
 

  
Abstract—Arrays of nanopillars subjected to uniaxial 

microcompression reveal the potential applicability of 
nanopillars as components for the fabrication of electro-
mechanical sense devices. Thus, it is worth to analyse the 
failure progress in such systems of pillars. Specifically, we 
analyze the relations between numbers of crashed pillars and 
an external load  in longitudinally loaded arrays of 
nanopillars. Under the growing load pillars’ destruction forms 
an avalanche and when the load exceeds a certain critical 
value the avalanche becomes self-sustained until the system is 
completely destroyed. We explore the distributions of such 
catastrophic avalanches appearing in overloaded systems. 
 

Index Terms—Avalanches, explosive instabilities, 
nanopillars, distributions of catastrophic avalanches 
 

I. INTRODUCTION 
VALANCHES are phenomena on different length scales 
encountered in an ample set of complex systems. 

Examples involve magnetic avalanches progressed through 
tiny crystals, mass movements of geological materials 
forming rock, sand or snow avalanches as well as fires 
destroying huge forests. Their presence is not limited to 
natural science or technology. Avalanches are reported, e.g. 
in the world of economy where the stock marked crashes 
evolve as an explosive instability. Such instabilities are 
commonly present in sand and snow avalanches, 
earthquakes, nuclear chain reactions as well as in damage 
evolutions of mechanical systems [1], [2]. They appear 
when a  small increase in the external load excludes an 
element from the working community in such a way that 
this exclusion alters the internal load pattern sufficiently to 
trigger the rupture of the other elements and, in 
consequence, provoking a wave of destruction. 

Avalanches also appear in mechanical systems formed by 
an ensemble of small pieces, as e.g. in a set of pillars 
assembled perpendicularly to a flat substrate [3]. Such 
arrangement is applied in systems of micromechanical 
sensors. Our work is motivated by uniaxial tensile and 
compressive experiments on nano- and microscale metallic 
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pillars that confirm substantial strength increase via the 
size reduction of the sample [4]. Especially the studies on 
arrays of free-standing nanopillars subjected to uniaxial 
microcompression reveal the potential applicability of 
nanopillars as components for the fabrication of micro- and 
nano-electromechanical systems, micro-actuators or 
optoelectronic devices [5], [6]. For this reason it is worth 
analyzing the evolution of mechanical destruction within an 
array of nano-sized pillars. We simulate failure by 
accumulation of pillars crushed under the influence of an 
axial load. The stepwise increasing load causes the 
progressive damage of the system in an avalanche-like 
manner. When the load on a pillar exceeds the threshold 
the pillar crashes and its load has to be redistributed among 
the other pillars and carried by them. In this context, an 
important issue concerns the so-called load sharing rules 
because the behaviour of a system depends on them.  

Typically, the avalanche statistical characteristics are 
immersed in the distribution D(∆) of burst lengths ∆ being 
the number of events triggered by the single failure. We 
compute D(∆) for different load sharing protocols and 
report the results of statistical analysis of the system 
destruction. 
 

II. MATHEMATICAL MODEL 
Ruptured parts of mechanisms are encountered in 

virtually all kind of devices. They cause machine  
malfunction and are dangerous for users. Thus, the 
knowledge of the fracture evolution as well as its effective 
description represent an important issue in material science 
and technology. 

Our example system is an array of nanopillars [3], [6]. A 
schematic view of such array is presented in Fig. 1. 

 
 
Fig. 1. Schematic view of an array of N=10×10 nano-sized pillars. 
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A. Load Transfer Rules 
The pillars are treated as fibres in the framework of a 

Fibre Bundle Model (FBM) [2], [7]-[15]. FBM is a transfer 
load model. In a static FBM, a set of N  pillars is located in 
the nodes of the supporting lattice. Due to various defects 
during fabrication the pillar-strength-thresholds are 
quenched random variables. 

The set of elements is subjected to an external load that is 
increased quasi-statically. After a pillar breakdown, its load 
is transferred to the other intact elements and, as a 
consequence, the probability of subsequent failure 
increases. Among several load transfer rules there are two 
extreme schemes: global load sharing (GLS) – the load is 
equally redistributed to all the remaining elements and 
local load sharing (LLS) – the load is transferred only to 
the neighbouring elements [2]. The GLS model being a 
mean-field approximation with long-range interactions 
among the elements can be solved analytically. In the case 
of the LLS rule the distribution of load is not homogenous 
and regions of stress accumulation appear throughout the 
system. This gives severe problems for analytical treatment 
and one has to answer the questions by means of numerical 
simulations.  

Load redistribution in free-standing pillars should be 
placed somewhere in between the LLS and the GLS rules. 
For this reason we employ an approach based on Voronoi 
polygons which merges the GLS and LLS rules. The extra 
load is equally redistributed among the elements lying 
inside the Voronoi regions generated by a group of 
elements destroyed within an interval of time taken to be 
the time step. We call this load transfer rule Voronoi load 
sharing (VLS) [16]. 

Voronoi polygons are one of the most fundamental and 
useful constructs defined by irregular lattices [17]. For set 

{ }Nxxx ,...,, 21=X  of N  distinct points in 2R⊂Ω , 

the Voronoi tessellation is the partition of Ω  into N  
polygons denoted by iV∆ . Each iV∆  is defined as the set 

of points which are closer to ix  than to any points in X . 
In Fig. 2, an example of Voronoi polygons is shown in the 
case of square array of pillars under the load. 

 

 
Fig. 2. The Voronoi polygons for a set of square-shaped pillars: white squares-
intact pillars, black squares-previously destroyed pillars and shaded squares-
just damaged pillars. 
 

All of the Voronoi regions are convex polygons. Each 
polygon is defined by the lines that bisect the lines between 

the central point and its neighboring points. The bisecting 
lines and the connection lines are perpendicular to each 
other. Using this rule for every point in the area yields this 
area completely covered by the adjacent polygons 
representing pillars. 

Numbers of intact elements inside of Voronoi regions 
vary randomly and this is the source of supplemental 
stochasticity in the model. It is worth mentioning that an 
approach based on the Voronoi tessellation was used for the 
failure analysis of quasi-brittle materials and fibre-
reinforced brittle-matrix composites [18].  
  

B. Loading of the System 
At the beginning of the damage process all the pillars are 

intact. Then the system is loaded in a quasi-static way by a 
longitudinal external force F gently growing from its initial 
value 0F = . More precisely, the system is uniformly 
loaded until the weakest intact pillar fails and then the 
increase of  load stops. After this failure the load dropped 
by the damaged pillar has to be redistributed to the intact 
pillars according to a given transfer rule. The increased 
stress on the intact pillars may give rise to other failures, 
after which the load transfer from the destroyed elements 
may cause subsequent failures. If the load transfer does not 
trigger further failures there is a stable configuration and 
external load F has to be increased with a small amount, 
just to provoke damage of the subsequent weakest intact 
pillar. By that means a single failure induced by the load 
increment can cause an entire avalanche of failures. The 
above described procedure is repeated until the system 
completely fails. In the quasi-static approach the force F is 
the control parameter of the model. 

 

III. STATISTICS OF CATASTROPHIC AVALANCHES  
During the loading process, cascades of simultaneous 

crashes of several pillars appear. These ruptures resemble 
avalanches occurring in snow or sands movement. Hence, 
we consider the avalanche of size ∆  being the number of 
damaged pillars under an equal external load and the 
distribution ( )D ∆  of the magnitude of such crashed-pillars 
avalanches is the main characteristics in our work. We also 
examine the maximum load per pillar that the array of 
pillars can bear. 

The first problem we consider is the distribution of ∆ . It 
is known that under the GLS rule ( )D ∆  can be expressed 
in a power law form 
 

( ) , 5 / 2D τ τ−∆ ∝ ∆ = .              (1) 
 

The mean filed exponent 5 / 2τ =  is presumably 
independent of disorder distribution with the only exception 
for those distributions which allow unbreakable elements 
[19]. This 5/2 power law is valid when all avalanches are 
considered, i.e. it is a global exponent. If we trace the 
avalanches close to the critical breakdown of the system a 
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crossover from 5/2 to 3/2 emerges in (1) [9]. Fig. 3 shows 
the distribution of the critical avalanche developed in the 
array of 50 50×  pillars with the GLS rule. The results are 
averaged over 510  independent samples. 
  

 
Fig. 3. The catastrophic avalanche size distribution for 50 50× pillars loaded 
quasi statically. The GLS rule was applied. The dashed line represents the 
power law obtained analytically [9]. 
 
Fig. 4 presents the behaviour of the mean value of the 
critical avalanche normalized by the system size. 
 

( )2/ / log / logfa N a N b N c∆ = − + ,       (2) 

 
where: 1.591a ≈ , 1.726b =  and 0.944c = . 

 

 
Fig. 4. The mean scaled size of the catastrophic avalanche vs. N . The LLS 
rule is applied and N is the number of pillars. The dashed line is drawn using 
(2) and it is only visual guide. The simulation results are based on 410  
samples. 
 

A critical avalanche is in fact a cascade of so-called 
inclusive avalanches [21]. Here, an inclusive avalanche is 
the number of crashed pillars per step stress redistribution. 
We have performed the simulations on arrays of different 
sizes with the GLS and the VLS rules. The resulting 
distributions of inclusive avalanches are presented in Fig. 5 
and Fig. 6, for the GLS and the VLS rules, respectively. In 
the case of the VLS rule we observe a strong departure of 
the distribution from the power law form.  

 

IV. SIZE-DEPENDENT SYSTEM YIELD 
Each avalanche is triggered by the external load 

increment and thus, the avalanche is the number of destroy-  

 
Fig. 5. Rescaled inclusive avalanche size distribution for the system with the 
GLS rule. Different system sizes are compared; from top to bottom: the array 
of 20 20N = × , 30 30× , 50 50× and 100 100× pillars. The scaling parameter 

fa∆ is the size of the catastrophic avalanche.  

 
 

 
Fig. 6. Rescaled inclusive avalanche size distribution for the system with the 
VLS rule. Different system sizes are compared; from top to bottom: the array 
of 20 20N = × , 30 30× , 40 40× and 50 50× pillars. The scaling parameter 

fa∆ is the mean size of the corresponding catastrophic avalanche.  

 
ed pillars between two consecutive load increments. We 
have found numerically, for different system size, the 
critical load which causes a complete breakdown of the 
system, i.e. the value cF  that triggers the catastrophic 
avalanche. This value is a bit greater that the maximum 
load maxF  that the set of pillars can sustain. In one 
dimension, under the LLS rule, the best known estimate for 

maxF  is given by [12]  
 

max
2~
ln

NF
N

 .                 (3) 

 
According to (3), the load safely carried by the system 

instead of being proportional to the number of pillars is 
tempered by the factor 2 / ln N . This scaling results from 
the growing probability of finding the weak pillars that 
initiate a fatal avalanche when the number of pillars 
increases. 

In two dimensions, within the LLS rule, we have found 
numerically that the mean value of cF  can be nicely fitted 
by the following formula 
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( )ln
c

NF
d N δ=                 (4) 

  
with 2.413d =  and 0.414δ = . The corresponding mean 

critical stress /c cF Nσ =  is presented in Fig. 7. 
 

 
Fig. 7. Mean critical stress supported by the two dimensional array of 
nanopillars vs. N . The LLS rule is applied and N is the number of pillars. 
The dashed line is drawn in accordance with (4). 
 

V. CONCLUSION 
In this paper, we have analyzed the statistics of 

avalanches during the failure process in longitudinally 
loaded arrays of nano-sized pillars with statistically 
distributed thresholds for breakdown of an individual pillar. 
We have found numerically the estimate for the maximum 
force cF  that a two dimensional set of pillars can support 
before the failure of the entire system. When an extra load 
caused by a pillar crash is taken up by its closest intact 
pillars, i.e. under the LLS rule, the expected maximum load 
scales as ( )~ lncF N N δ− , with the exponent 0.414δ = . A 
similar dependence, but with 1δ = , was found in the model 
of linearly ordered fibres [12]. It is in contrast to the scaling 

~cF N  valid under the GLS rule. Based on computer 
simulations, we have constructed an approximate average 
length fa∆  of the critical avalanche: within the LLS rule 

/fa N∆  behaves as a quadratic function of 1/ ln N . We 

have also found that the load sharing rule based on the 
Voronoi tessellations concept, the VLS protocol, forces a 
strong departure of the avalanche size distribution from the 
power law form. 
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