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Abstract— Spatial time series forecasts using linear mixed 

models (LMMs) with spatial effects under a Bayesian 

framework are considered. The random effects are assumed to 

be normally distributed and the spatial effects are assumed to 

be CAR models. The proposed model is applied to the rice 

yields data in 19 Northeastern provinces in Thailand. It has a 

better performance, using the MAE criteria, compared to the 

existing simple exponential smoothing (ES) and autoregressive 

integrated moving average (ARIMA) models. 

 
Index Terms—forecasts, time series, spatial, linear mixed 

models, conditional autoregressive models, rice yields 

 

I. INTRODUCTION 

patial time series are data collected over time and 

locations. They are found in various applications such as 

agriculture, epidemiology, ecology, geology, economy, and 

geography. The data analysis has to take into account the 

spatial correlation across the areas and time correlation 

within each area. The Office of Agricultural Economics, an 

organization under the Ministry of Agriculture and 

Cooperatives of the Kingdom of Thailand [1], releases 

yearly reports for common agricultural products in each 

province of Thailand such as rice, rubbers, cassava, sugar 

cane, and pineapples. Those kinds of data motivated us to 

investigate and develop an appropriate model to analyze and 

forecast them since the forecasting data are useful in 

providing information to decision-makers. 

There are various kinds of applications using spatial data 

or spatial time series data. For example, [2] introduced the 

analysis of spatial data which can be used for the problems 

of image analysis, [3] proposed a Bayesian model in which 

both area-specific intercept and trend were modeled as 

random effects and correlation between them was allowed 

for, and [4] presented spatial analysis of the greenspace 

contribution to residential property values in a hedonic 

model. Moreover, [5] described a Bayesian statistical model 

which was developed to forecast the parts demand for Sun 
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Microsystems, Inc. Reference [6] proposed the forecasting 

models that can detect trend, seasonality, auto regression and 

outliers in time series data related to some covariates. For 

data analysis, they used cumulative Weibull distribution 

functions for trend, dummy variables for seasonality, binary 

selections for outliers and latent autoregression for 

autocorrelated time series data. Their proposed models were 

applied to vegetable prices in Thailand. Reference [7] 

studied the spatial and temporal variability of attributes 

related to the yield and quality of durum wheat production, 

using geostatistical approach to analyze data collected in 

each year from 100 georeferenced locations. Most models 

for spatial time series data are based on generalized linear 

mixed models (GLMMs). For this paper we focus on linear 

mixed models (LMMs) which are a special case of the 

GLMMs. 

LMMs are useful in situations where responses are 

correlated [8]. The correlated data may be due to repeated 

measurements on each subject over time. The LMMs allow 

for different sources of variability in the mean responses in 

which the fixed effects and random effects are included. The 

random effects can be decomposed to include spatial 

correlation structures. The spatial correlation can be done in 

a number of ways; one of the common approaches is a 

conditional auto regressive (CAR) model [2]. For the CAR 

model, the spatial dependence is expressed through the mean 

term by setting the expected value of the observations in a 

region to be a function of the means of the adjacent areas 

[9]. Because Bayesian inference is becoming more and more 

attractive, mainly because of recent advances in a 

computational methodology, it is used for parameter 

estimation in this paper. 

As mentioned earlier, the agricultural data motivated us to 

do this work. We chose to forecast rice yields because rice is 

a major crop of Thailand. It has the fifth-largest amount of 

land under rice cultivation in the world and is the world’s 

second largest rice exporter [10]. Thailand has planned to 

further increase its land available for rice production, with a 

goal of adding 500,000 hectares to its already 9.2 million 

hectares of rice-growing areas [11]. Reference [12] proposed 

ARIMA models that could be used to make efficient forecast 

for boro rice production in Bangladesh from 2008-09 to 

2012-13. 

Because forecasting is important and the LMMs with 

CAR spatial effects have not been proposed for the analysis 

of spatial time series data yet, in this study, we propose these 

kinds of models and apply them to the rice yields in the 19 
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northeastern provinces of Thailand. The performance of the 

proposed model is evaluated by comparing with some 

common models, simple exponential smoothing (ES) models 

and autoregressive integrated moving average (ARIMA) 

models. 

The rest of the paper is organized as follows: In section II 

we explain the methodology and illustrate the application of 

the proposed model. The results, discussion, and conclusion 

are shown in section III, IV, and V, respectively. 

II. METHODOLOGY AND APPLICATION 

A. LMMs with CAR models 

Reference [13] describes CAR models as follows.  

Let iy  be responses at areal location ,  1,...,i i m  and 

1( ,..., )T

mv vv  is a vector of spatial random effects. Under 

the Markov random field assumption, the CAR models start 

with m full conditional distributions as follows:  

2
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i is the conditional variance and 

ijb are known as constants such that 0iib  for 1,...,i m . 

Letting ( )ijbB  and 2 2
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Lemma, it can be shown that 
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( )ijwW is a neighborhood matrix for areal units, which 

can be defined as  

1 if subregions  and  share a common boundary, 

0 otherwise
ij

i j i j
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w D  diag( )iw 
is a diagonal matrix with  ,i i  entry equal 

to i ij

j

w w  . 

B. Bayesian Models 

Bayesian models are described by [14] as follows. 

Suppose y  is a vector of observations, 
1( ,..., )my yy , 

and θ  is a vector of parameters, 
1( ,..., )k θ  that are not 

observable.  

Let f ( | )y θ represent the probability density function of 

y  given θ , and π( )θ  is a prior for θ . Then, the posterior 

probability density function of θ  is given by 

 

 
f ( | )π( )

π( | )
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y θ θ
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y θ θ θ
.                        (1) 

 

The goal of Bayesian inference is to get the posterior. In 

particular, some numerical summaries may be obtained from 

the posteriors. For example, to keep things simple, a 

Bayesian point estimator for a univariate   is often obtained 

as the posterior mean: 
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The posterior variance, var( | ) y , is often used as 

Bayesian measure of uncertainty.  

For LMMs under a hierarchical Bayesian framework, a 

joint prior is assumed for β and D , the covariance matrix of 

b with d  dimension. For example, a flat prior is sometimes 

used; that is, π( , )β D constant. The main objective of the 

Bayesian inference is to obtain the posterior for β , D , and 

b . The following describes the method. 

The model is completed by assuming that ( , )β D has a 

joint prior density π( , )β D . The joint posterior for β  and D  

is then given by  
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where [ ],  1,...,iy i m y , f ( | , )i iy bβ is the conditional 

density of iy  given β  and ib , and  
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If π( , )β D is a flat prior (constant), the numerator in (3) is 

the likelihood function. Similarly, the posterior for ib  is 

given by 

 

1

1
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.   (5) 

 

The posteriors in (3) and (5) are typically numerically 

intractable, especially when the dimensions of b  are greater 

than one. Therefore, Markov Chain Monte Carlo (MCMC) 

methods are proposed to handle the computation.  

C. Gibbs Sampling 

The Gibbs sampling [15] decomposes the joint posterior 

distribution into full conditional distributions for each 
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parameter in the model and then sample from them. The 

sampler can be efficient when the parameters are not highly 

dependent on each other and the full conditional 

distributions are easy to sample from. It does not require an 

instrumental proposal distribution as Metropolis methods do. 

However, while deriving the conditional distributions can be 

relatively easy, it is not always possible to find an efficient 

way to sample from these conditional distributions. 

Suppose 1( ,..., )T

k θ  is the parameter vector, p( | )y θ  

is the likelihood, and π( )θ  is the prior distribution. The full 

posterior conditional distribution of π( | , , )i j i j   y  is 

proportional to the joint posterior density; that is, 

π( | , , ) p( | )π( )i j i j   y y θ θ . For instance, the one-

dimensional conditional distribution of 
1  given *,j j   

2 j k  , is computed as 
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* * * *
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The Gibbs sampler works as follows: 

1. Set 0t  , and choose an arbitrary initial value 

of 0 0 0

1( ,..., )k θ . 

2. Generate each component of θ  as follows: 

draw  ( 1)

1

t  from  ( ) ( )

1 2π( | ,..., , )t t

k   y  

draw ( 1)

2

t   from ( 1) ( ) ( )

2 1 3π( | , ..., , )t t t

k   
y  

... 

draw ( 1)t

k
  from ( 1) ( 1) ( 1)

1 3π( | , ..., , )t t t

k k     
y . 

3. Set 1t t  . If t T , the number of desired 

samples, return to step 2. Otherwise, stop. 

 

In the MCMC, there are other related processes, called 

convergence, which are described in the following topics. 

D. Assessing MCMC convergence 

Simulation-based Bayesian inference requires using 

simulated draws to summarize the posterior distribution or 

calculate any relevant quantities of interest. There are 

usually two issues needed to be cared. First, we have to 

decide whether the Markov chain has reached its stationary, 

or the desired posterior distribution. Second, we have to 

determine the number of iterations to keep after the Markov 

chain has reached stationarity. Convergence diagnostics help 

to resolve these issues. Reference [16] discuss about 

convergence diagnostics. The common ones are visual 

analysis via history plots, trace plots, autocorrelation plots, 

and kernel density plots. 

E. Application 

The proposed model is applied to the rice yields in 

Northeastern provinces in Thailand from 2002 to 2011. 

They are collected from the Office of Agricultural 

Economics [1]. The data are divided into two parts. The first 

108 months are for model fitting and the last 12 months are 

for model validation. The proposed model is expressed as 

follows. 

Let 
ijy  denote the amount of rice yields (in tons) in 

province i  in month j . Each province contributed 120 

observations over time. For 1,...,19i  , 1,...,120j  , the 

proposed model is 
2( , )ij ij yy N    

where 0ij i ib v     and 
ib  are the random intercepts 

capturing geographically unstructured heterogeneity in 

province i , and iv are spatial effects capturing spatial 

dependence in province i . A Bayesian inference is used to 

fit the model by assuming 2(0, )bN   for
ib , CAR models for 

iv , 

2

( )
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| N ,
m

ij j v

i i

j i i

w v
v

w w




  
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  

 
v . 

We use independent 6(0,10 )N  prior for the fixed 

effect,
0 , and inverse gamma,  0.5,  0.00005InvGamma , 

for 2

b  and 2

v . 

The MCMC Gibbs sampling for parameter estimation is 

run by programming in OpenBUGS software. The visual 

analysis, history plots, autocorrelation plots, trace plots, and 

kernel plots are used for the MCMC convergence diagnostic 

test. We performed 25,000 MCMC iterations with 5,000 

burn-in iterations. 

To evaluate the model performance, the proposed model 

is compared with the simple exponential smoothing models 

and ARIMA models using Mean Absolute Error (MAE). 

The MAE is suitable for the data drawn from any 

distributions. The simple exponential smoothing models and 

ARIMA models are run in SPSS software. 

III. RESULTS 

The visual analysis is used for MCMC convergence 

diagnostics. The trace plots are shown in Fig. 1-4 and the 

kernel density plots are shown in Fig. 5-8. The chains 

moving around the parameter spaces and the densities 

looking like their distributions indicate that each parameter 

is converged to a stationary density. 

 

 
Fig. 1 Trace of 

0  

 

    
Fig. 2 Trace of 

b  
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Fig. 3 Trace of 

v  

 

 
Fig. 4 Trace of y  

 

 
Fig. 5 Kernel density of 

0  

 

 
Fig. 6 Kernel density of 

b  

 

 
Fig. 7 Kernel density of 

v  

 

 
Fig 8. Kernel density of y  

 

 

The posterior summary of the estimated parameters 

presenting in Table 1 shows that the variation in the data 

 y  in each province is large. The spatial variation among 

areas  v  is quite small but the other variation among areas 

 b  is large.  

 

TABLE I 

PARAMETER ESTIMATES FROM THE PROPOSED MODEL 

Parameter Mean SD 95% Credible Interval 

0  36.39 317.30 -584.20 662.40 

b  53,800.00 9455.00 38,390.00 75,800.00 

v  0.14 0.48 0.01 0.84 

y  123,600.00 1,930.00 119,900.00 127,400.00 

 

The examples of the actual and the predicted values from 

the proposed model, in both fitting part (months 1- 108) and 

validation part (months 109-120), are shown in Fig. 9-11.   

 

 
Fig. 9 Actual and predicted values in Loei province 

 

 

 
Fig. 10 Actual and predicted values in Nong Bua Lamphu  

province 
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Fig. 11 Actual and predicted values in Udon Thani province  

 

Using the MAE criteria, the performance of the proposed 

model compared to the simple exponential and ARIMA 

models is shown in Table 2. It can be seen that in the fitting 

part, the performance of the proposed model in most 

provinces seems to be slightly better than the simple 

exponential smoothing models, but slightly worse than the 

ARIMA models. For the validation part, the performance of 

the proposed model is superior to other models in all 

provinces except Nong Bua Lamphu and Udon Thani 

provinces.  

IV. DISCUSSION 

The LMM with CAR spatial effects for spatial time series 

data is proposed. It is attractive in the case that the spatial 

correlations can be accounted. It adopts the first law of 

geography stating that ―Everything is related to everything 

else, but near things are more related than distant things‖ 

[17]. The proposed model has a better performance 

compared to some common forecasting models—simple 

exponential smoothing and ARIMA. The limitation of our 

proposed model in this study is that the components of time 

series such as trend and seasonality are not considered, that 

is why we compared it with the simple exponential 

smoothing and ARIMA(0,0,1) models. Although the 

proposed model seems to be slightly inferior in the model 

fitting part, it has a better performance occurs in the 

validation part which are preferred. Likewise, the proposed 

model results the predicted values for all provinces at the 

same time, while simple exponential smoothing and ARIMA 

result them one province at the time. The proposed model 

can be applied to other spatial time series data. 

V. CONCLUSIONS 

 The objective of this study is to propose an appropriate 

forecasting model to spatial time series data. The Bayesian 

inference in LMMs with CAR spatial effects is considered. 

The proposed model is applied to rice yield data in 19 

Northeastern provinces of Thailand. The proposed model is 

the most superior, compared to the simple exponential 

smoothing and ARIMA models, especially in the validation 

part.  

 

 

TABLE II 

PERFORMANCE OF THE PROPOSED, ES, AND ARIMA MODELS 

Province Model 
MAE 

Fitting Validation 

Loei 

Proposed 19,663.52 23,324.83 

ES 21,182.73 24,979.32 

ARIMA(0,0,1) 19,592.30 23,939.07 

Nong Bua Lam 

Phu 

Proposed 38,540.08 44,978.08 

ES 36,668.33 43,289.07 

ARIMA(0,0,1) 39,395.53 45,911.52 

Udon Thani 

Proposed 78,898.44 99,315.83 

ES 74,148.97 98,556.02 

ARIMA(0,0,1) 81,126.10 101,229.04 

Nong Khai 

Proposed 39,589.53 47,905.42 

ES 40,616.49 53,840.55 

ARIMA(0,0,1) 39,328.02 52,957.14 

Sakon Nakhon 

Proposed 71,723.71 83,601.67 

ES 75,126.66 90,544.82 

ARIMA(0,0,1) 64,605.44 85,509.87 

Nakhon Phanom 

Proposed 39,743.58 52,045.58 

ES 39,952.72 58,702.04 

ARIMA(0,0,1) 37,069.67 60,830.22 

Mukdahan 

Proposed 15,171.42 21,645.50 

ES 16,085.04 23,359.88 

ARIMA(0,0,1) 14,169.85 22,313.40 

Yasothon 

Proposed 40,910.25 53,510.50 

ES 41,756.63 58,424.90 

ARIMA(0,0,1) 35,948.14 55,324.97 

Amnat Charoen 

Proposed 37,985.24 45,806.75 

ES 39,371.74 49,915.28 

ARIMA(0,0,1) 32.682.57 46,305.01 

Ubon 

Ratchathani 

Proposed 116,337.88 152,390.67 

ES 119,697.32 165,278.30 

ARIMA(0,0,1) 106,849.60 155,302.53 

Si Sa Ket 

Proposed 106,546.71 140,177.33 

ES 107,194.27 159,423.68 

ARIMA(0,0,1) 89,911.66 149,056.88 

Surin 

Proposed 128,916.47 152,628.25 

ES 132,952.98 166,862.99 

ARIMA(0,0,1) 108,820.18 156,027.51 

Buri Ram 

Proposed 113,385.69 139,047.08 

ES 115,194.83 154,783.45 

ARIMA(0,0,1) 88,101.60 140,429.49 

Maha Sarakham 

Proposed 76,426.60 100,950.25 

ES 78,221.27 106,847.28 

ARIMA(0,0,1) 58,912.83 102,805.29 

Roi Et 

Proposed 113,450.50 132,047.50 

ES 115,850.40 147,864.24 

ARIMA(0,0,1) 85,755.24 135,592.24 

Kalasin 

Proposed 61,366.79 77,158.75 

ES 62,183.73 83,444.63 

ARIMA(0,0,1) 55,664.14 83,321.08 

Khon Kaen 

Proposed 85,891.24 103,153.17 

ES 88,218.96 112,170.31 

ARIMA(0,0,1) 74,344.28 109,330.23 

Chaiyaphum 

Proposed 49,097.91 59,031.58 

ES 49,750.54 63,623.78 

ARIMA(0,0,1) 45,479.85 65,502.70 

Nakhon 

Ratchasima 

Proposed 116,099.64 154,018.42 

ES 119,624.43 163,438.90 

ARIMA(0,0,1) 103,443.75 164,380.28 
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