
 

  
Abstract—In this study, the microarray data for Arabidopsis 

thaliana infected with Xanthomonas campestris pv. campestris 
(Xcc) is analyzed, where differentially expressed genes (DEGs) 
are identified, and Gene Set Enrichment Analysis (GSEA) are 
employed for analysis. As a result, highly relevant pathogen 
resistant pathways are inferred. Furthermore, the results of 
DEGs for various different conditions; such as, infection by 
different strains of Agrobacterium tumefaciens, are determined. 
The results can be accessed at 
http://ppi.bioinfo.asia.edu.tw/R_At_xcc/index.htm.  

Furthermore, protein-protein interactions (PPIs) play an 
important role in the host-pathogen interactions. Gene 
Ontology (GO) annotation for microRNA-regulated PPI, 
pathogen resistant genes and transcription factors information 
are implemented, such resources can provide new insights for 
microRNA-regulated PPI networks in host-pathogen 
interaction study. The database is freely accessible at 
http://ppi.bioinfo.asia.edu.tw/At_miRNA/. 
 

Index Terms — microRNA, microarray, host-pathogen 
interaction, Arabidopsis, Xanthomonas campestris pv. 
Campestris (Xcc), differentially expressed genes, gene set 
enrichment analysis, protein interaction 
 

I. INTRODUCTION 
AINING a better understanding of the biotic and 
abiotic stress responses for plant systems provide a 

model system for studying human diseases and drug-related 
research. Understanding how plant systems defense against 
environment stress is of great significance for the world's 
food and agricultural production. 

It is well known that Arabidopsis thaliana (A. thaliana), a 
long day plant, is a good model organism for plant science 
[1]. A. thaliana is chosen as the model system for two 
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reasons: (1) the complete genome sequence has been known 
since 2000; and (2) there are many molecular tools, such as 
cDNA, genomic libraries, bacterial artificial chromosomes, 
microarrays and ESTs, are available for the study of its 
biological functions [1]. Only a small number of bacteria are 
pathogenic on A. thaliana, where more than 3,000 proteins 
are directly related to the plant defense response mechanism 
[2-3]. A. thaliana also play a crucial role as a model 
organism for the study of plant-pathogen interaction, many 
model systems have been developed to better understand the 
interactions between plants and bacteria, fungal, viral and 
nematode pathogens. A. thaliana has been successfully 
implemented in the study of the interaction between plants 
and disease-causing pathogens. 

Xanthomonas campestris pv. campestris (Xcc) is one of 
the pathogenic gram-negative bacteria that cause blights and 
rots in plants [4-7]. Host infections caused by Xcc can occur 
in any stage of the plant life cycle. Symptoms resulted from 
this pathogen have been reported in many previous research 
works [4-8]. In addition, Xcc is considered the most 
important and most destructive disease of crucifers, 
infecting all cultivated varieties of brassicas worldwide. 
Host infection by Xcc can occur at any stage of the plant life 
cycle. 

Plants are continuously invaded by pathogens including 
bacteria, fungi, nematodes, viruses and insect pests. 
Generally, a pathogenic bacterium attacks hosts in many 
ways including sticking and colonizing host tissues, 
secreting degradation enzymes and toxins release. 
Pathogen-associated molecular patterns (PAMPs) trigger 
plant defenses when perceived by surface-localized immune 
receptors. PAMP-triggered immunity (PTI) plays an 
important role in the resistance of plants to pathogens. Many 
plant pathogens, including bacteria and viruses, can deliver 
a variety of effector proteins into the host plant cell to 
inhibit PTI signaling [9-10]. In response, plant resistance 
proteins sense effectors to activate effector-triggered 
immunity (ETI), which is a second inducible defense layer 
[11-12]. 

Time series microarray experiments were studied to infer 
pathogen induced genes. Differentially expressed genes 
(DEGs) were identified by using the Bioconductor statistical 
package, EBAYES. 

Plant microRNAs (miRNAs) are usually perfectly 
complementary to their targets and cause the cleavage of 
their targets by a RNA-induced silencing complex (RISC). 
The translational inhibition by miRNAs has been thought of 
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as a major mechanism in animal systems while mRNA 
degradation or post-transcriptional regulation has been 
considered as a major regulatory mechanism in plants [13]. 

MiRNAs play crucial roles in A. thaliana biological 
processes, such as leaf sidedness, flower development, 
hormone signaling, metabolism, and stress response. Due to 
the limitations of the current techniques, high-throughput 
target validation via biological experiments is not practical. 
Given these circumstances, a lot of computational target 
prediction methods have been developed, and online open 
resources are developed to fulfill the need of scientists 
performing miRNA research. 

Host-pathogen interaction (HPI) mechanism involves 
host-pathogen protein-protein interaction (PPI). PPI is an 
essential process of living cells [14]. It also plays a crucial 
role in some critical interspecies interactions such as HPIs 
and pathogenicity [15]. Recently high throughput proteomic 
technology has uncovered a large number of PPI, 
particularly in interspecies protein interactions of plants and 
bacteria [16]. Therefore, comprehensive knowledge of 
host-pathogen PPI and interactome analysis can help 
accelerating protein annotations and elucidate a plant’s 
immune system against bacteria. It is known that aberrant 
miRNA expression or defects in PPI can possibly induce 
diseases.  

In this study, results are deployed as a web-based 
platform. This platform provides the following information; 
miRNA-targeted mRNA data, A. thaliana PPI records 
obtained from BioGrid [17], pathogen resistant genes 
(PRGs) [18] and transcription factors (TFs) [19] data. 

II. MATERIALS AND METHODS 

A. Datasets 
Microarray data for the A. thaliana (Columbia wild type, 

col-0) infected with the Xcc147 strain was downloaded from 
PLEXdb [20] with an experiment ID, AT-87 or from 
ArrayExpress [21] with ID, E-GEOD-9674. AT-87, an 
Affymetrix microarray platform, compared gene expression 
levels between samples at 0 minute, and 90-105 minutes, 
2-4 hours and 6 hours after inoculation dissected from the 
leave tissue. Since there is only one sample available for the 
6 hours time point, therefore, it is not used in the present 
study.  

B. Differentially expressed gene identification 
To identify Xcc induced DEGs, the following analyses 

was preformed, (i) the zero minute samples are compared 
with the 90-105 minutes samples, and (ii) the zero minute 
samples are compared with the 2-4 hrs samples.  

The EBAYES algorithm computes moderated t-statistics, 
moderated F-statistic, and log-odds of differential 
expression by empirical Bayes shrinkage of the standard 
errors towards a common value. 

SAM is a statistical method for identifying DEGs by 
comparing two or more groups of samples. It uses repeated 
permutations of the data to estimate False Discovery Rate 
(FDR) based on observed versus expected score, which is 
obtained from randomized data. A gene which has an 
observed score that deviates significantly from the expected 
score is consider as a DEG. EBAM performs one and two 
class analyses using either a modified t-statistic or 

standardized Wilcoxon rank statistic, and a multiclass 
analysis using a modified F-statistic. Moreover, this function 
provides a EBAM procedure for categorical data such as 
SNP data and the possibility of employing a user-written 
score function. Our previous study [22] suggested that, 
EBAYES, SAM, and EBAM, achieve a similar level of 
cancer gene prediction accuracy, i.e. around 20%, therefore, 
EBAYES is adopted in the present analysis. 

C. Gene Set Enrichment Analysis (GSEA) 
Functional annotation of the DEGs is given by 

implementing the Database for Annotation, Visualization 
and Integrated Discovery, i.e. DAVID [23]. DAVID 
provides functional annotation tools, which mainly supply 
gene GO term enrichment analysis to highlight the most 
relevant GO terms associated with a given gene list. The list 
of Arabidopsis DEGs was submitted to DAVID for 
clustering; hence, enriched pathways were obtained. 

D. MiRNA Target Gene Prediction Algorithms 
There are many miRNA target gene prediction algorithms 

are available. In the present study, we chose RNAHybrid, 
miRanda and PITA algorithms for the prediction. The 
motivation for choosing these tools is that they take into 
account of various prediction features, such as sequence 
complementary, thermodynamics properties, target site 
accessibility and multiple binding. RNAHybrid was 
developed by Kruger and Rehmsmeier [24], which predict 
miRNA targets by calculating the minimum free energy 
(MFE) of hybridization between target genes and miRNA 
sequences. MiRanda is another algorithm for identifying 
miRNA targets in Drosophila and humans. For each 
miRNA, miRanda selects target genes on the basis of three 
properties; sequence complementarity using a 
position-weighted local alignment, free energies of 
RNA-RNA duplexes, and conservation of target sites in 
related genomes. PITA is a target prediction tool, which 
calculates the thermodynamic free energy of the binding 
event and assigns scores to both single binding sites and 
multiple binding sites. This algorithm incorporates target 
accessibility into miRNA target site prediction to take into 
account the secondary structure of the miRNA-target hybrid. 

There may be concern that those tools were developed 
specifically for animals or human, which may not be 
applicable in plants. We note that RNAHybrid has been 
adopted to predict microRNA targets in A. thaliana. 
Furthermore, both miRanda and PITA also calculate the free 
energies of RNA–RNA duplexes, therefore; these two tools 
are adopted in our analysis. 

To prepare the training set, a set of experimentally 
confirmed miRNA-target pairs was downloaded from 
ASRP. These pairs were derived from a set of 118 miRNAs 
(BLAST e-values are somewhere between 2*10-10 and 0.62) 
and a set of 205 mRNAs. This experimentally confirmed set 
was processed by the three machine learning classifiers; 
SVM, random forest (RF) and neural network (NN). Then, 
target pairs predicted by each algorithm were merged. The 
positive training set (406 pairs) are experimentally 
confirmed pairs that satisfied the three algorithms’ 
parameter settings. The negative set, a total of 9938, 
comprised pairs that satisfied the three algorithms’ settings 
with the positive set subtracted. The test set was generated 
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by computing the three prediction scores for a set of 243 A. 
thaliana miRNA and a genome wide set of UTR.  

For each classifier, parameter setting was identified by 
observing the accuracy (ACC), specificity (SPC), sensitivity 
(SEN), and F-score (F1) performance. Firstly, each classifier 
was trained by using the training set to conduct a 10-fold 
cross-validation test. Next, a set of parameters for each 
algorithm was systematically changed to observe the 
prediction performance. For instance, the RF model requires 
six parameter settings; starting from the default settings, 
then, the first parameter value was changed systematically 
from its default value while keeping other parameters fixed. 
The parameter value will be frozen if it returns the highest 
F1 value. Next, the above steps will be repeated for other 
parameter to find the highest F1. Their values will be frozen 
before moving on the next parameter. Finally, the optimal 
parameter setting of each model with the highest F1 was 
obtained. 

E. MiRNA-regulated Protein-Protein Interaction 
Pathways 
 It is known that defects in PPI can possibly induce 

diseases. In this study, miRNA-targeted mRNA data, PPI 
records from BioGrid, PRGs and TFs data are integrated. To 
quantify the relationship among miRNAs, target genes, and 
their PPIs, the importance of miRNA-PPI coupled networks 
are ranked by performing enrichment analysis. There is a 
tendency for two directly interacting proteins to participate 
in the same biological process or share the same molecular 
function. Enrichment analysis was performed by computing 
the Jaccard coefficient (JC) to rank the significance of such 
relations. 

III. RESULTS 

A. The results of GSEA 
Using EBAYES with an adjusted p-value less than 0.05, 

DEGs due to Xcc inoculation were identified. When 
adopting GSEA, sets of data obtained at different time 
points were studied. Both 90-105 minutes and 2-4 hrs 
samples are used. These two measurements allow us to infer 
how fast is the host response to the infection. After the 
clustering step, enriched KEGG pathways were obtained. 
Table 1 summarized the enriched KEGG pathways for the 
90-105 minutes data.  The last column represented the 
number of genes, Ng, identified among the pathway genes, 
Ntotal. 

 
TABLE 1 

ENRICHED KEGG PATHWAYS FOR THE 90-105 MINUTES SAMPLES  

Pathway Ng/Ntotal 

"Protein processing in endoplasmic reticulum" 115/138 
"Plant-pathogen interaction" 138/148 
"Protein export" 38/46 
"Indole  alkaloid  biosynthesis" 6/7 
"Phenylpropanoid biosynthesis" 96/109 
"Amino sugar and nucleotide sugar 
 metabolism" 

93/102 

"Ribosome" 184/311 
"Phenylalanine, tyrosine and tryptophan 
 biosynthesis" 

27/52 

"Vitamin B6 metabolism" 8/9 
"Endocytosis" 60/72 
"Protein processing in endoplasmic reticulum" 115/138 

 
Enrichment analysis was conducted using two different 

inputs, one of the analysis was performed using a complete 
set of data as input (cases a and b in Table 2); the same 
analysis was performed using DEGs only (cases c and d in 
Table 2). Table 2 lists the top five pathways given  by 
DAVID: (i) plant-pathogen interaction, (ii) protein 
processing in endoplasmic reticulum, (iii) phenylalanine, 
tyrosine and tryptophan biosynthesis, (iv) phenylpropanoid 
biosynthesis and (v) protein export pathways. 
 

TABLE 2 
THE TOP FIVE ENRICHED KEGG PATHWAYS FOR CASES a, b, c and d. 

Pathway Nrep  Case 

Plant-pathogen interaction 4 a, b, c, d 
Protein processing in endoplasmic 
reticulum 4 a, b, c, d 

Phenylalanine, tyrosine and 
tryptophan biosynthesis 3 a, b, c 

Phenylpropanoid biosynthesis 3 a, b, c,  
Protein export 3 a, c, d 

a denotes analysis without DEG identification for the 90-105 minutes 
samples, b denotes analysis without DEG identification for the 2-4 hrs 
samples.；c denotes DEGs identification for the 90-105 minutes samples, d 
denotes DEGs identification for the 2-4 hrs. samples. 
Nrep denotes the number of times KEGG pathways are found in the four 
cases. 
 

Table 3 depicted the results of the genes involving in the top 
five enriched KEGG pathways. 

TABLE 3 
GENES INVOLVE IN THE TOP FIVE ENRICHED KEGG PATHWAYS 

Pathway Gene symbol 

Plant-pathogen interaction 
For PTI - CDPK1, FRK 
For ETI - RPM1, SGT1A, HSP90 

Protein processing in 
endoplasmic reticulum 

CNX1, CRT1b, SAR1, DER1, p97, 
RAD23, Png1, HSP70, sHSF 

Phenylalanine, tyrosine and 
tryptophan biosynthesis ASK1, EMB1144 

Phenylpropanoid biosynthesis PAL1, PAL2, HCT, CAD5, CCR2 
Protein export SEC61(α, β, γ ), SEC11, SRPRP 

PTI denotes PAMP-triggered immunity, ETI denotes  effector-triggered 
immunity 
 

Plant-pathogen interaction pathway 
Plant systems have developed the PTI and ETI 

mechanisms to defense against bacterial infection. When the 
host is first attacked by bacterial, it releases 
pattern-recognition receptors (PRR) protein to recognize 
pathogen-associated molecular patterns (PAMP), which are 
associated with pathogens. In response to PTI, pathogens 
may release the effector proteins (such as AvrPphB, 
AvrRpm1, AvrRpt2), to suppress PTI; thus trigger ETI, the 
host’s second line of defense. At this stage, host resistance 
genes (R genes) are activated to recognize effector proteins. 
Most of the bacteria employ the Type III secretion system 
(T3SS) to inject effector proteins into the host cell. ETI 
associates with a program cell death called hypersensitive 
response (HR). It is known that HR is a typical response for 
A. thaliana after infection with Xcc [25]. Furthermore, it is 
suggested that the SGT1 and HSP90 protein complexes 
utilize the SKp1 protein in the ubiquitin-proteasome system 
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to regulate the hypersensitivity resistance mechanism, which 
is mediated by the resistance protein RPM1. 

 
Protein processing in endoplasmic reticulum 

Protein folding is taken place in the endoplasmic 
reticulum (ER) with the help of the chaperones. Properly 
folded proteins are translocate to Golgi, while incorrect 
folded proteins are refolded with the help of chaperones at 
ER. Misfolded proteins are digested through the 
endoplasmic reticulum-associated protein degradation 
process. Furthermore, ER stress can activate the unfolded 
protein response (UPR）signaling transduction pathway. In a 
more serious incident, it can lead to cell apoptosis [26]. 

 
Protein export pathway 

Protein secretion is a basic cellular process found in every 
species. The Sec-dependent pathway is the general protein 
transport system that moves proteins in or across the plasma 
membrane. The SEC pathway, also known as type II 
secretion system (T2SS) is highly conserved in prokaryotes, 
and the Sec translocation channel is make of a highly 
conserved membrane protein complex [27], which is 
compose of several subunits, i.e. Sec61-alpha, Sec61-beta 
and Sec61-gamma [28].Other protein export systems have 
been identified in gram-negative bacteria as well, such as 
the type I, II, III, IV and V secretion system [29].  

Plants produce a lot of secondary metabolites, which are 
found to play an important role in defending plants against 
pathogens [30]. Secondary metabolites can be divided into 
three major groups: phenolics, terpenes, and 
nitrogen-containing compounds. 
 
Phenylalanine, tyrosine and tryptophan biosynthesis 

Phenylalanine, tyrosine, and tryptophan are the 
end-products of the shikimate pathway. A lot of secondary 
metabolites are also synthesis through this pathway [31].  

Tyrosine/tryptophan is the amino acid precursor for 
isoquinoline/indole biosynthesis, there is evidence for a role 
of indole-derived compounds, in pathogen resistant [32]. 
Phenylalanine is the amino acid precursor for 
phenylpropanoid biosynthesis.  

 
Phenylpropanoid biosynthesis pathway 

The formation of many plant phenolics, including 
phenylpropanoid, lignin and anthocyanins, starts from 
phenylalanine. Lignin mechanically strengthens cell walls 
that play a role in pathogen infection [31]. 

 
DEGs due to Xcc inoculation under other conditions were 

determined; for instance, (i) MYB30 over-expression 
(90-105 minutes and 2-4 hours), (ii) wildtype and MYB30 
over-expression (90-105 minutes and 2-4 hours), and (iii) 
infection by the bacterium, Agrobacterium tumefaciens 
subtype C58 and GV3101 (at two different time points, 3 
hours and 6 days). These results can be accessed at 
http://ppi.bioinfo.asia.edu.tw/R_At_xcc/index.htm. 

 
B. Predicted miRNA-target Interaction 
Genome-wide miRNA target prediction was performed 

using the three target predictors, where feature vectors of the 
158,750 miRNA-target interactions were input into the NN, 

SVM and RF classifiers. Table 4 depicted the results of the 
performance of the three classifiers as well as their 
combination, i.e. NN+SVM+RF, where it achieves the best 
classification accuracy, and rank second in SPE. RF 
classifier also achieves comparable performance. 

 
TABLE 4 

PERFORMANCE OF THE MACHINE LEARNING CLASSIFIERS 
Classifier ACC SPE SEN F1 

NN 0.9817 0.9821 0.970 0.9765 
SVM 0.9832 0.9881 0.8618 0.9207 
RF 0.9841 0.9845 0.9734 0.9789 

NN+SVM+RF 0.9862 0.9871 0.9650 0.9759 

 
As a result of classification, 3-vote (NN+SVM+RF), 

2-vote (NN+SVM, NN+RF, or SVM+RF) and 1-vote 
groups had 6808, 24457 and 20784 interactions 
respectively; in other words, the number of positive miRNA 
target pairs is 6808 predicted by the 3-vote study. 

The 3-vote group was selected to identify the interacting 
module among miRNA and their targets. It was found that 
one can classify the interactions in three types of modules, 
i.e. one-to-one, one-to-many, and many-to-many.  

We have established a web-based platform, the platform 
provides the following information: (i) for a given miRNA 
ID, output the targeted mRNAs and PPI partners up to four 
levels (more protein levels can be done if necessary), (ii) 
search for PRG or TF specific target gene PPI partners; (iii) 
depending on the user interest, either experimentally 
verified or predicted miRNA-regulated PPI pathways can be 
selected; and (iv) based on GO annotation, JC is given to 
characterize the GO similarity of a PPI.  

The database is freely accessible at 
http://ppi.bioinfo.asia.edu.tw/At_miRNA. Figure 1 shows 
the miRNA-regulated PPI web page. 
 

 

 
For example, it was found that miR-472a targets a PRG, 

AT1G12220, where this gene interacts with AT5G13160. 
AT1G12220, also known as RPS5, mediates resistance 
against the bacterial pathogen Pseudomonas syringae. 
AT5G13160 (PBS1) is also a PRG. The JC for these two 
genes’ GO biological process annotation is 50%, which 
indicated that both genes participate in highly similar 
processes. Identifying the relationships among miRNAs, 

Fig. 1.  The miRNA target genes and PPI records are integrated to establish a 
miRNA-regulated PPI pathway database. 
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target genes, and their PPIs, may provide new insights into 
plant development regulation networks. 

IV. CONCLUSION 
We consider the A. thaliana and Xcc as a model system to 

investigate the HPI issue by conducting GSEA. Highly 
relevant pathogen resistant pathways are inferred. The 
analyses suggested that certain proteins, i.e., SGT1, HSP 
and SEC, and secondary metabolites are actively involved in 
plant defense mechanism. 

MiRNA and PPI play an important role in the infection 
process, some critical inter-species interactions such as HPI 
and pathogenicity occur through PPI [33]. GO annotation of 
miRNA-regulated PPI with PRG and TF information were 
implemented. Such resources can provide new insights into 
miRNA-regulated PPI networks in HPI study. The approach 
developed in this study should be of value for future studies 
in understanding the molecular mechanisms enabling A. 
thaliana to respond to pathogen attack. 
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