
 

  
Abstract—It is known that the cause of cancer could be due to 
the gain of function of an oncoprotein (OCP) or the lost of 
function of a tumor suppressor protein (TSP). These proteins 
are potential targets for drugs. Lung cancer is one of the 
leading causes of death in Taiwan. In this study, differential 
expressed genes (DEGs) are identified, using the Bioconductor 
package, via expression dataset generated from human lung 
adenocarcinoma tumor and adjacent non-tumor tissues. By 
integrating complementary resources, that is, microarray 
(ArrayExpress), protein-protein interaction (BioGrid), and 
protein complex (MIPS); it is found that certain cancer-related 
DEGs match with known protein complexes. After 
constructing the lung cancer protein-protein interaction 
network (PPIN), we performed graph theory analysis of PPIN. 
Highly dense modules (k-clique communities) are identified, 
which are potential cancer-related protein complexes. 
Up-clique and down-clique genes were used as queries to 
perform functional annotation clustering on DAVID. 
Over-represented or enriched biological processes and 
pathways are determined. Our findings suggest a potential 
relationship between those processes (as well as pathways) and 
cancer, which deserve further drug-gene interaction and 
potential drugs investigation.  
 

Index Terms—lung cancer, microarray data analysis, 
protein-protein interactions, protein complexes, enrichment 
analysis 

I. INTRODUCTION 
UNG cancer is the leading cause of death in the United 
States [1] and Taiwan [2]. According to the World 

Health Organization (WHO) classification, lung cancer can 
be divided into two major classes: small cell lung cancer 
(SCLC) and non-small cell lung cancer (NSCLC). NSCLC 
accounts for more than 85% of all lung cancer cases, and 
adenocarcinoma is the most common subtype. 

It is known that many proteins are associated with human 
diseases, although very often their precise functional role in 
disease pathogenesis remains unclear. A strategy to gain a 
better understanding into the interaction and function of 
these proteins is to make use of the protein-protein 
interaction (PPI) data, and construct a set of interaction rules 
for disease proteins. The recent availability of PPI data has 
made it possible to study human disease at a system level. 
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The key challenge facing a disease PPI network is the 
identification of a node which is related to potential drug 
target. To address these questions, we first collected lung 
cancer associated genes and hypothesized that the PPI 
network, derived from the gene signature, could be analyzed 
topologically to prioritize potential targets. We further 
performed gene set enrichment analysis (GSEA) and 
pathway analysis, and then make use of drug-gene 
interaction databases and Connectivity Map (cMap) to find 
potential drugs for the treatment of lung cancer [3]. It is 
conjectured that a small drug molecule may potentially 
reverse the disease signature if the molecule-induced 
signature is significantly negatively correlated with the 
disease-induced signature in cMap [3]. In other words, both 
up and down expressed genes are potential therapeutic 
targets. Therefore, identifying potential drugs to treat lung 
cancer by using an in silico screening approach followed by 
empirical validation might be easier and faster than those 
traditional drug discovery pipelines.  

II. METHODOLOGY 

A. Input data set 
The microarray data for the lung cancer was downloaded 

from ith experiment ID E-TABM-15. We analyzed a total of 
41 samples from, a cohort of 18 patients with cancerous and 
non-cancerous lung adenocarcinoma tissue via microarray 
analysis. We conducted two-pair test (normal as well as 
cancer tissues are taken from the same patient), therefore, 
only 36 samples are used. Figure 1 shows the system 
flowchart of this study. 

 
Fig 1.  Work flow of the present study. 

B. Microarray data analysis 
Microarray technology allows for high-throughput 
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screening and analyzing tens of thousands of genes at the 
same time. Some genes are activated or inhibited 
differentially expressed genes (DEGs), due to certain 
regulatory factors; resulting in changes in gene expression 
levels up to a few times, ten times or more. Given sets of 
microarray data, one can identify DEGs among a large 
number of gene expressions, and understand the mechanism 
of lung cancer formation induced by these DEGs.  

There are many microarray data analysis methods, such as 
using the concept of false discovery rate (FDR) to screen for 
significant genes [5], using ANOVA to explore the impact 
of microarray gene expression values within a single factor 
[6], and clustering analysis. Among the many statistical 
methods, Significance Analysis of Microarray (SAM) [7-8], 
Empirical Bayes Analysis of Microarrays (EBAM) [9], and 
empirical Bayes statistics (eBayes) [10] are three commonly 
approach employed to screen DEGs. The publicly available 
microarray data analysis package Bioconductor [11-12] was 
adopted to perform such calculations. 

Statistical method eBayes was chosen in this study 
because it was found that eBayes, SAM, and EBAM achieve 
a similar level of cancer gene prediction accuracy [13]. 

For any gene expression level with fold change less than 
5.64 (log250), it was reset to 5.64 in order to facilitate cMap 
search. 

C. Cluster analysis 
In a PPI network, a densely connected area is referred to 

as a cluster, which is a functional module. The nodes of a 
cluster are usually involved in similar biological processes, 
and protein complexes can be identified through the 
clustering of a network [14-15]. It is suggested that a protein 
complex is a biologically functional module composed of 
subunits performing similar functions [16]. 

To investigate the functional modules in which the 
potential lung cancer related proteins are involved; a set of 
highly confident human PPIs were input into the CFinder 
software [17] to analyze the network of PPIs based on the 
clique percolation clustering approach. A 3-community was 
set as k being equal to three (complete subgraphs of size k). 
Any two k-community are adjacent if they share k-1 
common nodes. A k-community is constructed by merging 
all possible adjacent k-cliques. 

In this study, we compared the k-community results with 
known protein complexes obtained from MIPS [18], in order 
to identify realistic cancer-related protein modules. Subunits 
from k-community are compared with the MIPS protein 
complexes. The Jaccard Index (JI) is a quantity which is 
used to quantify the similarity between two sets, hence, 
given two modules A and B the JI is given by: 

JI(A,B) = | A∩B |
| A∪B |

                        (1) 

where || BA∩  and || BA∪  denote the cardinality of 
|| BA∩  and || BA∪  respectively. It is noted that JI lies 

between 0% and 100%. 

D. Gene set enrichment analysis (GSEA) 
In order to investigate the enriched biological processes 

of cancer proteins in the k-communities, the proteins of the 
up-group and down-group of proteins were submitted to 
DAVID [19] for clustering which return annotation terms of 

the protein list. Thus, enriched biological processes for these 
two protein groups were obtained. DAVID provides 
functional annotation tools which mainly provide typical 
batch annotation and gene GO [20] term enrichment 
analysis to highlight the most relevant GO terms associated 
with a given gene list. Enriched biological processes with 
E-value less than or equal to 0.05 were examined in this 
work. 

III. RESULTS 

A. Microarray data analysis 
The most significant DEGs, which consist of up and 

down regulated genes, predicted by  p-values less than 0.05. 
Among these DEGs, 953 and 1338 genes belong to the up 
and down group respectively. By integrating these results 
with the BioGrid [21] PPI data, list of binary interactions 
among DEGs are determined for the up and down groups.  

B. Cluster analysis 
PPI among the up and down groups of genes was 

determined by using the PPI database, BioGrid. It was found 
that there are 767 and 2045 interactions among the up and 
down groups of genes respectively. Both of the up-group 
and down-group data were analyzed by CFinder to identify 
PPI dense regions. A total of 86 and 483 clusters of 
k-community were obtained for the up and down groups 
respectively. These k-communities were compared with 
MIPS protein complexes records and their maximum JI 
values were computed. The results are summarized in Table 
1.  
 

Table 1.  Total number of k-community identified by CFinder 

k Up* JI (%) Down* JI (%) 

3 73/151 5-75 253/441 3-75 

4 12/21 16.7-60.0 62/147 5-40 

5 0 null 2/3 11.1-14.3 

total 85/172  312/592  
* The first number before the slash ( / ) denotes the number of k-community 
match with the MIPS protein complexes records.  
 

Among the 86 (483) communities identified by CFinder 
only 85 (312), i.e. 99% (65%), have non-zero JI values. The 
up-group data seems to have a higher coverage ratio than the 
down-group. In other words, a few down-group 
communities do not correspond to any real protein 
complexes. Nevertheless, the present data indicated that 
interaction dense regions represent protein complexes in 
most of the cases. Also, from Table 1, it was found that the 
JI interval decreases as k increases, for instance, the JI 
interval decreases from 72% to 3.2% for the down-group as 
k increases from three to five. 

Fig. 2 depicts the results of the three down-group 
5-community predicted by CFinder. 
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Fig 2.  The results of the three down-group 5-community predicted by 
CFinder, where Entrez gene id is denoted by the number inside the box. 

 

C. Enriched biological processes in PPI interaction 
The functional annotation of k-community was given by 

implementing DAVID. Lists of up and down regulated 
genes were submitted to DAVID for clustering of the gene 
annotation terms. Thus, enriched biological processes and 
pathways related gene lists were obtained. 

We performed the analysis using the highest classification 
stringency. For up-group PPI communities, 33 clusters are 
returned. In the first annotation cluster, the top 
over-represented biological processes are mainly enriched in 
(i) nuclear division, (ii) mitosis cell division (iii) M phase 
mitotic cell cycle, and (iv) organelle fission. The p-value for 
each process is smaller than 8x10-14.  

The most significant three KEGG pathways returned by 
DAVID are cell cycle, DNA replication, and p53 signaling 
pathway. The p-value for each pathway is smaller than 
6x10-6. The most significant three pathways returned by 
Reactome are (i) cell cycle checkpoint, (ii) cell cycle 
mitotic, and (iii) DNA replication. The p-value for each 
pathway is smaller than 10-7. 

Table 2 summarized the most significant pathways given 
by the KEGG and Reactome databases. 

 
Table 2.  Summary of significant pathways returned by KEGG and 
Reactome. 

database Up PPI group Down PPI group 

KEGG 
cell cycle 
DNA replication 
p53 signaling 

focal adhesion 
regulation of actin 
cytoskeleton  
endocytosis  

Reactome 
cell cycle checkpoint 
cell cycle mitotic 
DNA replication 

Signalling by NGF 
Botulinum neurotoxicity 
Hemostasis 

 
For down-group PPI communities, 105 clusters are 

returned. For the first annotation cluster, the top 
over-represented biological processes are mainly enriched in 
(i) hemopoiesis, (ii) hemopoletic or lymphoid organ 
development, and (iii) immune system development. The 
p-value for each process is smaller than 4x10-6.  

The most significant three KEGG pathways returned by 
DAVID are focal adhesion), regulation of actin 
cytoskeleton, and endocytosis. The most significant three 

pathways returned by Reactome are (i) signalling by NGF, (ii) 
botulinum neurotoxicity, and (iii) hemostasis. The p-value for 
each pathway is smaller than 10-3. 

IV. CONCLUSION 
In this study, the Bioconductor package is adopted to 

identify DEGs for lung cancer from microarray data. Both 
up and down DEGs are identified. It is supposed that they 
are potential therapeutic targets. By integrating the DEG 
results with PPI data, it is found that DEGs can be classified 
into the up-regulated and down-regulated PPI communities. 
Lung cancer-related protein complexes are identified, 
suggesting these complexes can potentially play an 
oncogenic or tumor suppressor role in cancer. It is expected 
that the approach developed in the current work should be of 
value for future studies into understanding molecular 
mechanism of lung cancer formation and identify 
therapeutic drug targets. 

There are several tasks are undergoing or to be completed 
in the near future. The first one is to perform GSEA and 
pathway analysis using another clustering service, i.e. 
ConsensusPathDB [22], to find enriched biological 
processes and pathways. The results will be cross validated 
with DAVID. The second task is to determine potential 
Food and Drug Administration (FDA)–approved drugs 
using STITCH [23]. 
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