The Role of Transverse Speed on Deposition Height and Material Efficiency in Laser Deposited Titanium Alloy

Rasheedat M. Mahamood, Esther T. Akinlabi, Mukul Shukla and Sisa Pityana

Abstract— The most commonly used aerospace titanium alloy, Ti6Al4V, was deposited on Ti6Al4V plate of dimension 72 x 72 x5mm. The laser power of 3 kW, powder flow rate of 1.44 g/min and gas flow rate of 4 l/min were used throughout the deposition process. The transverse/ scanning speed was varied between 0.005 to 0.095 m/sec according to established result of the preliminary study that produces full dense and pore free deposits. The mass of the deposited powder was obtained by weight the substrate before deposition and weighing after deposition. The substrate and the deposits were thoroughly cleaned using wire brush and acetone to remove unmelted powder particles from the surface of the substrate and the deposit. The height and width of the deposits were measured with Venier Caliper and the material efficiencies were determined using developed equations. The effect of the scanning speed on the material efficiency and deposition height were extensively studied and the results showed that for the set of processing parameter used in this study the optimum scanning speed is approximately 0.045 m/sec.

Index Terms—Additive manufacturing, Laser metal deposition, Material efficiency, Titanium alloy

I. INTRODUCTION

LASER Metal Deposition (LMD) is an additive manufacturing method that produces component by building it layer by layer directly from three dimensional CAD model [1]. Manufacturing near-net shape parts by them building layer by layer offer great advantage that includes: time saving, weight saving and overall cost saving when compared with the traditional manufacturing methods [2, 3]. A component that needs to be broken down into various parts and later assembled in traditional manufacturing process can be produced in one single piece using LMD. This will eliminate various steps of joining and fastening required to assemble the parts in traditional technique thereby reducing manufacturing time and overall cost of the part. Most importantly, for automobile and aerospace industry is the weight saving achieved through the elimination of extra weight coming from bolt, nut, rivets etc. used during assembly that is of great importance. It does not only reduce cost of producing the component but it will also reduce fuel consumption. Laser metal deposition process also offer an excellent advantage over other additive manufacturing techniques in that it can be used to repair high valued component parts which were prohibitive or difficult to repair and are discarded in the past. This is one of the reasons why LMD is an important research area [4-6] and also this technology is very important for manufacturing and repair of aerospace parts.

Ti6Al4V is the most commonly produced titanium alloy and also the most commonly used titanium alloy in the aerospace industry [7]. Ti6Al4V offer excellent properties [8, 9] that make them most sort material in aerospace, chemical, defense, energy industry etc. The use of titanium is still limited to high valued components because of the high cost of the material and difficulty in machining. The use of laser metal deposition process to produce titanium alloy parts is an excellent alternative to traditional techniques. Additive manufacturing is generally cost effective to produce parts because the unspent materials can be reused. The reuse of titanium alloy is impossible because of the high affinity of the metal to oxygen pickup at high temperature [10]; this makes the study of material efficiency an important one because of the high cost of the material.

In this study, effect of laser transverse speed or scanning speed on the deposit height and material efficiency is investigated. The result of this study will provide an informed decision on the choice of processing parameter that maximizes the use of material while maintaining metallurgical integrity and minimum dilution.

II. MATERIALS AND METHODS

The materials and methods are subdivided into four sections namely: materials and equipment, laser metal deposition process, material efficiency determination and macrostructure and microstructure examinations.

A. Materials and equipment

Laser metal deposition process was achieved with 4.4 kW fiber delivered Nd: YAG laser with coaxial nozzles carried and controlled by Kuka robot available at CSIR national laser center. The powder was delivered through argon gas. 5mm thick Ti6Al4V plate with area 72 x 72mm of 99.6%...
purity was used as substrate for the deposition. The schematic diagram of the laser metal deposition process is shown on Figure 1. The Ti6Al4V powder used in this study has a particle size range between 150-200 µm. Prior to the deposition process the substrate was sandblasted, degreased with acetone and dried.

![Schematics of Laser Metal Deposition Process](image)

Fig. 1: Schematics of Laser Metal Deposition Process

B. Laser Metal Deposition Process

To achieve the deposition processing parameter used in this study, a set of preliminary experiments was conducted to establish process window in which fully dense deposition without porosity and good metallurgical integrity was obtained. The laser power of 3 kW, powder flow rate of 1.44g/min and gas flow rate of 4 l/min were maintained throughout the deposition process. The scanning speed of whose effect was investigated was varied between 0.005m/sec and 0.095m/sec. A total of ten (10) deposits were made on the substrates of single track 60mm long each using the processing parameters in Table 1.

<table>
<thead>
<tr>
<th>Sample Label</th>
<th>Laser power (kw)</th>
<th>Scanning speed (m/sec)</th>
<th>Powder flow rate (g/min)</th>
<th>Gas flow rate (l/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.0</td>
<td>0.005</td>
<td>1.44</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>3.0</td>
<td>0.015</td>
<td>1.44</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>3.0</td>
<td>0.025</td>
<td>1.44</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>3.0</td>
<td>0.035</td>
<td>1.44</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>3.0</td>
<td>0.045</td>
<td>1.44</td>
<td>4</td>
</tr>
<tr>
<td>F</td>
<td>3.0</td>
<td>0.055</td>
<td>1.44</td>
<td>4</td>
</tr>
<tr>
<td>G</td>
<td>3.0</td>
<td>0.065</td>
<td>1.44</td>
<td>4</td>
</tr>
<tr>
<td>H</td>
<td>3.0</td>
<td>0.075</td>
<td>1.44</td>
<td>4</td>
</tr>
<tr>
<td>I</td>
<td>3.0</td>
<td>0.085</td>
<td>1.44</td>
<td>4</td>
</tr>
<tr>
<td>J</td>
<td>3.0</td>
<td>0.095</td>
<td>1.44</td>
<td>4</td>
</tr>
</tbody>
</table>

C. Material Efficiency Determination

Before the start of deposition, the mass of the substrate was taken using digital balance. After deposition of each track, the deposit and the substrate were cleaned with wire brush and acetone to remove all unmelted powder particles on the substrate and the deposit, and then reweighed to know the mass of actual powder deposited. The height and the width (see Figure 2) of the deposit was taken using Vernier Caliper. The material efficiency was determined using the following equations [11].

\[
m_{P_d} = m_{S_f} - m_{S_0} \tag{1}
\]

\[
S_S = L/T_D \quad \text{and} \quad T_D = L/S_S \tag{2}
\]

\[
m_{P_d} = \left(P_{FR} \times T_D \right) / 60 \tag{3}
\]

\[
\mu = \left(m_{P_d} / m_{P_0} \right) \times 100 \tag{4}
\]

Where: \(m_{P_d} \) (g) is the mass of powder deposited, \(m_{S_0} \) (g) is the mass of the substrate before deposition process, \(m_{S_f} \) (g) is the mass of substrate after deposition. \(S_S \) (m/sec) is the scanning speed. \(T_D \) (sec) is the time taken for the deposition. \(L \) (mm) is the length of each track which is 60 mm. \(m_{P_0} \) (g/sec) is the mass of powder delivered during deposition. \(P_{FR} \) is the powder flow rate in g/min. \(\mu \) is the powder efficiency.

![Height and width measurement of the Deposit](image)

Figure 2: Height and width measurement of the Deposit

D. Macrostructure and Microstructure Examinations

The samples were laterally sectioned and prepared for optical microscopy using standard metallurgical techniques. The macrostructure and microstructure were studied to know the metallurgical integrity of the deposits.

III. RESULTS AND DISCUSSION

A. Results

The morphology of the powder used is shown in Figure 3 as viewed under optical microscope and the particle size distribution analysis is shown in Figure 4.

![Morphology of Ti6Al4V powder](image)

Figure 3: Morphology of Ti6Al4V powder

![Particle size analysis of the Ti6Al4V powder](image)

Figure 4: Particle size analysis of the Ti6Al4V powder
The macrostructure of the substrate is shown in Figure 5. The material efficiencies for each of the deposits at various processing parameters (see Table 1) were determined using equations (1) to (4). The processing parameters, the measured height and width of the deposits and the calculated efficiencies are presented in Table 2. The plots of the material efficiency and the deposition height against the scanning speed (see Figure 2) is shown in Figure 6, the curves are fitted using appropriate curve fitting tools in Microsoft Excel. Figure 7 shows the Macrostructure of the deposit and the substrate while Figure 8 shows the microstructure of the fusion zone to study the metallurgical integrity of the deposit.

Table 2. Results showing track heights, widths and material efficiency

<table>
<thead>
<tr>
<th>Sample Designation</th>
<th>Laser Power (kW)</th>
<th>Scanning Speed (m/Sec)</th>
<th>Powder Flow Rate (g/min)</th>
<th>Gas Flow Rate (l/min)</th>
<th>m_{g} (g/sec)</th>
<th>m_{p} (g/sec)</th>
<th>Deposited Track Width (mm)</th>
<th>Deposited Track Height (mm)</th>
<th>Powder Efficiency µ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.0</td>
<td>0.005</td>
<td>1.44</td>
<td>4</td>
<td>0.288</td>
<td>0.16</td>
<td>5.9</td>
<td>1.23</td>
<td>55.56</td>
</tr>
<tr>
<td>B</td>
<td>3.0</td>
<td>0.015</td>
<td>1.44</td>
<td>4</td>
<td>0.096</td>
<td>0.08</td>
<td>4.3</td>
<td>1.07</td>
<td>83.33</td>
</tr>
<tr>
<td>C</td>
<td>3.0</td>
<td>0.025</td>
<td>1.44</td>
<td>4</td>
<td>0.058</td>
<td>0.04</td>
<td>3.1</td>
<td>0.4</td>
<td>69.44</td>
</tr>
<tr>
<td>D</td>
<td>3.0</td>
<td>0.035</td>
<td>1.44</td>
<td>4</td>
<td>0.047</td>
<td>0.03</td>
<td>2.9</td>
<td>0.36</td>
<td>72.92</td>
</tr>
<tr>
<td>E</td>
<td>3.0</td>
<td>0.045</td>
<td>1.44</td>
<td>4</td>
<td>0.032</td>
<td>0.02</td>
<td>3.4</td>
<td>0.18</td>
<td>62.50</td>
</tr>
<tr>
<td>F</td>
<td>3.0</td>
<td>0.055</td>
<td>1.44</td>
<td>4</td>
<td>0.026</td>
<td>0.02</td>
<td>3.0</td>
<td>0.42</td>
<td>76.39</td>
</tr>
<tr>
<td>G</td>
<td>3.0</td>
<td>0.065</td>
<td>1.44</td>
<td>4</td>
<td>0.022</td>
<td>0.02</td>
<td>2.56</td>
<td>0.28</td>
<td>90.28</td>
</tr>
<tr>
<td>H</td>
<td>3.0</td>
<td>0.075</td>
<td>1.44</td>
<td>4</td>
<td>0.019</td>
<td>0.01</td>
<td>2.56</td>
<td>0.16</td>
<td>52.08</td>
</tr>
<tr>
<td>I</td>
<td>3.0</td>
<td>0.085</td>
<td>1.44</td>
<td>4</td>
<td>0.017</td>
<td>0.01</td>
<td>2.52</td>
<td>0.18</td>
<td>59.03</td>
</tr>
<tr>
<td>J</td>
<td>3.0</td>
<td>0.095</td>
<td>1.44</td>
<td>4</td>
<td>0.015</td>
<td>0.01</td>
<td>2.50</td>
<td>0.08</td>
<td>65.97</td>
</tr>
</tbody>
</table>

The macrostructure of the substrate is shown in Figure 5. The deposit height, and width were studied extensively. The effect of these scanning speeds on the material efficiency, without porosity and with good metallurgical bonding. The microstructures shown in Figure 8 further confirm there is no porosity and all the deposits are of good metallurgical bonding. Grains in the fusion zone are continuous with the basket weave seen in all the samples which confirms that the materials at this region are fully melted which is consistent with the literature [12, 13].

IV. CONCLUSION

Ti6Al4V powder was deposited on Ti6Al4V substrate at varying scanning speed while maintaining laser power, powder flow rate and gas flow rate at constant values of 3 kW, 1.44 g/min and 4 l/min respectively. The range of scanning speed (0.005 to 0.095 m/sec) was used based on the result of preliminary experiment that establishes processing window of fully dense deposit without porosity and with good metallurgical bonding. The effect of these scanning speed on the material efficiency, deposit height, and width were studied extensively. The study reveals that the optimum scanning speed in this study is approximately 0.045 m/sec. this scanning speed will keep the material utilization on the high side while minimizing the dilution.

REFERENCES

Figure 6: Graph of the material efficiency and the deposit height against the scanning speed

Figure 7: The macrostructure of the samples A to J showing the deposit layer and the substrate.
Figure 8: The microstructure of the samples A to J showing the fusion zone between the deposit and the substrate.