor in semiconductor quantum dots without external 

electric fields. Only the full 3D description for the Rashba 

spin-orbit interaction can lead to reasonable simulation 

results. At the same time external electric fields of relatively 

large magnitudes can stimulate and enhance anisotropy in 

the electronic magnetic response of the quantum dots. 

We should note that, using our full 3D description, we are 

able to obtain the electron g-factor components and the 

factor anisotropy ratio in good agreement with the 

experimental observations. 

Our computational approach can be applied for the 

realistic modeling of selective manipulations of isolated and 

entangled spins in semiconductor quantum dots. This can be 

potentially useful for further fabrication of nano-system with 

principally new magnetic properties. 
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