
 

 
Abstract— In the geometric graph embedding problem, a 

graph with n vertices and a set of n points in the plane are 
given, and the aim of embedding is to find a mapping between 
vertices of the graph to these points in such a way that 
minimizes the length of the embedded graph on the point set. 
Since the travelling salesman problem is a special case of the 
graph embedding problem, therefore, the problem is an NP-
hard problem. In this paper, we consider a particular case 
where the given graph is a binary tree. We present four 
heuristic approaches, then we compare the time complexity, 
and the resulted embedding length of these algorithms. 
 

Index Terms— point-set embedding, geometric embedding, 
computational geometry, graph algorithms 
 

I. INTRODUCTION 

iven a set P of n points in the plane where n = 2k-1, k = 
{0, 1, … , m} and a complete binary tree T with n 

nodes, each node of T is mapped onto a distinct point of P. 
The problem is called point-set embedding of complete 
binary trees. The length of each edge in T is equal to the 
Euclidean distance between the points on which its two end 
nodes are mapped. Consequently, the length of T is equal to 
the total length of its edges. The problem as a special case of 
geometric embedding problem addresses the issue of 
embedding T onto P with minimum length. 

Embedding a free tree onto a point-set is NP-hard, 
because it is a generalization of TSP [5]. A path is a special 
case of a tree; therefore, in TSP, one should embed a given 
cycle (or path) onto a given set of points in the plane such 
that the total length of the cycle (or path) is minimized. 

Bern et al. [5] developed approximation algorithms for 
embedding a complete tree onto a point-set on the line and 
in the plane. Their principal techniques were a notion of 
approximate geometric sorting, and approximation schemes 
for the minimum spanning tree problem in the plane. A 
O(nloglogn) time O(logn)-approximation algorithm was 
proposed for embedding a complete n-node tree T of 
maximum vertex degree  onto a set P of n points in the 
plane. When the points of P were on a line, a 3-
approximation algorithm was given for embedding of a 
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complete n-node binary tree. They also developed a O(n5.76) 
exact algorithm for this problem. 

Hansen [14] gave an algorithm with O(logn) 
approximation factor which embedded a hypercube, 
butterfly, or shuffle-exchange graph into a set of points with 
triangle inequality property. He also showed that we can 
embed a d-dimensional grid graph into a point-set in 
O(nlogn) time with O(log2n) approximation factor for d = 2 
,and O(logn) approximation factor for d > 2. Furthermore, 
he presented a polynomial time algorithm with O(log2n) 
approximation factor which embedded an arbitrary graph 
into a uniformly distributed point set. 

Bagheri and Razzazi [2] have given a linear time 
O(ph(T))-approximation algorithm for geometric 
embedding of a n-node free tree T  onto a point-set in the 
plane. In their algorithm, ph(T) is the path height [3] of the 
given tree T. Their algorithm runs in linear time and works 
for general free trees. The approximation factor provided by 
them is better than the approximation factor of Bern et al. 
For n-node trees, ph(T) is usually much less than logn. 

There are many related problems that have been 
investigated in the literature, where the embedding length is 
not important. Cabello [8] showed that planar embedding of 
a graph onto a point-set in the plane is an NP-hard problem. 
Bose et al. [7] presented a (nlogn) algorithm to optimal 
embedding of a tree into a set of points. Bose [6] gave an 
algorithm to embed an outer planar graph onto a point set 
with O(nlog3n) time complexity. Di Giacomo et al. [11,12] 
and Bagheri and Razzazi [4] investigated point set 
embedding of trees with given partial drawings. Point set 
embedding of colored graph on colored points was studied 
in [1,10,13].  

In this paper, two sets of heuristic algorithms are 
proposed to address the problem of geometric embedding of 
a complete binary tree onto a point-set, which is itself a 
special case of embedding a free tree in a point-set with 
minimum length. The rest of the paper is organized as 
follows. The embedding algorithms and their complexity 
analysis are given in section 2. Empirical results are 
discussed in section 3, and finally section 4 contains some 
concluding remarks. 

II. THE ALGORITHMS 

In this section, four heuristics for geometric embedding 
of a complete binary tree onto a point-set are presented. The 
first three heuristics are based on finding the median of the 
points in the plane. It should be noticed that the first two 
heuristics are almost identical and the third one is a 
combination of them. Separation of these algorithms in this 
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paper is only because of some presentation reasons. In 
section A, the median based algorithms are posed. Then in 
section B, an algorithm that works based on finding nearest 
neighbors of the points is proposed. 

A. The Median Based Algorithms 

The aim of these algorithms is partitioning P into two 
subsets with identical number of points, where the points of 
each subset have fewer differences in their x-coordinates or 
y-coordinates while the root is also mapped onto a point.  
With a same policy, the whole tree would be embedded onto 
the point set. In our first algorithm, the root of T is mapped 
onto the point pm=(xm, ym) of P  that its x-coordinate is the 
median of all the x-coordinates of the points of P. 
Furthermore, the point-set P is partitioned into two subsets 
P1 and P2. All of the points in P1 have x-coordinates less 
than xm and all the points in P2 have x-coordinates greater 
than xm. The two sub trees T1 and T2 of T are recursively 
embedded onto P1 and P2. The following pseudo-code 
shows how this algorithm works. 

 
X_MEDIAN_EMBEDDING(P, T) 

1 if |T| = 0 then 

2  return 

3 pm = FIND_X_MEDIAN(P) 

4 let P1 is the set of all points of P that have x-
coordinates less than x-coordinate of pm 

5 let P2 is the set of all points of P that have x-
coordinates greater than x-coordinate of pm 

6 let T1 and T2 be the two sub-trees of T 

7 MEDIAN_X_EMBEDDING( P1, T1 ) 

8 MEDIAN_X_EMBEDDING( P2, T2 ) 

9 map the root of T onto pm, connect pm to the points 
associated with the roots of T1 and T2, if T1 and T2 are 
not null. 

 
Theorem 1. The X_MEDIAN_EMBEDDING algorithm 

has the time complexity O(nlogn) and it requires O(n) space. 
Proof. The time complexity of the algorithm is strictly 

depended on the time complexity of the median finder 
algorithm. We can find median of the points in O(n) time 
[9]. It can be seen simply that the time complexity of the 
algorithm has the following recursion:  

2 ( / 2) ( ) 0
( )

(1) 0

T n O n n
T n

O n

 
  

 

From the master theorem [9], it can be concluded that the 
time complexity of the algorithm is O(nlogn). Similarly, the 
space complexity of the algorithm can be found by the 
following recursion: 

( / 2) ( ) 0
( )

(1) 0

S n O n n
S n

O n

 
  

 

Which leads O(n) space complexity.  
One can choose y-coordinates instead of x-coordinates, 

and this will lead to y median embedding algorithm. 
Similarly, in the y median algorithm the same results are 
expected. 

In the following, “x-y median algorithm” is described 

which is a combination of x median and y median 
algorithms. In this algorithm, there are two choices to 
embed the root of T, where one choice is the x median and 
the other is the y median of the points. Furthermore, this 
procedure recursively embeds the other nodes of the tree 
onto the other points in the plane. For the selection, between 
the x median and the y median, the one that minimizes the 
length of the embedding is chosen. 

The following pseudo code illustrates the x-y median 
algorithm. In this algorithm, E keeps the embedding of the 
points. Furthermore, Ex and Ey maintain the x-median and 
the y-median embedding of the points, respectively. 
 
X_Y_MEDIAN_EMBEDDING(P, T) 

1 if |T| = 1 then 

2  map the root of T on the remained point in P 
into E 

3  return E 

4 pm_x = FIND_X_MEDIAN(P) 

5 let P1_x is the set of all points of P that have x-
coordinates less than x-coordinate of pm x 

6 let P2_x is the set of all points of P that have x-
coordinates greater than x-coordinate of pm x 

7 pm_y = FIND_Y_MEDIAN(P) 

8 let P1_y is the set of all points of P that have x-
coordinates less than x-coordinate of pm y 

9 let P2_y is the set of all points of P that have x-
coordinates greater than x-coordinate of pm y 

10 let T1 and T2 be the two subtrees of T 

11 Ex =  X_Y_MEDIAN_EMBEDDING(P1_x, T1)  
         X_Y_MEDIAN_EMBEDDING(P2 x, T2)           

12 Ex (r) = pm_x , where r is the root of T 

13 Ey =  X_Y_MEDIAN_EMBEDDING(P1_y, T1)  
X_Y_MEDIAN_EMBEDDING(P2 y, T2) 

14 Ey (r) = pm_y , where r is the root of T 

15 if  the length of embedding in Ex is less than the 
length of embedding in Ey then 

16  return Ex 

17 else 

18  return Ey 

 
Theorem 2. The X_Y_MEDIAN_EMBEDDING 

algorithm has time complexity O(n2) and it needs O(n) 
space. 

Proof. In the above algorithm, we can find the x-median 
and y-median of the points in linear time [9]. Furthermore, 
the length of an embedding can be found in O(n) time. 
Therefore, we can obtain time complexity of 
X_Y_MEDIAN_EMBEDDING algorithm from the 
following recursive equation:  

4 ( / 2) ( ) 0
( )

(1) 0

T n O n n
T n

O n

 
    

Which is O(n2). Moreover, the space complexity of the 
algorithm follows from the below recursion:  
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( / 2) ( ) 0
( )

(1) 0

S n O n n
S n

O n

 
    

Which leads O(n2).  
The median based algorithms can be extended to higher 

dimensions. Considering the X_MEDIAN_EMBEDDING 
algorithm, if the dimension is d, the problem can be divided 
into two sub-problems based on the median of the k-
coordinates of the point-set, where k is less than or equal to 
d. The time complexity of such an algorithm is only 
depended on the number of points and is O(n). Similar to 
the X_Y_MEDIAN_EMBEDDING algorithm, a divide and 
conquer strategy can be used for higher dimensions so that it 
changes the algorithm to select between the median of each 
coordinate in P. Therefore, the recursive equation of the 
time complexity of this algorithm is T(n)=2dT(n/2) + O(n) = 
O(n1+log(d)). 

B. The Nearest Neighbors Algorithm 

In this algorithm, the root of T is mapped onto a point pr  
from the point-set, then its left child is mapped onto the 
nearest neighbor of pr, and its right child is mapped onto the 
second nearest neighbor of pr. A same strategy is applied to 
embed the remained nodes of T onto the remained points of 
P where the mapping of the nodes to the nearest neighbors 
is done from the leftmost child to the rightmost child in each 
level of T. The following pseudo codes show the details of 

this algorithm 
 

Nearest_Neighbors_Embedding(P, T) 

1 if |T| = 1 then 

2  map the root of T onto the only point of P 

3  return 

4 BEST_EMBEDDING_LEN ← 0 

5 R_BEST ← 0 

6 For r ← 1 to |P| do 

7  EMBEDDING_LEN ← 
Embed_Based_On_A_Point(P, T, r) 

8  If  EMBEDDING_LEN <  
BEST_EMBEDDING_LEN then 

9   BEST_EMBEDDING_LEN ← 
EMBEDDING_LEN 

10   R_BEST  ← r 

11 Embed_Based_On_A_Point(P, T, R_BEST  ) 

Embed_Based_On_A_Point(P, T, r) 

1 EMBEDDING_LEN ← 0 

2 Q ←  

3 let x be the root of T 

4 map x onto pr 

  

 

(a) (b) 

  

 

(c) (d) 

 
Fig. 1.  (a) X Median Embedding (b) Y Median Embedding (c) X-Y Median Embedding (d) Nearest Neighbors Embedding 
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5 ENQUEUE(Q,  <pr, x>) 

6 While Q ≠  do 

7  <ptop, x> ← DEQUE(Q) 

8  let xl and xr be the left and right children of x 

9  let p1 and p2 be the first and the second unvisited 
nearest neighbors of ptop 

10  map xl onto p1 and xr onto p2 

11  mark p1 and p2 as visited 

12  If xl and xr have children then 

13   ENQUE(Q, <p1, xl>  ) 

14   ENQUE(Q, <p2, xr> ) 

15  EMBEDDING_LEN ← EMBEDDING_LEN  + 
DISTANCE(ptop,  p1) + DISTANCE(ptop,  p2) 

16 return   EMBEDDING_LEN 

 
Theorem 3. The nearest neighbors algorithm has time 

complexity O(n2log2n ) and needs O(n) space. 
Proof. The time complexity of the 

Embed_Based_On_A_Point algorithm is O(nlog2n), because 
the time complexity of finding unvisited nearest neighbors 
in the plane using algorithm [15] for each point of P is 
O(log2n) and the while loop repeats O(n) times. 
Furthermore, in the Nearest_Neighbors_Embedding 
algorithm, for each point of P, we call the 
Embed_Based_On_A_Point algorithm. Therefore, time 
complexity of the nearest neighbors algorithm will be 
O(n2log2n). Furthermore, the amount of needed space for 
the algorithm is O(n), because we need a queue of size O(n) 

to store the mapping between the nodes of the tree and the 
points.  

The algorithm can be extended to higher dimensions 
without any changes. The only difference is the time 
complexity which will be changed to O(dn3), where d is the 
dimension which affects the time complexity of calculating 
Euclidean distance between the points. It should be noticed 
that for this time complexity, no nearest neighbors query 
processing algorithm is considered. 

III. EXPERIMENTAL RESULTS 

To study the results of the algorithms for a huge number 
of points, some experiments have been conducted. In each 
experiment, some points have been generated using a 
random function with uniform distribution in Euclidean 
space which the points are restricted to have x-coordinates 
and y-coordinates between [-C, C].  The experiments have 
been repeated for several times with different point-sets and 
different values for C. Fig. 1 illustrates final embedding of 
our algorithms on a special point-set. 

To compare the algorithms with the optimal embedding, 
the algorithms have also been compared to the minimum 
spanning tree of the point-set. Fig. 2 shows that the X-Y 
median algorithm approximates the optimal solution of the 
embedding problem properly while the result of X Median 
or Y Median is not sufficiently appropriate. The length of 
the embedding which is achieved by X-Y median algorithm 
is very close to the length of minimum spanning tree of the 
same point-set. Also, we know that the length of minimum 
spanning tree is less than the length of optimal embedding. 
Therefore, the X-Y median algorithm leads a good solution 
to the geometric embedding problem for complete binary 

 

 
Fig. 2. A comparison of the proposed algorithms. 
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trees. Finally, based on the resulted embedding length and 
the time complexity of the proposed algorithms, it can be 
concluded that X-Y Median algorithm is substantially better 
than the others. 

IV. CONCLUSION 

In this paper, four heuristics for geometric embedding of 
a complete binary tree into a point-set have been presented. 
The X-median algorithm and the Y-median algorithm have 
time complexity O(nlogn). The third algorithm was the X-Y 
median algorithm with time complexity O(n2). The last 
algorithm was the nearest neighbor and its time complexity 
was O(n2log2n). Finally, algorithms had been compared and 
we concluded that the X-Y median algorithm is a good 
candidate for the problem. An interesting open problem is 
finding an upper bound for the length of the embedding in 
the heuristics. 
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