
 
 

 

 
Abstract—Currently, an important and challenging task in 
genetic associations studies is the identification of common 
complex multi-factorials for diseases susceptibility. Given the 
significant computational association between SNPs with 
genotypes (SNP barcodes), current statistical methods have 
difficulty computing all possible combinations of SNPs with 
genotypes. This study proposes an improved particle swarm 
optimization (PSO), which is combined with the time varying 
acceleration method to overcome this challenge. The proposed 
method, called PSO-TVAC, is used to compute the association 
of genotype frequencies of case and control data based on 
statistical analysis. We systematically evaluated the method on 
the combined effect of 19 SNPs from seven published oxidative 
damage repair-related genes involved in breast cancer-related 
pathways. Odds ratio and risk ratio analyses are used to 
estimate SNP barcodes with significant differences between 
controls and cases. The estimated OR of the best SNP 
combination with genotypes (called the SNP barcode) is 
significantly greater than 1 (between 1.11 and 1.61) for specific 
combinations of two to seven SNPs in high risk groups. The 
results show that PSO-TVAC successfully improves on the 
inherent disadvantages of PSO for the identification of 
high-order SNP barcodes. 
 
Index Terms—SNP-SNP interaction, Particle Swarm 
Optimization, Time varying acceleration.  
 

I. INTRODUCTION 

enome-wide case-control association studies (GWAS) 
have been widely used to identify a set of single 
nucleotide polymorphisms (SNPs) to determine which 

are most closely associated with disease and cancer [1-4]. 
Many studies have hypothesized that the risk of disease and 
cancer is associated with the co-occurrence of SNPs on the 
genetic and phenotypic variability among individuals. The 
associations between cases and controls were found to 
significantly impact their susceptibility to disease and cancer. 
However, association studies for multiple SNP candidates 
remain computationally challenging. The "SNP barcode" 
used in this study can be regarded as an SNP genotype 
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combination, e.g., TT, TC and CC for an SNP with a T/C 
polymorphism. 

The possible combinations of SNP barcodes between cases 
and controls can be computed as C(X,Y)*3Y, where X is the 
total number of SNPs, and Y is the number of selected SNPs. 
Many computational approaches have been proposed to 
examine epistasis in family-based and case-control 
association studies [5-10]. However, these methods were not 
sufficiently robust to simultaneously evaluate the complex 
interactions for all SNPs in several genes. Evolutionary 
algorithms (e.g., particle swarm optimization (PSO) [11] and 
genetic algorithms (GA) [12]) have been shown to be 
effective in reducing the number of search items among a 
greater number of SNP combinations. However, the PSO and 
GA methods do not guarantee that every implemented result 
contains a relevant solution when the SNP number is 
excessively large.  

In this study, 24 SNPs obtained from seven oxidative 
damage repair-related genes (CAT, GPX1, GPX4, GSR, 
SOD2, TXN, and TXNRD2) which had been used to 
investigate single-factor association with breast cancer [13], 
were used to analyze multi-factor association with breast 
cancer. Our previous study [13] determined the effect of 
individual SNPs, but did not investigate their association 
with SNPs. However, analysis of association with SNPs 
might provide further insight into disease susceptibility. 

We hypothesize that the interactions between 
polymorphisms of oxidative damage repair-related genes 
could have a synergistic effect on the pathogenesis of breast 
cancer, and differences between cases and controls can 
explain interactions in disease susceptibility. We propose the 
PSO-TVAC method to generate a SNP barcode to analyze 
the risk factors of disease susceptibility. The best 
combination of SNPs with genotypes can be verified by 
computing the odds ratio (OR) and its confidence intervals. 
We systematically evaluate the combination effects of 24 
SNPs from seven oxidative damage repair-related genes 
involved in breast cancer. The SNP barcode generated by the 
PSO-TVAC algorithm is found to be statistically significant 
in predicting susceptibility to breast cancer, and the identified 
differences between cases and controls were an improvement 
over the PSO algorithm. 

 

II. METHOD 

A. Particle Swarm Optimization (PSO) 
The particle swarm optimization algorithm (PSO) was 
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developed by Kennedy and Eberhart [14] as an evolutionary 
computation algorithm that simulates social behavior based 
on information exchange. In PSO, the solution to the problem 
can be found in the particles of population. Each particle 
adjusts its vector according to its experience and the swarm 
experience to converge on a location to search for a good 
solution. The basic elements of PSO are described below: 
1) Population: A population consists of N particles. 

2) Particle vector, ix : A solution can be represented by a 

D-dimensional vector; the ith particle can be described as 

),,,( 21 iDiii xxxx  , where iDx is a Dth dimensional 

value. 

3) Particle velocity, iv : The velocity of the ith particle is 

represented by ),,,( 21 iDiii vvvv  , where iDv  is a 

velocity value in the Dth dimension. In addition, each velocity 
must be limited within  DVV maxmin , . 

4) Inertia weight, w: The w controls the impact of the 
particle’s previous velocity on its current velocity. This 
control parameter affects the trade-off between the particle’s 
exploration and exploitation abilities. 
5) Individual best value, pbesti: pbesti is the vector of the ith 
particle with the highest fitness value at a given iteration. 
6) Global best value, gbest: The gbest is the best vector 
amongst the particles’ pbest. 
7) Termination criteria: Stop condition of the PSO 
procedure. 

The PSO procedure can be divided into four steps. First, 
the position and velocity of each particle in the population 
was randomly generated. Second, the pbesti  for each particle 
was updated by comparing its current fitness to the fitness of 
pbest. Third, the common knowledge (i.e., gbest) was 
updated according to the best pbest amongst the population. 
Fourth, the position of each particle was updated according 
its pbest and gbest. The update equations can be formulated 
as: 
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where w is the inertia weight which is a positive linear 
function of time that changes with the generations, r1 and r2 
are random numbers between (0, 1), and c1 and c2 are 
acceleration constants that control how far a particle moves 
in a single generation. Velocities new

idv  and old
idv  respectively 

denote the new and old velocity of the particle, while old
idx  is 

the current particle position, and new
idx  is the updated particle 

position. The velocity implies the distance to which the 
particle’s position should be moved in a generation, so that 
the velocity can move the particle towards the best position. 
The particles’ velocities in each dimension were limited to 
within [Vmin, Vmax]

D , and the particles’ positions are limited 
within [Xmin, Xmax]

D. 

 
B. Particle swarm optimization - time varying acceleration 

coefficients (PSO-TVAC) 
In PSO, the learning factors c1 and c2 represent the 

acceleration constants, which are usually equal to 2. c1 and c2 
can influence the particle's search direction between the pbest 
and gbest vectors, in which c1 controls exploitation search 
and c2 controls exploration search. Unlike the PSO algorithm, 
the idea of PSO-TVAC is that c1 and c2 can be adjusted 
through the iteration number. The factor c1 decreases from 
2.5 to 0.5 through the iterations, while the factor c2 increases 
from 0.5 to 2.5. The linear adjustments of c1 and c2 are 
defined in Eqs. 3 and 4:  
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where c1max and c1min respectively express the initial and 
maximal values in c1, while c2max and c2min respectively 
express the initial and maximal values in c2, iteration is the 
present iteration number, and iteration_max is the maximal 
iteration number. Therefore, the TVAC method can adjust 
the search behavior from exploitation to exploration, thus 
preventing particle dispersion and early convergence. 
 
C. Application of the PSO-TVAC algorithm 
a) Encoding schemes 

In PSO-TVAC, the particle of population is defined as a 
vector divided into two parts: the selected SNPs and their 
genotypes, in which SNPs cannot be repeatedly selected. The 
particle encoding can be represented as follows: 
 

Particlei = (SNPi,j, genotypei,j), i=1, 2… m, j=1, 2,…, n 
 
where SNPi,j represents the selected SNPs, genotypei,j 

represents the genotypes (i.e., types AA, Aa, and aa) once 
SNP i,j is selected, m is the size of the population and n is the 
number of SNPs selected. In the initialization step, the 
particle is randomly generated in each dimension. For 
example, the initial particle is randomly generated and 
represented as particle = (SNP2,4,6, Genotype1,2,3). In the 
particle, SNP3,4,8 represents the chosen SNPs (2,4,6), and 
Genotype1,2,3 represents the chosen genotypes (1,2,3). In this 
case, selected SNPs and SNPs associated with the genotypes 
were as follows: (2,1), (4,2) and (6,3). 
 
b) Fitness function 

A fitness value was used to compute the difference 
between cases and controls from the SNP barcode. The goal 
is to determine the highest fitness value, i.e., the maximum 
difference between cases and controls. The concept of fitness 
uses the intersection of set theory to compute the case and 
control sets that contain all elements of one of these sets that 
also belong to the other, but no other elements. The relevant 
equation is as follows: 
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where the number( ) symbol denotes the total number of 
elements in a set, C denotes the total number of SNP barcodes 
in the case group, N represents the total number of SNP 
barcodes in the control group, and particlei represents the ith 
particle. The fitness function can be divided into three 
separate steps. First, the total number of intersections of the 
cases and ith particle is calculated as number(C∩particlei). 
Second, the total number of intersections of the controls and 
ith particle is calculated as number (N∩particlei). Finally, Eq. 
5 is used to calculate the fitness value of the intersections of 
the cases and controls.  

For example, we assume a particle= (SNP2,5, genotype1,3) 
to compute the fitness. First, we calculate the control number 
for SNP2 with genotype 1 and SNP5 with genotype 3. The 
number of cases matching the SNP2 with genotype 1 includes 
171 samples in the breast cancer data. Second, we calculate 
the number of controls independently matching the SNP5 

with genotype 3 as including 121 samples. According to Eq. 
(5), the fitness value is calculated by subtracting 171 from 
121, giving 50. 

 
c) Update pbest and gbest 

Updating the pbest of particle and gbest of the population 
aims to move the particle toward a better search location. The 
particle attempts to find its best position (pbest) and the 
global best position (gbest). If the fitness value of a particle P 
in the current iteration is better than the fitness value of pbest 
in the previous iteration, then pbest is updated to P. If the 
fitness value of a particle's pbest in the current iteration is 
better than gbest in the previous iteration, then the gbest is 
updated to the pbest. The particle then adjusts its direction 
based on pbest and gbest in the following iteration. 
 

The PSO-TVAC pseudo-code is shown below to describe 
how the algorithm collocates data through the 
above-mentioned procedure to obtain the best SNP barcode 
for breast cancer. 

  
PSO-TVAC pseudo-code 
01: Begin 
02: Initialize population 
03: While (number of iterations, or the stopping criterion is not met) 
04:  Evaluate fitness of population via Eq. 5 
05:  For n = 1 to number of particles 
06:   Find pbest 
07:   Find gbest 
08:   For d = 1 to number of dimension of particle 
09:      Update the position of particles via Eqs. 1 and 2 
10:   Next d 
11:  Next n 
12:  Update the c1 and c2 value via Eqs. 3 and 4 
13: Continue generation until stopping criterion is met 

 

III. RESULT AND DISCUSSION 

A. Parameter settings 

Both termination conditions for both of PSO and 
PSO-TVAC are reached at the after 100 iterations. Population 
size is equal to 50. The sets of parameters c1 and c2 of PSO are 
equal to 2. In PSO-TVAC, both parameters c1_max and c2_min are 
equal to 2.5; both parameters c1_min and c2_max are equal to 0.5. 
Vmax is equal to (Xmax – Xmin) and Vmin is equal to – (Xmax – Xmin). 

B. Data sets 

The data sets consist of SNP genotype frequencies 
published in the literature [13]. The dataset was collected 
from the oxidative damage repair-related genes (65 SNPs for 
11 genes) in the breast cancer association study. The 
genotype frequencies of our simulated data are identical to 
the original raw data for the genotypes frequencies [13]. 
Therefore, we used the SNP genotype frequencies to simulate 
the case and control data (5000 samples). The simulated data 
was randomly generated and thus obeyed the original 
genotype frequency in the whole dataset. We assumed that 
the amounts of three genotypes AA, Aa and aa in the SNP in 
the original data were 2132, 1970 and 449, respectively. We 
calculated the percentage of each genotype, i.e., 2132/4551 
(47%) for AA, 1970/4551 (43%) for Aa and 449/4551 (10%) 
for aa. The simulated data for the SNP rs3020314 is then 
generated according to these three percentages, i.e., 47%×

5000=2350 for AA, 43%×5000=2150 for Aa and 
10%×5000=500 for aa. The simulated data for the SNP has 
thus been controlled to 5000 (2350+2150+500=5000). The 
above procedure is shown in the "Pseudo-code for randomly 
generated data" below. 
 
Pseudo-code for randomly generated data 
01: begin 
02: Set size = 5000 
03: Set number of genotype = 3 
04: Calculate amount of three genotypes 
05: while (all SNPs are not controlled) 
06: Calculate amount of each genotype 
07:   Calculate numbers of each controlled genotype 
08: for n = 1 to number of genotype 
09:  Randomly create numbers of each controlled genotype  
10:  next n  
11: end 

 

C. Performance measurement using statistical analysis 

In this study, five statistical analysis were used to 
determine the SNP barcode [15] as below. 
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TP is the number of cases matching the SNP barcode, TN is 
the number of controls not matching the SNP barcode, FN is 
the number of cases not matching the SNP barcode, and FP is 
the number of controls matching the SNP barcode. The risk 
ratio (RR) and odds ratio (OR) are used to measure the 
disease risk of the SNP barcode. OR is widely used in 
medical reports and offers a very convenient interpretation in 
case-control studies when the RR cannot be obtained directly 
(case-control association). The odds ratios are often 
interpreted as a RR. If the OR value is equal to one, the risk 
associated with the disease for the given SNP barcode is the 
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same as the overall risk estimated from all cases and controls. 
A larger OR value (>1) indicates a risk association between 
the SNP barcode and the disease. Similarly, a lower OR value 
(<1) indicates a protective association between the SNP 
barcode and the disease. 
 

D.  Identification of best SNP barcode 

As shown in Table I, among the order SNP barcodes three 
specific combined SNPs with genotypes (i.e., SNPs (4,12,20) 
with genotype 2-1-1 ; [rs757229-Aa]-[rs4135179-AA]- 
[rs2073752-AA]) showed the maximal difference between 
breast cancer and non-cancer groups. Similarly, two to seven 
best-performing combined-SNP barcodes are mined by 
PSO-TVAC (Table I) through the complete result set. The 
PSO-TVAC provides a good difference between the breast 
cancer and non-cancer groups with a fixed number of SNPs. 
 

E. Analyzing the ranks of OR and RR for breast cancer 

The OR was widely applied in medical reports and offers a 
very important interpretation in case-control studies. An OR 
value bigger than 1 indicates a stronger association between 
cases and controls for the risk of disease. Table I shows the 
risk association with specific SNP barcodes and other 
combinations (two to seven) in breast cancer. The OR values 
(1.11-1.61) and the RR values (1.05-1.24) increase with the 
number of SNP combinations in high risk cases. We 
observed that the PSO-TVAC (Table I) provides higher OR 
values (1.11-1.61) with two to seven order SNP barcodes for 
the risk of breast cancer. The number of case groups was 
greater than the number of control groups, which means the 
SNP barcode can influence the risk of breast cancer. Thus, 
women with the specific SNP barcode implied a risk ratio 
that represented significantly increased OR values of 
1.11-1.61 for breast cancer. The results suggested that genes 
with these SNP barcodes represent a risk for breast cancer. 
On the other hand, Table II showed the PSO only identified 
an available SNP barcode in 2-SNP which was determined by 
the p-value. The p-value represented the confidence level of 
results analysis and, to be significant, a result has to be over 
0.05. PSO (Table II) only provides the OR (1.11-1.22) values 
with two to seven order SNP barcodes for the risk of breast 
cancer. Therefore, the PSO-TVAC provided a better 
differentiation in terms of association of the fixed SNP 
barcode between the cases and controls. 

F. Comparing PSO-TVAC with PSO for SNP-SNP 
interaction in breast cancer 

In this study, we investigated the association for 
case-control studies with multiple-SNPs to analyze 24 SNPs 
obtained from seven oxidative damage repair-related genes 
in breast cancer. The SNPs involved in the analysis of 
association studies were difficult to compute, especially the 
very high-order SNPs which were also investigated. We 
proposed a PSO-TVAC algorithm to perform a powerful 

identification of SNP-SNP interactions for breast cancer. The 
statistical methods, such as p-value, OR and its 95% CI, 
provided strong evidence to explain the ability of 
PSO-TVAC to identify the best difference between cases and 
controls. 

Tables I and II show the combinations of 2- to 7-SNPs with 
their associated genotypes. The results were compared with 
the differences between cases and controls. The combination 
of 2-SNP with their corresponding genotypes, SNPs (4, 12) 
with genotype 2-1, [rs757229-Aa]-[rs4135179-AA], were 
identified as having 107 differences between the case group 
and control group (1581 vs. 1474) by PSO-TVAC and PSO. 
The results for 3- to 7-SNPs clearly show that the 
PSO-TVAC exhibited superior searching ability to that of the 
PSO in terms of comparison between the cases and controls. 
For example, in a 3-SNP combination, the combination 
consists of SNPs (4, 12, 20) with genotype 2-1-1 
([rs757229-Aa]-[rs4135179-AA]-[rs2073752-AA]), which 
was identified as having an 89 difference value by 
PSO-TVAC. On the other hand, PSO identified the 
combination consisting of SNPs (12, 13, 19) with genotype 
1-2-2 ([rs4135179- AA]-[rs2301241-Aa]-[rs1548357-Aa]) 
as having a difference value of 49. 

The time varying acceleration can be observed in Eq.1; it 
was only used to change the values of c1 and c2 in the original 
PSO updating equation. The computational complexities of 
PSO and PSO-TVAC can be estimated by the fitness function 
computation. We defined i and p respectively as the number 
of iterations and the number of particles. The fitness function 
computation can then be represented as the computational 
complexity of O(ip), in which  O( ) was the big O notation. 

IV. CONCLUSION 

In individuals, the genetic genes can influence the risk of 
developing many diseases or cancers. Therefore, the effect of 
multiple factor association on disease susceptibility is widely 
used in genome-wide case-control association studies. 
Large-scale SNPs analysis of association studies are difficult 
to perform, especially when multiple SNPs are investigated 
simultaneously. This study proposed the PSO-TVAC to 
identify 24 SNP cross-interactions and provide 
representative gene-gene interactions for breast cancer. The 
time varying acceleration method was successfully used to 
improve PSO to provide significant searches within limited 
time frames, thus enhancing the opportunity to obtain 
maximum difference between cases and controls in 
higher-order SNP-SNP interactions. Results involving two- 
to seven-SNPs show the OR of the best SNP barcodes is in 
the range of 1.11 to 1.61, and the 95% CI of the OR is in the 
range of 0.98 to 2.66. All SNP barcodes show significantly 
reduced OR values (p-value < 0.050 to 0.001). This suggests 
that the PSO-TVAC method is suitable for the systematic 
exploration of genome-wide SNP interactions. 
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Table I 
ESTIMATED BEST SNP COMBINATIONS ON THE OCCURRENCE OF BREAST CANCER BY TVAC-PSO 

Combined SNP number 
(specific SNPs) 

SNP 
Genotypes 

Control number
/ Case number 

Correct
Sen. + 
Spe. 

PPV+NPV Risk Ratio 
Odds Ratio 

(95%CI) 
p-value

2-SNP 
SNPs(4-12) 

others 
2-1 

3419/3526 
1581/1474 

0.51 1.02 1.02 1.05 
(1.01-1.10) 

1.11 
(1.02-1.21) 

0.02 

3-SNP 
SPNs(4-12-20) 

others 
2-1-1 

4149/4238 
851/762 

0.51 1.02 1.03 0.07 
(1.01-1.12) 

1.14 
(1.02-1.27) 

0.02 

4-SNP 
SPNs(4-12-14-20) 

Others 
2-1-1-1 

4624/4684 
376/316 

0.51 1.01 1.04 1.09 
(1.01-1.17) 

1.21 
(1.03-1.41) 

0.02 

5-SNP 
SPNs(4-8-12-14-20) 

Others 
2-2-1-1-1 

4812/4847 
188/153 

0.50 1.01 1.05 1.11 
(1.00-1.22) 

1.24 
(1.00-1.55) 

0.05 

6-SNP 
SPNs(5-8-9-14-20-23) 

Others 
2-2-2-1-1-2 

4912/4937 
88/63 

0.50 1.00 1.08 1.17 
(1.00-1.33) 

1.40 
(1.00-1.97) 

0.04 

7-SNP 
SPNs(5-8-9-10-14-20-23) 

Others 
2-2-2-1-1-1-2 

4955/4972 
45/28 

0.50 1.00 1.12 1.24 
(0.99-1.46) 

1.61 
(0.98-2.66) 

0.05 

*The SNP combinations on the occurrence of breast cancer have significant (p-value < 0.05). 

 
Table II 

ESTIMATED BEST SNP COMBINATIONS ON THE OCCURRENCE OF BREAST CANCER BY PSO 
Combined SNP number 

(specific SNPs) 
SNP 

Genotypes 
Case number 

/ Control number
Correct

Sen. + 
Spe. 

PPV+NPV Risk Ratio 
Odds Ratio 

(95%CI) 
p-value

2-SNP 
SNPs(4-12) 

others 
2-1 

3419/3526 
1581/1474 

0.51 1.02 1.02 1.05 
(1.01-1.10) 

1.11 
(1.02-1.21) 

0.02 

3-SNP 
SPNs(12-13-19) 

others 
1-2-2 

4340/4389 
660/611 

0.51 1.01 1.02 1.04 
(0.98-1.11) 

1.09 
(0.97-1.23) 

0.14 

4-SNP 
SPNs(6-12-17-20) 

Others 
2-1-2-1 

4583/4610 
417/390 

0.50 1.00 1.01 1.04 
(0.96-1.11) 

1.08 
(0.93-1.25) 

0.32 

5-SNP 
SPNs(4-5-8-14-16) 

Others 
2-2-2-1-1 

4869/4892 
131/108 

0.50 1.00 1.04 1.10 
(0.97-1.23) 

1.22 
(0.93-1.59) 

0.13 

6-SNP 
SPNs(3-6-8-10-14-16) 

Others 
1-2-2-1-1-2 

4924/4933 
76/67 

0.50 0.99 1.03 1.06 
(0.89-1.23) 

1.14 
(0.81-1.60) 

0.45 

7-SNP 
SPNs(4-10-15-17-20-22-23) 

Others 
2-1-2-2-1-1-2 

4955/4959 
45/41 

0.50 0.99 1.02 1.05 
(0.83-1.26) 

1.10 
(0.70-1.72) 

0.67 

*The SNP combinations on the occurrence of breast cancer have significant (p-value < 0.05). 
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