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Abstract— This paper develops equipment optimal condition 

based replacement model, using Logical Analysis of Data 
(LAD). LAD is a powerful classification method that does not 
relying on any statistical theory which enables LAD to 
overcome the usual problems concerning the statistical 
properties of the data. LAD profits from a straightforward 
procedure and self-explanatory results. 

In this paper, our objective is to develop an optimal 
replacement method by taking its working condition (condition 
monitoring data) into consideration using LAD. Using 
equipment’s survival probability and associated costs of 
scheduled and non-scheduled replacements, an optimal 
replacement method is introduced. 

The proposed method is applied on a hypothetical problem 
and its easy to understand approach and its high performance 
is shown. Analysis of performance of the proposed methods 
reveals that the methods provide self-explanatory results that 
are greatly beneficial to maintenance practitioners. 
 

Index Terms— Optimal Replacement, Condition Based 
Maintenance (CBM), Logical Analysis of Data (LAD), 
Condition Monitoring 
 

I. INTRODUCTION 

Condition Based Maintenance (CBM) [1] is a maintenance 
program considering the equipment’s health condition while 
optimizing or improving the maintenance activities. The 
equipment’s age and health condition are the indicators based on 
which CBM predicts a failure in equipment and optimizes its 
policy.  

Logical Analysis of Data (LAD), first introduced in [2], is a 
Boolean logic based methodology for the analysis of data. LAD 
extracts knowledge hidden in a dataset in order to detect the sets of 
causes that would lead to certain outcomes. In the context of 
maintenance, a cause can be the equipment’s age or any health 
condition indicator value, while an effect (outcome) can be the 
equipment’s survival or failure during a defined period. Each cause 
is called an Attribute. A literal is either an attribute or its Negation. 
In This research, observations are categorized into two classes: 
observations that fail during the coming period, referred to as the 
Positive Class, and observations that survive at least until the end 
of the next period, referred to as the Negative Class. A Positive 
(Negative) Pattern is a set of literals that is reflected in one or more 
of the observations of the positive (negative) class while not 
reflected in any (many) of the observations of the negative 
(positive) class. A pattern cannot include an attribute and its 
negation. 
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Since its introduction, LAD has been applied for the analysis of 
data in different fields such as medicine, biotechnology, 
economics, finance, politics, properties, oil exploration, 
manufacturing and maintenance ([2], [3], [4], [5], [6], [7], [8][9], 
and [10]). Recently LAD was used for diagnosis of equipment 
failure ([11],[12], [13], [14]). LAD has proved to be a promising 
technique that provides interpretable results that are comparable to 
most pioneer techniques in the field of diagnostics in CBM. [15] 
improved LAD methodology to predict equipment’s chance of 
survival at each observation moment when new data on attributes 
of the equipment is available. It showed that LAD provides 
comprehensible results that are greatly beneficial to maintenance 
practitioners in prognosticating fault in machinery. In this work, 
we will introduce an optimal replacement model that minimizes the 
maintenance cost of equipment considering its condition 
monitoring data, using LAD. 

II. METHODOLOGY 

First, we will illustrate LAD’s basic steps used in 
equipment’s diagnostics [14] and prognostics [15]. Patterns, 
LAD’s outcomes that characterize the failure and survival 
characteristics of equipment, will be generated. Then, we 
will introduce instructions to use the generated patterns to 
make optimal replacement decision. The optimal 
replacement model, which takes into account equipment’s 
age, condition indicators and failure and replacement costs, 
will be constructed based on a given historical dataset, the 
Train Set. Quality of optimization model will be examined 
by applying it on another part of the historical dataset, called 
the Test Set.  

A sample train set is shown in Table 1. The data consists 
of the monitored attributes at different observation 
moments, associated with different pieces of equipment. 
Each row identifies an observation. The first and the second 
columns show the equipment identification and the 
observation time.  Third column shows the class of each 
observation. If the equipment has survived during the next 
observation period, it is “-“otherwise “+”. Clearly, only last 
observation available for each piece of equipment will be 
“+”. The forth and the fifth columns are the measurements 
of age (operating time) and condition of equipment. Similar 
to the approach of [15], we consider both age and condition 
of equipment as the equipment’s health indicator, and use 
both as LAD attributes. This will allow us to build a 
prognostic model that will be used as the basis of the 
maintenance optimization model. 

In what follows, we first, describe a data binarization 
method. Then, we describe pattern generation method. 
Finally, we will describe method to use the generated 
patterns to calculate the survival probability of the 
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equipment from which a new observation is collected. All 
these three methods will be the best of all the methods 
introduced by [15]. In this work we have adopted their 
example as well, to demonstrate our approach to optimally 
replace a piece of equipment. 

 

Table 1. Sample Train Set [15] 

Observations Attributes 

Equipment 
ID. 

Observation 
Time 

Class Age 
Condition 
Indicator 

1 0 - 0 14 
1 1 - 1 16 
1 2 - 2 20 
1 3 - 3 18 
1 4 + 4 20 
2 0 - 0 12 
2 1 - 1 18 
2 2 + 2 22 
3 0 - 0 16 
3 1 - 1 18 
3 2 - 2 20 

 

III. PROGNOSTICS USING LAD 

 

A. Data Binarization 

In real life problems, the attribute values may or may not 
appear in numerical. However, LAD uses Boolean attribute 
values. The binarization procedure transforms each non-
binary attribute value into a set of binary ones which is done 
by comparing attribute values to certain threshold Cut-
Points. For each numerical attribute, a binary attribute is 
associated with every cut-point as following: [8] 

bୟ,ୡ ൌ ൜1
0
					
; if
; if					

a ൒ c
a ൏ ܿ

             (1) 

Where a is the numerical value of attribute, c is the cut-
point value, and ba,c is the binary value of attribute, 
associated with a and c. As a result, each numerical attribute 
is converted to n binary attributes, where n is equal to the 
number of cut-points. We will employ Sensitive 
Discriminating method in which a cut-point is defined as 
average of two consecutive attribute values, each belonging 
to different classes [15]. The outcome cut-point represents a 
threshold, which is able to differentiate between positive and 
negative classes. 
 

B. Pattern Generation 

A pattern differentiates one or more of the observations of 
its class from all or most of the observations of the opposite 
class. Some heuristic methods have been introduced that 
require less computational effort than examining all 
combination of the literals, while providing equivalent 
performance. Amongst them, we will use Hybrid Greedy 
method that has been proved to be outperforming or equally 
efficient [15]. 

Hybrid greedy method is a heuristic algorithm that finds 
the optimal Prime pure patterns [8]. A pattern is prime pure 
if it does not cover any observation from the opposite class 
and removal of any of its literals results in coverage of 
observations from the opposite class. The restriction on the 
generation of pure patterns by allowing the algorithm to 

cover observations from the opposite class is relaxed. In this 
case, a pattern is defined as a combination of literals 
covering at least a minimum number of observations of the 
pattern’s class, and at most a maximum number of 
observations of the opposite class. The numbers are called 
Coverage and Fuzziness parameters, respectively. The 
hybrid greedy method is composed of two phases: The 
bottom-up phase starts with only one literal then tries to add 
as many literals as required up to a point that the 
combination of literals forms a pattern. If any observation 
remains uncovered by the created patterns in the first phase, 
the top-down phase starts with an uncovered observation. 
An observation is definitely a pattern. Then it tries to 
remove as many literals as possible from the pattern 
(observation) up to a point where the removal of any more 
literal, will result in losing the pattern.  
 

C. Prognostics Model Formulation 

Up to author’s knowledge, there are only two introduced 
methods to calculate the conditional survival probability of 
the equipment, based on the estimated survival functions 
using Kaplan-Meier (KM) estimation. In this research we 
will use the conditional survival probability calculation 
method that equally favours the baseline and the pattern 
survival probabilities as explained later [15]. 

Table 2 shows the positive and negative patterns along 
with their corresponding covered observations, based on the 
sample train set provided in the Table 1. 

 

Table 2.  List of Generated Positive and Negative Patterns based on the 
Sample Train Set [15] 

Positive  
Patterns 

Covered Observations 

PP1 1-3 , 1-4 , 3-3 

PP2 2-2 , 3-3 

Negative 
Patterns 

Covered Observations 

NP1 1-0 , 1-1 , 1-2 , 2-0 , 2-1 , 2-2 , 3-0 , 3-1 , 3-2 

NP2 1-0 , 1-1 , 1-3 , 2-0 , 2-1 , 3-0 , 3-1 

 
We associate to each pattern P, set of Pattern Conditional 

Survival Probabilities SPP(i); i =1,2,…, which represent the 
pattern’s survival estimation of a piece of equipment for at 
least i periods, when the equipment’s observation is covered 
by the pattern. KM estimation of pattern conditional survival 
probability is defined as the proportion of the number of 
observations covered by pattern P whose corresponding 
pieces of equipment survived at least i periods after being 
covered by the pattern, to the total number of observations 
covered by pattern P. 

ܵ ௉ܲሺ݅ሻ ൌ 	
#ሺ௉∩ௌ;ఛவఛబା௜∆ሻ

#ሺ௉∩ௌ;ఛவఛబሻ
        (2) 

S is the set of observations in the train set, and PS 
represents the subset of observations in the train set S that 
are covered by the pattern P.  Function #(N) counts the 
number of members of a set N. τ is the actual failure time of 
the corresponding equipment, and τ0 is the current age of the 
corresponding equipment at the observation moment when it 
is covered by pattern P.  is the observation period length. 
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Table 3 shows KM estimation of conditional survival 
probability of the patterns in the Table 2, based on their 
corresponding covered observations.  

Table 3. KM Estimation of Conditional Survival Probability of Generated 
Patterns 

 4 3 2 1 ∆࢏
PP1 0.333 0 0 0 
PP2 0 0 0 0 
NP1 0.889 0.667 0.333 0.111 
NP2 1 0.714 0.428 0.143 

 
Baseline Conditional Survival Probability indicates 

survival function by considering the age only, regardless of 
the equipment’s condition. KM estimation of baseline 
conditional survival probability is calculated as the 
proportion of the number of pieces of equipment that 
survived at least i periods, to the number of all the pieces of 
equipment in train set. 

ܵ ௕ܲሺ݅ሻ ൌ 	
#ሺா;ఛவ௜∆ሻ

#ሺாሻ
         (3) 

E is the set of all pieces of equipment in the train set. 
Table 4 shows KM estimation of baseline conditional 
survival probability based on all the observations in Table 1.  

Table 4. KM Estimation of Baseline Conditional Survival Probability 

݅∆ 1 2 3 4 

SPb(i) 1 1 0.667 0.333 

Table 5 shows a sample test set along with the list of 
patterns that cover each observation. 

 

Table 5. Sample Test Set 
Observations Attributes 

Covering 
Patterns Equipment 

ID. 
Observation 

Time 
Age 

Condition 
Indicator 

1 0 0 14 NP1 , NP2 
1 1 1 16 NP1 , NP2 
1 2 2 20 NP1 
1 3 3 22 PP1 , PP2 

 
To calculate equipment’s survival probability we give 

more weight to the latest observation than older observation 
and consider equal weight for Pattern and Baseline 
Conditional Survival Probabilities. The conditional survival 
probability of the equipment at current observation moment 
is calculated as follows: [15] 

ܵܲሺ݅ሻ ൌ

	

ە
ۖ
۔

ۖ
ۓ
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೙
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ݐ ൐ 0
 (4) 

The conditional survival probabilities of the equipment at 
different observation moments are shown in Table 6.  

Table 6. Conditional Survival Probability of Sample Test Equipment at 
Different Observation Moments 

Obs. 
Covering 
Patterns 

SP (t) 

1 2 3 4 
>4 

1-0 NP1,NP2 0.9 0.85 0.5 0. 0 
1-1 NP1,NP2 0.9 0.65 0.3 0. 0 
1-2 NP1 0.7 0.42 0.0 0. 0 
1-3 PP1,PP2 0.3 0.02 0 0 0 

IV. OPTIMAL REPLACEMENT POLICY 

Condition Based Maintenance (CBM) or predictive 
maintenance is based on observing the state of equipment 
and on collecting information concerning its condition, in 
order to prevent its failure and to determine the optimal 
maintenance actions. This optimization is done by taking 
into account costs of failure and predictive replacements. 
The difference between classical preventive maintenance 
and CBM is that while the former is based on modeling the 
aging process and/or on using the manufacturer given 
information for setting maintenance plans, the latter is based 
on observing the condition of the equipment, measured by 
one or more indicators such as the vibration level, the level 
of metal particles in the lubricant, or the equipment’s 
temperature, and taking maintenance actions based on the 
values of these indicators.  

In this work, we assume that, if a failure occurs, it is 
immediately recognized and the only possible action is 
Failure Replacement (FR). Otherwise, at any inspection 
point, we can decide whether to perform Preventive 
Replacement (PR) or to Do-Nothing (DN). The FR and the 
PR renew the system and return it to new or like new, and 
the age is reset to zero. The cost for the PR is C, while a FR 
costs C+K, C, K>0. Both actions, FR and PR, are 
instantaneous. We assume that failures happen shortly after 
observation moments. This assumption is supported by 
holding small enough observation period intervals. 

A. Dynamic Programing Formulation 

Let f k ,SP k (t );t 1,2,...   denote the minimum average 

cost of replacement per observation period of current 
replacement period, calculated at time k (k-th observation 

point), where the updated Survival Probability SP k (t ) is 

the survival probability of the equipment calculated at this 
moment as explained in previous section.  

f k ,SP k (t )   min

C

k

SP k (1)f k 1,SP k 1(t )   1SP k (1)  C K 
k










 

(5) 
C k  indicates the average cost of replacement per 

observation period, if we decide to replace the equipment at 
current observation moment, k. This is true because the only 
cost occurring is the replacement cost, C. However, if we 
decide to leave the equipment to work until next observation 
period, there is SP k (1)  chance of survival for one more 

period. This will result in an optimal future cost of

f k 1,SP k 1(t )  .  
In case if a failure happens during next observation 

period, cost C K   will occur. Assuming that failure 

happens shortly after the current observation period, the 
average cost of replacement is C  K  k . This cost happens 

with a chance of 1SP k (1)  .  

At each observation moment, the optimal decision is the 
one that will result in smaller average cost, as shown in 
equation (5). 
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In calculation of future cost of replacement, in case of 
survival until next observation moment f k 1,SP k 1(t )  , the 

value of SP k 1(1)is required. SP k 1(1) is the updated 

conditional survival probability of equipment that has 
survived until k+1 observation moment for one more period. 

This probability can be best estimated by SP k (2) / SP k (1). 

In Table 6, SP1(t ), is 0.97, 0.85, 0.53, 0.23 and 0 for t 

=1,2,…,5. At this age (k=1) with associated attributes 
values, the equipment has 97% chance of survival until next 
observation moment. Also, 85% chance of survival until two 
next observation moments. This means that only 88% 
(=0.85/0.97) of equipment survived during next observation 
period will survival a second observation period too. 

 

Table 7. Updated conditional survival probability, average cost of 
replacement and optimal decision 

Obs.  (1)k iSP 
 AVG. COST 

 1 i=0 i=1 i=2 i=3 i=4 R L Min 

k=1 0.97 0.88 0.62 0.43 0.00 1.00 0.42 0.42 L 

k=2 0.96 0.68 0.51 0.12 0.00 0.50 0.35 0.35 L 

k=3 0.72 0.58 0.21 0.33 0.00 0.33 0.32 0.32 L 

k=4 0.38 0.05 0.00     0.25 0.31 0.25 R 

 
 

Considering C = 1 and K = 0.5, the results of the optimal 
replacement criteria of the example are shown in  

Table 7. The approach suggests to replace (R) the 
equipment at 4th observation moment. 

Different C/K ratios will result in different optimal 
decision on the same set of observations. The higher the 
failure costs K, an earlier replacement will be advised.  

 
Table 8, depicts that when C = 1, if K increases to 1, the 

equipment will be advised to be replaced at 3rd observation 
moment (and after) with same hypothetical data as before. 
At a very high K, like k = 9, same readings from the 
equipment results in a replacement decision as early as 
second observation moment. 

Table 8 average cost of replacement and optimal decision for K=2 and K=9 

Obs.  
AVG COST FOR 

 K=2   
L 

AVG. COST FOR 
K=9 

  1 R L Min R L Min 
k=1 1.00 0.46 0.46 L 1.00 0.79 0.79 L 
k=2 0.50 0.36 0.36 L 0.50 0.52 0.50 R 
k=3 0.33 0.37 0.33 R 0.33 1.11 0.33 R 
k=4 0.25 0.39 0.25 R 0.25 1.63 0.25 R 

V. CONCLUSION 

In this paper, we developed an equipment condition based 
replacement model by employing the Logical Analysis of 
Data (LAD). We used LAD methodology to predict 
equipment’s chance of survival at each observation moment, 
when new data on the equipment health condition indicators 
is collected. Then, we introduced a dynamic programing 
approach to estimate the future costs of the replacement 
system, if the only possible actions are, Replace now (R) or 
Leave until the next observation moment (L). An optimal 

decision, based on readings from the condition monitoring 
system at each observation moment and previous ones, can 
be made. LAD optimal replacement model provides 
comprehensible results that are greatly beneficial to 
maintenance practitioners. LAD model has the advantage of 
not relying on any statistical theory, which enables it to 
overcome the conventional problems concerning the 
statistical properties of the datasets. Its main advantage is 
the straightforward process and self-explanatory results, 
which are greatly beneficial to maintenance practitioners. 

Since the proposed LAD model is at its beginning phase, 
further research is required to improve the performance of 
the model. Due to the fact that the performances of the 
proposed calculation methods are highly sensitive to the 
defined survival function, a future research direction is to 
improve the survival function to reflect equipment’s 
probable failure better. Also, the optimal replacement model 
has to be tested on real and simulated data to further 
investigate its performance. 
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