
 

 
Abstract—An operon is the basic unit of transcription. The 

structural gene in the operon is co-transcribed into 
single-stranded mRNA sequence, and thus operons contribute 
to the understanding of transcription rules. However, 
experimental methods for detecting operons are extremely 
difficult and time-consuming to execute, thus using operon 
prediction as pre-treatment can greatly reduce the cost of 
performing an experimental assay.  Scholars used different 
algorithms with biological properties to predict genome 
operons distributions. In this study, we employ a differential 
evolution algorithm with three biological properties to predict 
the operons of bacterial genomes. Three biological properties of 
the Escherichia coli genome are used: the intergenic distance, 
the metabolic pathway and the cluster of orthologous groups 
(COG); these properties are used to train the evaluation 
standards of the fitness function of gene pairs. Then the 
accuracy (ACC), sensitivity (SN) and specificity (SP) of four b 
acterial genomes are calculated to evaluate the prediction 
method. The experimental results show that the accurauy 
values for the four genomes were 0.923, 0.954, 0.963 and 0.963, 
respectively. A comparison with other methods in the other 
literature is proves that our method can effectively be used for 
operon prediction. 
 
Index Terms—operon prediction, Differential Evolution, 
intergenic distance, metabolic pathway, cluster of orthologous 
groups. 
 

I.    INTRODUCTION  

N prokaryotic organisms operons of bacterial genomes 
contain valuable information, for drug design and protein 

functions. An operon contains a promoter, an operator, one or 
more continuously-structural gene, and a terminator. The 
structural gene is co-transcribed into a single strand of 
mRNA, which provides information that is translated into 
proteins. However, experimental methods for detecting 
operons are extremely difficult and time-consuming [1] thus 
raising the urgency of developing an effective prediction 
method. This research focuses on using machine learning and 
biological properties for operon prediction. Since the 
co-transcribed genes have the same biological properties, 
machine learning can be applied to these biological 
properties for operon prediction. The prediction results of an 
assay can be used as reference data, thus greatly reducing 
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costs and improving the effectiveness of experimental 
detection. 

In recent years, several properties have been proposed in 
studies to infer prokaryote operon structures, namely 
intergenic distance, conserved gene clusters, functional 
relations, genome sequence-based, and experimental 
evidence [2]. Genome sequence-based promoters and 
terminators are most commonly used for operon prediction 
for these five properties [3], with intergenic distance being 
the simplest to predict. It is widely used in operon prediction 
because the distance between operon pairs (i.e., adjacent 
genes within a single operon) is significantly less than the 
distance between non-operon pairs (i.e., adjacent genes 
within different operons), thus intergenic distance on its own 
can yield good operon prediction results [2]. Since genes in 
the same operon often show similar functional relations, this 
property also provide good prediction results. Metabolic 
pathways [4], clusters of orthologous groups [5], and gene 
ontologies [3] are also often used for operon prediction. 

Operon prediction methods proposed in recent years 
include hidden Markov models [6], support vector machines 
[7], probabilistic learning [8], Bayesian networks [9], fuzzy 
guided genetic algorithms [1], and genetic algorithms. This 
study uses the differential evolution of an optimization 
algorithm to predict operons. The Escherichia coli 
(NC_000913) genome was used to train the fitness value of a 
gene pair, and accuracy testing was conducted using four test 
data sets. The fitness function evaluation standard was based 
on the intergenic distance, the metabolic pathway and the 
cluster of orthologous groups (COG) of the E. coli genome, 
and the log-likelihood [10] was used to assess the scores of 
three biological properties. 

We propose a simple and highly accurate computational 
method for operon prediction. We used the direction and 
distance between adjacent genes to encode chromosomes 
during the initialization process, and considered the 
relationship of adjacent and nearby genes in the iterative 
process. Continuous iterations can results in a operon 
combination We tested our method on the B. subtilis 
(NC_000964), P. aeruginosa PA01 (NC_002516), S. aureus 
(NC_002952) and M. tuberculosis (NC_000962) genomes. 
Experimental results on the four test data sets indicate that the 
proposed method obtained higher levels of accuracy, 
sensitivity, and specificity than can be obtained from other 
methods from the literature. 

  

II. METHODOLOGY 

A.   Training score based on biological properties 

In this study, the E. coli genome is used to train various 
property scores. Accuracy tests are then conducted on the 
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testing data genomes by further dividing the training data set 
to estimate prediction accuracy during the search. Predictors 
are easier to build for  large data sets like the E. coli genome. 
We applied three biological properties for operon prediction: 
the intergenic distance, the metabolic pathway and the cluster 
of orthologous groups (COG). These three properties for the 
E. coli genome were used to assess the possibility of an 
assumed operon, with assessment scores calculated by the 
log-likelihood method. The properties and score assessment 
method are introduced below. 

 
1) Intergenic Distance 

Adjacent genes within the same operon are usually 
characterized by short distances, and adjacent genes may 
sometimes even overlap. Hence a short intergenic distance 
indicates that genes are more likely to be located in the same 
operon. [11]. Yan and Moult [12] further proposed that the 
distance distribution frequency of non-operon pairs increases 
with distance, and gradually becomes higher than the 
frequency of operon pairs. We chose this feature as an 
evaluation criterion. The log-likelihood method for the scores 
is given in Eq.1: 
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where NWO(distance) and NTUB(distance) respectively 
correspond to genes with the same characteristics on the 
number of WO and TUB pairs. TNWO and TNTUB are the total 
pair numbers of WO and TUB, respectively. Table I shows 
the score of each interval of the E. coli genome, each of 
which is based on 10bps [13]. The table shows that, if the 
distance between a gene pair is -4 bps, the score of the gene 
pair is 2.22656. It also shows that the short distances between 
gene pairs often obtain higher scores. 
 

2) Metabolic Pathway 
Genes within an operon often participate in the same 

biological process [7] and co-transcribed genes often share 
the same properties and functional relations. Therefore, this 
property can also be used to predict whether a gene pair is 
located in the same operon. Using Eq.1 to calculate the gene 
pair score of metabolic pathways based on the E. coli genome 
shows that, if the adjacent gene has the same metabolic 
pathway, the gene pair has a score of 2.671; otherwise the 
score is 0. 

 
3) Cluster of Orthologous Groups 

The Cluster of Orthologous Groups (COG) contains three 
levels biological functions; each level can be subdivided into 
several functional categories. The first level is divided into 
four main categories, namely (1) information storage and 
processing, (2) cellular processing and signaling, (3) 
metabolism and (4) different COG categories. We use Eq.1 to 
calculate the scores of categories (1), (2) and (3) of the first 
level. Gene pairs have a score for one of these three 
categories when the gene pair shares the same categories. If 
the gene pair belongs to different COG categories, the score 
of this category is calculated with Eq.2. Table 2 shows the 
training scores of this property. 
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B. Differential Evolution 

The differential evolution algorithm (DE) was proposed by 
Storn and Price in 1995 [14] and has been shown to have 
superior  solving  ability. The DE algorithm is similar to the 
genetic algorithm (GA) and particle swarm optimization 
(PSO); all are optimized algorithms. The differential evolution  

 
TABLE I 

INTERVALS OF INTERGENIC DISTANCE USING THE LOGARITHMIC LIKELIHOOD METHOD FOR E. COLI GENOME 

Interval Score Interval Score Interval Score 

[ - , -99] -0.82457 [30, 39] 0.568643 [170, 179] -1.83357 

[-100, -91] 0.00000 [40, 49] -0.67375 [180, 189] -1.98772 

[-90, -81] 1.478014 [50, 59] -0.52852 [190, 199] -1.51772 

[-80, -71] 0.00000 [60, 69] -0.43437 [200, 209] -2.35497 

[-70, -61] -0.31375 [70, 79] -0.6435 [210, 219] -1.98772 

[-60, -51] 0.00000 [80, 89] -0.6322 [220, 229] -3.4918 

[-50, -41] 0.533552 [90, 99] -0.55887 [230, 239] -2.23556 

[-40, -31] -0.22673 [100, 109] -1.48787 [240, 249] -2.25966 

[-30, -21] 0.379401 [110, 119] -1.15683 [250, 259] -2.79865 

[-20, -11] 2.019145 [120, 129] -1.43768 [260, 269] 0.00000 

[-10, -1] 2.22656 [130, 139] -1.84221 [270, 279] -3.33417 

[0, 9] 2.2105 [140, 149] -2.66512 [280, 289] -2.1329 

[10, 19] 2.340637 [150, 159] -1.80384 [290, 299] -2.83947 

[20, 29] 1.564274 [160, 169] -1.78965 [300,  ] -2.96611 

 
TABLE II 

FREQUENCIES OF ADJACENT PAIRS FOR DIFFERENT COG FUNCTIONAL CATEGORIES AND THEIR SCORES IN THE E. COLI GENOME 

COG main categories of the first level OP pairs frequency NOP pairs frequency Score 

Information storage and processing 0.046 0.018 0.9360 
Cellular processing and signaling 0.105 0.023 1.4996 
Metabolism 0.271 0.085 1.1543 
Different COG categories 0.579 0.873 -0.4112 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013



 

algorithm (GA) and particle swarm optimization (PSO); all 
are optimized algorithms. The differential evolution algorithm 
includes three steps: mutation, recombination and selection. 
In selection, DE uses a one-to-one elimination mechanism to 
update the chromosome, which is similar to the recording of 
the best experience in PSO. DE considers the correlation 
between multiple variables; this coupling has an advantage 
over PSO. The differential evolution algorithm has superior 
random searching performance and simple parameter settings, 
leading it to be widely used in various fields including data 
mining, electronic engineering and decision support. Below, 
the several DE processes are introduced, including (1) 
Chromosome encoding, (2) Initialization, (3) Fitness 
evaluation, (4) Mutation, (5) Recombination and (6) 
selection. 

 
1)   Chromosome encoding  

To evaluate prediction accuracy, we must first define the 
adjacent gene pair for operon prediction. Adjacent genes in 
the same operon are called operon pairs (OP) and are positive. 
If an operon contains only a single gene or if it contains an 
adjacent gene within a different operon is called a 
non-operon pair (NOP) and the gene pair is negative. If we 
assume an adjacent gene within the same operon, then the 
upstream gene of the adjacent gene will be coded 1. On the 
other hand, if the gene is coded 0, the gene and downstream 
gene are assumed to be NOP. For example, coding the 
chromosome xi = (1, 1, 0, 0, 1, 0) indicates the assumption 
that gene1, Gene2 and Gene3 are located in the same operon; 
Gene4 is a single-gene operon; Gene5 and Gene6 belong to a 
single operon. 
 
2)   Initialization 

The initialization process is divided into two steps. In the 
first step the preferred initial solution is obtained and, in the 
second step the execution of the DE algorithm is facilitated. 
As shown in Fig. 1, in the first step we use the direction and 
distance of adjacent genes to generate a binary coding and 
randomly generate a threshold for each chromosome between 
from 0-600bps [1]. The distance is calculated by Eq.3 [15]. If 
the distance of the adjacent gene is greater than the random 
threshold value and the adjacent gene has the same direction, 
the upstream gene is encoded as 1 (such as Gene1); Gene2 is 
encoded as 0 because the distance between Gene2 and Gene3 
is exceeds the threshold. Genen is encoded 0 because it is the 
last gene in the genome. In the second step, we divide the 
binary sequence into a plurality of 8-bit snippets, and convert 
these 8-bit binary sequences into decimal sequences to finish 
encoding the chromosome. 

 

 
Fig 1. Diagram of binary sequence 

 
 1distance 12  _finishGene_startGene  (3) 

 
where Gene1_finish is the base end position of the upstream 
gene, and Gene2_start is the base start position of the 
downstream gene. 
 
3)   Fitness evaluation 

In this study, we converted the decimal chromosome 
encoding of DE into binary encoding for assessment, and 
used intergenic distance, metabolic pathway and COG gene 
properties to calculate the fitness value. By using the training 
scores of the E. coli genome to obtain the overall pair-score 
of the adjacent genes, Eq. 4 is used to calculate the fitness 
value of the cth putative operon. 
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where m and n are the total number of genes and gene pairs in 
the operonth, respectively. Finally, the fitness value of a 
chromosome is calculated as the sum of the fitness values 
from all putative operons in the chromosome as follows: 
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where c is the number of operons in the particle. 
 
4)  Mutation 

In DE, each chromosome (Target vector, Xi,G) randomly 
selects three variable vectors (Xr1,G, Xr2,G and Xr3,G) from the 
chromosome group, and uses Eq. 6 to combine the three 
variable vectors into a donor vector (Vi,G+1). In Eq.6, F is a 
scale factor which controls the length of the exploration 
vector (Xr2,G − Xr3,G). 

 
Vi,G+1 = Xr1,G + F(Xr2,G − Xr3,G) (6) 
 

where i is the target chromosome; G is the number of 
generations. 
 
5)  Recombination 

When the donor vector has been generated by mutation, 
the target vector (Xj,i,G) and donor vector (Vj,i,G) is exchanged 
by crossover rate (CR), and thus generated ui,G+1 (trial vector 
or final offspring) by Eq.7. 
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where rand is a random number between 0 and 1; j is the 
dimension of the chromosome i under examination. 
 
6)  Selection 

The resulting ui,G+1 is evaluated following a one-by-one 
spawning strategy, such as Eq. 8. ui,G+1 replaces xi when f 
(ui,G+1) ≤ f (Xi,G); otherwise, replacement does not occur. 
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C.   Parameter settings 

In this study, the parameter value for the population 
number P is 20, the iteration number G is 100, the scale factor 
(F) is 0.5, the crossover rate (CR) is 0.5, and the initialization 
thresholds are between 0 and 600 bps. 

 

III.  EXPERIMENTAL RESULTS AND DISCUSSIONS 

A.   Data sets 

In the study, experimental data sets consisted of the E. coli, 
B. subtilis, P. aeruginosa PA01, S. aureus and M. 
tuberculosis genomes; the data sets respectively contain 4430, 
4160, 5566, 2656 and 3988 genes, respectively. All 
experimental data and annotated genes can be downloaded 
from the GenBank database (http://www.ncbi.nlm.nih.gov/). 
The data records the definition, name, number, start position, 
end position, direction, and product names of each gene. We 
obrained the experimental operon data of the E. coli and B. 
subtilis genome form the OperonDB [15] and DBTBS 
(http://dbtbs.hgc.jp/) [16] databases; and the operon data of 
the P. aeruginosa PA01 genome, S. aureus and M. 
tuberculosis genome from the ODB 
(http://odb.kuicr.kyoto-u.ac.jp/) [17]. The genome’s 
metabolic pathway and COG were obtained from KEGG 
(http://www.genome.ad.jp/kegg/pathway.html) and NCBI 
(http://www.ncbi. nlm.nih.gov/COG/). 

 

B. Performance measurement 

Tables III and IV show the medical diagnostics assessment 
methods. TP and FP represent true and false positives, and 
TN and FN represent true and false negatives. Table III is 
used to calculate the sensitivity (SN), specificity (SP) and 
accuracy (ACC) [16]. If, for example, a gene sequence is 

encoded as 111010, our prediction result is 110110. Gene1, 
Gene2 and Gene5 are TP, Gene3 is FN, Gene4 is FP, and 
Gene6 is TN. Finally, the sensitivity, specificity and accuracy 
are calculated using the equations in Table VI and are 
compared with results obtained by the other methods. It 
should be noted that the proposed method achieved a good 
balance between sensitivity and specificity. 

 
TABLE III 

THE POSITIVE AND NEGATIVE EVALUATION 

True

Prediction 
Positive Negative 

Positive TP FP 

Negative FN TN 

 
TABLE VI 

EVALUATION METHOD FOR OPERON PREDICTION 

Value to be estimated Equation for estimation 

Sensitivity TP/(TP+FN) 

Specificity TN/(FP+TN) 

Accuracy (TP+TN)/(TP+FP+TN+FN) 

 

C.   Prediction results 

We use the DE algorithm to identify the highest 
probability of operon combinations in a gene sequence, and 
compare the result with the experimentally verified operons 
to calculate TP, FN, TN, and FP and evaluate accuracy, 
sensitivity, and specificity. The results, shown in Table V, are 
compared to those of the other methods. The proposed 
method obtains accuracy values of 0.907, 0.954, 0.954 and 
0.954, respectively, for the B. subtilis, P. aeruginosa PA01, S. 
aureus and M. tuberculosis genomes. Although we only used 
three features for prediction (fewer than are used in other 
operon prediction methods), our method achieved a good 
balance between sensitivity and specificity. Since the 
resulting prediction accuracy compares well with that 
achieved by other methods, the proposed method can be used 
to solve operon prediction problems. 

 
 

TABLE V 
ACCURACY, SENSITIVITY, SPECIFICITY OF THREE GENOMES 

Genome Methodology Accuracy Sensitivity Specificity 

B. subtilis 
(NC_000964) 

DE 0.923 0.910 0.934 
BPSO[18] 0.921 0.887 0.945 
UNIPOP [20] 0.792 0.782 0.821 
GA [11] 0.883 0.873 0.897 
Using both genome-specific and general genomic information [21] 0.902 N/A N/A 
SVM [7] 0.889 0.900 0.860 
ODB [22] 0.632 0.499 0.992 
FGA [1] 0.882 N/A N/A 
JPOP [23]] 0.746 0.720 0.900 

P. aeruginosa 
PA01 
(NC_002516) 

DE 0.954 0.967 0.935 
BPSO[18] 0.933 0.930 0.939 
GA [11] 0.813 0.870 0.763 

S. aureus 
(NC_002952) 

DE 0.963 0.972 0.945 
BPSO[18] 0.959 0.959 0.959 
Genome-wide operon prediction in Staphylococcus aureus [24] 0.920 N/A N/A 

M. tuberculosis 
(NC_000962) 

DE 0.963 0.963 0.963 
BPSO[18] 0.951 0.944 0.963 
A Predicted Operon map for Mycobacterium tuberculosis [25] 0.908 N/A N/A 
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D.   Discussion 

The DE algorithm is similar to a genetic algorithm and 
particle swarm optimization, but the DE also considers the 
multivariate correlation, and hence has an advantage over 
PSO in solving problems where variables are coupled. DE 
uses a one-on-one elimination mechanism to update the 
population, which makes it easier for it to find the global 
optima. 

Since the genome contains many genes (i.e., the solution 
space is very large), the initialization step is very important 
for operon prediction. To enhance DE prediction 
performance, we use the direction and distance to generate 
the initial population instead of a random method. This 
improves the fitness value of the population of chromosomes 
in the initialization step, and updating the population 
effectively improves operon prediction accuracy through 
multiple iterations. The direction of the adjacent gene is 
important for operon prediction because adjacent genes 
having different directions must belong to different operons, 
and can thus effectively predict NOP to enhance prediction 
accuracy and specificity. And the port of threshold of 
intergenic distance, adjusting the initial threshold to 600 bps 
raises the sensitivity and specificity of the gap [18]. 
Therefore, we used these two conditions for initialization. 

Most methods use the properties of adjacent genes to 
determine whether a gene pair is OP or NOP, while ignoring 
the importance of the relationship between a gene and its 
neighbors. To increase the likelihood of finding an optimal 
solution, the DE fitness functions must consider the 
properties of nearby genes. The log-likelihood method is 
used to design the fitness function and to assess the scores of 
each property. In this study, we selected the E. coli genome as 
the training data since the E. coli genome has been 
extensively studied in experiments, and the majority of its 
operons has been experimentally confirmed, thus increasing 
the credibility of E. coli as a training data set. Theoretically, 
the use of additional properties for operon prediction should 
yield prediction results with a degree of higher confidence. 

In operon prediction, selecting biological properties and 
designing a fitness function both directly affect the prediction 
results. Even though adjacent genes have related features, 
they could possibly belong to different operons, and hence 
the two factors above are the key to successful operon 
prediction. We select the metabolic pathway and cluster of 
orthologous groups to predict operons because DVDA [19] 
only used homologous genes for prediction, yielding 
unsatisfactory results. ODB [17] used the intergenic distance, 
metabolic pathway, microarray and Gene order conservation 
as properties, but failed to achieve a good balance between 
sensitivity and specificity. Therefore, we chose features 
based on feature utilization and prediction results. The three 
features used in this study are the same in those used in the 
GA study. However, even though GA also used microarray 
expression data, the proposed method achieved a higher 
accuracy level, indicating that the three features used in DE 
are effective for operon prediction. 

 

IV.   CONCLUSIONS 

An effective operon prediction method with improved 
differential evolution is proposed. The direction and 
intergenic distance of adjacent genes are considered in the 
initialization step, and the log-likelihood method is used to 
design the fitness function to further improve evaluation 
accuracy. Experimental results show that DE, using only 
three kinds of biological properties, can obtain excellent 
prediction results. Future research will use a greater variety 
of biological properties to predict operons and provide 
related prediction results to provide a better understanding of 
the impact of other features on the operon prediction 
problem. 
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