

Abstract— In the geometric graph embedding problem, a

graph with n vertices and a set of n points in the plane are
given, and the aim of embedding is to find a mapping between
vertices of the graph to these points in such a way that
minimizes the length of the embedded graph on the point set.
Since the travelling salesman problem is a special case of the
graph embedding problem, therefore, the problem is an NP-
hard problem. In this paper, we consider a particular case
where the given graph is a binary tree. We present four
heuristic approaches, then we compare the time complexity,
and the resulted embedding length of these algorithms.

Index Terms— point-set embedding, geometric embedding,
computational geometry, graph algorithms

I. INTRODUCTION

iven a set P of n points in the plane where n = 2k-1, k =
{0, 1, … , m} and a complete binary tree T with n

nodes, each node of T is mapped onto a distinct point of P.
The problem is called point-set embedding of complete
binary trees. The length of each edge in T is equal to the
Euclidean distance between the points on which its two end
nodes are mapped. Consequently, the length of T is equal to
the total length of its edges. The problem as a special case of
geometric embedding problem addresses the issue of
embedding T onto P with minimum length.

Embedding a free tree onto a point-set is NP-hard,
because it is a generalization of TSP [5]. A path is a special
case of a tree; therefore, in TSP, one should embed a given
cycle (or path) onto a given set of points in the plane such
that the total length of the cycle (or path) is minimized.

Bern et al. [5] developed approximation algorithms for
embedding a complete tree onto a point-set on the line and
in the plane. Their principal techniques were a notion of
approximate geometric sorting, and approximation schemes
for the minimum spanning tree problem in the plane. A
O(nloglogn) time O(logn)-approximation algorithm was
proposed for embedding a complete n-node tree T of
maximum vertex degree onto a set P of n points in the
plane. When the points of P were on a line, a 3-
approximation algorithm was given for embedding of a

M. Norouzitallab is with the Department of Computer Engineering and

Information Technology, Amirkabir University of Technology, Tehran,
Iran(e-mail: m.norouzitallab@gmail.com).

A. Bagheri is with the Department of Computer Engineering and
Information Technology, Amirkabir University of Technology, Tehran,
Iran(e-mail: ar_bagheri@aut.ac.ir).

M. Jahanseir is with the Department of Computer Engineering and
Information Technology, Amirkabir University of Technology, Tehran,
Iran(e-mail: mr.jahanseir@aut.ac.ir).

complete n-node binary tree. They also developed a O(n5.76)
exact algorithm for this problem.

Hansen [14] gave an algorithm with O(logn)
approximation factor which embedded a hypercube,
butterfly, or shuffle-exchange graph into a set of points with
triangle inequality property. He also showed that we can
embed a d-dimensional grid graph into a point-set in
O(nlogn) time with O(log2n) approximation factor for d = 2
,and O(logn) approximation factor for d > 2. Furthermore,
he presented a polynomial time algorithm with O(log2n)
approximation factor which embedded an arbitrary graph
into a uniformly distributed point set.

Bagheri and Razzazi [2] have given a linear time
O(ph(T))-approximation algorithm for geometric
embedding of a n-node free tree T onto a point-set in the
plane. In their algorithm, ph(T) is the path height [3] of the
given tree T. Their algorithm runs in linear time and works
for general free trees. The approximation factor provided by
them is better than the approximation factor of Bern et al.
For n-node trees, ph(T) is usually much less than logn.

There are many related problems that have been
investigated in the literature, where the embedding length is
not important. Cabello [8] showed that planar embedding of
a graph onto a point-set in the plane is an NP-hard problem.
Bose et al. [7] presented a (nlogn) algorithm to optimal
embedding of a tree into a set of points. Bose [6] gave an
algorithm to embed an outer planar graph onto a point set
with O(nlog3n) time complexity. Di Giacomo et al. [11,12]
and Bagheri and Razzazi [4] investigated point set
embedding of trees with given partial drawings. Point set
embedding of colored graph on colored points was studied
in [1,10,13].

In this paper, two sets of heuristic algorithms are
proposed to address the problem of geometric embedding of
a complete binary tree onto a point-set, which is itself a
special case of embedding a free tree in a point-set with
minimum length. The rest of the paper is organized as
follows. The embedding algorithms and their complexity
analysis are given in section 2. Empirical results are
discussed in section 3, and finally section 4 contains some
concluding remarks.

II. THE ALGORITHMS

In this section, four heuristics for geometric embedding
of a complete binary tree onto a point-set are presented. The
first three heuristics are based on finding the median of the
points in the plane. It should be noticed that the first two
heuristics are almost identical and the third one is a
combination of them. Separation of these algorithms in this

Heuristic Algorithms for Geometric Embedding
of Complete Binary Trees onto a Point-set

Mehrab Norouzitallab, Alireza Bagheri, and Mahmoodreza Jahanseir

G

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

paper is only because of some presentation reasons. In
section A, the median based algorithms are posed. Then in
section B, an algorithm that works based on finding nearest
neighbors of the points is proposed.

A. The Median Based Algorithms

The aim of these algorithms is partitioning P into two
subsets with identical number of points, where the points of
each subset have fewer differences in their x-coordinates or
y-coordinates while the root is also mapped onto a point.
With a same policy, the whole tree would be embedded onto
the point set. In our first algorithm, the root of T is mapped
onto the point pm=(xm, ym) of P that its x-coordinate is the
median of all the x-coordinates of the points of P.
Furthermore, the point-set P is partitioned into two subsets
P1 and P2. All of the points in P1 have x-coordinates less
than xm and all the points in P2 have x-coordinates greater
than xm. The two sub trees T1 and T2 of T are recursively
embedded onto P1 and P2. The following pseudo-code
shows how this algorithm works.

X_MEDIAN_EMBEDDING(P, T)

1 if |T| = 0 then

2 return

3 pm = FIND_X_MEDIAN(P)

4 let P1 is the set of all points of P that have x-
coordinates less than x-coordinate of pm

5 let P2 is the set of all points of P that have x-
coordinates greater than x-coordinate of pm

6 let T1 and T2 be the two sub-trees of T

7 MEDIAN_X_EMBEDDING(P1, T1)

8 MEDIAN_X_EMBEDDING(P2, T2)

9 map the root of T onto pm, connect pm to the points
associated with the roots of T1 and T2, if T1 and T2 are
not null.

Theorem 1. The X_MEDIAN_EMBEDDING algorithm

has the time complexity O(nlogn) and it requires O(n) space.
Proof. The time complexity of the algorithm is strictly

depended on the time complexity of the median finder
algorithm. We can find median of the points in O(n) time
[9]. It can be seen simply that the time complexity of the
algorithm has the following recursion:

2 (/ 2) () 0
()

(1) 0

T n O n n
T n

O n

From the master theorem [9], it can be concluded that the
time complexity of the algorithm is O(nlogn). Similarly, the
space complexity of the algorithm can be found by the
following recursion:

(/ 2) () 0
()

(1) 0

S n O n n
S n

O n

Which leads O(n) space complexity.
One can choose y-coordinates instead of x-coordinates,

and this will lead to y median embedding algorithm.
Similarly, in the y median algorithm the same results are
expected.

In the following, “x-y median algorithm” is described

which is a combination of x median and y median
algorithms. In this algorithm, there are two choices to
embed the root of T, where one choice is the x median and
the other is the y median of the points. Furthermore, this
procedure recursively embeds the other nodes of the tree
onto the other points in the plane. For the selection, between
the x median and the y median, the one that minimizes the
length of the embedding is chosen.

The following pseudo code illustrates the x-y median
algorithm. In this algorithm, E keeps the embedding of the
points. Furthermore, Ex and Ey maintain the x-median and
the y-median embedding of the points, respectively.

X_Y_MEDIAN_EMBEDDING(P, T)

1 if |T| = 1 then

2 map the root of T on the remained point in P
into E

3 return E

4 pm_x = FIND_X_MEDIAN(P)

5 let P1_x is the set of all points of P that have x-
coordinates less than x-coordinate of pm x

6 let P2_x is the set of all points of P that have x-
coordinates greater than x-coordinate of pm x

7 pm_y = FIND_Y_MEDIAN(P)

8 let P1_y is the set of all points of P that have x-
coordinates less than x-coordinate of pm y

9 let P2_y is the set of all points of P that have x-
coordinates greater than x-coordinate of pm y

10 let T1 and T2 be the two subtrees of T

11 Ex = X_Y_MEDIAN_EMBEDDING(P1_x, T1)
 X_Y_MEDIAN_EMBEDDING(P2 x, T2)

12 Ex (r) = pm_x , where r is the root of T

13 Ey = X_Y_MEDIAN_EMBEDDING(P1_y, T1)
X_Y_MEDIAN_EMBEDDING(P2 y, T2)

14 Ey (r) = pm_y , where r is the root of T

15 if the length of embedding in Ex is less than the
length of embedding in Ey then

16 return Ex

17 else

18 return Ey

Theorem 2. The X_Y_MEDIAN_EMBEDDING

algorithm has time complexity O(n2) and it needs O(n)
space.

Proof. In the above algorithm, we can find the x-median
and y-median of the points in linear time [9]. Furthermore,
the length of an embedding can be found in O(n) time.
Therefore, we can obtain time complexity of
X_Y_MEDIAN_EMBEDDING algorithm from the
following recursive equation:

4 (/ 2) () 0
()

(1) 0

T n O n n
T n

O n

Which is O(n2). Moreover, the space complexity of the
algorithm follows from the below recursion:

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

(/ 2) () 0
()

(1) 0

S n O n n
S n

O n

Which leads O(n2).
The median based algorithms can be extended to higher

dimensions. Considering the X_MEDIAN_EMBEDDING
algorithm, if the dimension is d, the problem can be divided
into two sub-problems based on the median of the k-
coordinates of the point-set, where k is less than or equal to
d. The time complexity of such an algorithm is only
depended on the number of points and is O(n). Similar to
the X_Y_MEDIAN_EMBEDDING algorithm, a divide and
conquer strategy can be used for higher dimensions so that it
changes the algorithm to select between the median of each
coordinate in P. Therefore, the recursive equation of the
time complexity of this algorithm is T(n)=2dT(n/2) + O(n) =
O(n1+log(d)).

B. The Nearest Neighbors Algorithm

In this algorithm, the root of T is mapped onto a point pr
from the point-set, then its left child is mapped onto the
nearest neighbor of pr, and its right child is mapped onto the
second nearest neighbor of pr. A same strategy is applied to
embed the remained nodes of T onto the remained points of
P where the mapping of the nodes to the nearest neighbors
is done from the leftmost child to the rightmost child in each
level of T. The following pseudo codes show the details of

this algorithm

Nearest_Neighbors_Embedding(P, T)

1 if |T| = 1 then

2 map the root of T onto the only point of P

3 return

4 BEST_EMBEDDING_LEN ← 0

5 R_BEST ← 0

6 For r ← 1 to |P| do

7 EMBEDDING_LEN ←
Embed_Based_On_A_Point(P, T, r)

8 If EMBEDDING_LEN <
BEST_EMBEDDING_LEN then

9 BEST_EMBEDDING_LEN ←
EMBEDDING_LEN

10 R_BEST ← r

11 Embed_Based_On_A_Point(P, T, R_BEST)

Embed_Based_On_A_Point(P, T, r)

1 EMBEDDING_LEN ← 0

2 Q ←

3 let x be the root of T

4 map x onto pr

(a) (b)

(c) (d)

Fig. 1. (a) X Median Embedding (b) Y Median Embedding (c) X-Y Median Embedding (d) Nearest Neighbors Embedding

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

5 ENQUEUE(Q, <pr, x>)

6 While Q ≠ do

7 <ptop, x> ← DEQUE(Q)

8 let xl and xr be the left and right children of x

9 let p1 and p2 be the first and the second unvisited
nearest neighbors of ptop

10 map xl onto p1 and xr onto p2

11 mark p1 and p2 as visited

12 If xl and xr have children then

13 ENQUE(Q, <p1, xl>)

14 ENQUE(Q, <p2, xr>)

15 EMBEDDING_LEN ← EMBEDDING_LEN +
DISTANCE(ptop, p1) + DISTANCE(ptop, p2)

16 return EMBEDDING_LEN

Theorem 3. The nearest neighbors algorithm has time

complexity O(n2log2n) and needs O(n) space.
Proof. The time complexity of the

Embed_Based_On_A_Point algorithm is O(nlog2n), because
the time complexity of finding unvisited nearest neighbors
in the plane using algorithm [15] for each point of P is
O(log2n) and the while loop repeats O(n) times.
Furthermore, in the Nearest_Neighbors_Embedding
algorithm, for each point of P, we call the
Embed_Based_On_A_Point algorithm. Therefore, time
complexity of the nearest neighbors algorithm will be
O(n2log2n). Furthermore, the amount of needed space for
the algorithm is O(n), because we need a queue of size O(n)

to store the mapping between the nodes of the tree and the
points.

The algorithm can be extended to higher dimensions
without any changes. The only difference is the time
complexity which will be changed to O(dn3), where d is the
dimension which affects the time complexity of calculating
Euclidean distance between the points. It should be noticed
that for this time complexity, no nearest neighbors query
processing algorithm is considered.

III. EXPERIMENTAL RESULTS

To study the results of the algorithms for a huge number
of points, some experiments have been conducted. In each
experiment, some points have been generated using a
random function with uniform distribution in Euclidean
space which the points are restricted to have x-coordinates
and y-coordinates between [-C, C]. The experiments have
been repeated for several times with different point-sets and
different values for C. Fig. 1 illustrates final embedding of
our algorithms on a special point-set.

To compare the algorithms with the optimal embedding,
the algorithms have also been compared to the minimum
spanning tree of the point-set. Fig. 2 shows that the X-Y
median algorithm approximates the optimal solution of the
embedding problem properly while the result of X Median
or Y Median is not sufficiently appropriate. The length of
the embedding which is achieved by X-Y median algorithm
is very close to the length of minimum spanning tree of the
same point-set. Also, we know that the length of minimum
spanning tree is less than the length of optimal embedding.
Therefore, the X-Y median algorithm leads a good solution
to the geometric embedding problem for complete binary

Fig. 2. A comparison of the proposed algorithms.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

trees. Finally, based on the resulted embedding length and
the time complexity of the proposed algorithms, it can be
concluded that X-Y Median algorithm is substantially better
than the others.

IV. CONCLUSION

In this paper, four heuristics for geometric embedding of
a complete binary tree into a point-set have been presented.
The X-median algorithm and the Y-median algorithm have
time complexity O(nlogn). The third algorithm was the X-Y
median algorithm with time complexity O(n2). The last
algorithm was the nearest neighbor and its time complexity
was O(n2log2n). Finally, algorithms had been compared and
we concluded that the X-Y median algorithm is a good
candidate for the problem. An interesting open problem is
finding an upper bound for the length of the embedding in
the heuristics.

REFERENCES
[1] M. Badent, E. Di Giacomo, G. Liotta, “Drawing colored graphs on

colored points,” Theoretical Computer Science, vol 408, pp 129-142,
2008.

[2] A. Bagheri, M. Razzazi, “An approximation algorithm for minimum
length geometric embedding of trees,” Tech. Rep., 2010.

[3] A. Bagheri, M. Razzazi, “Minimum height path partitioning of trees,”
Scientia Iranica, vol 17, pp. 99-104, 2010.

[4] A. Bagheri, M. Razzazi, “Planar straight line point set embedding of
trees with partial embeddings”, Information Processing Letters, vol
110, pp 521-523, 2010.

[5] M. W. Bern, H. J, Karloff, P. Raghavan, B. Schieber, “Fast Geometric
Approximation Techniques and Geometric Embedding Problems,“
Theoretical Computer Science, vol 106 , pp. 265-281, 1992.

[6] P. Bose, “On embedding an outer-planar graph on a point set,”
Computational Geometry: Theory and Applications, vol 23, pp. 303-
312, 2002.

[7] P. Bose, M. McAllister, J. Snoeyink, “Optimal algorithms to embed
trees in a point set,” Journal of Graph Algorithms and Applications,
vol 1, pp. 1-15, 1997.

[8] S. Cabello, “Planar embeddability of the vertices of a graph using a
fixed point set as NP-hard,” Journal of Graph Algorithms and
Applications, vol 10, pp 353-363, 2006.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Intorduction to
Algorithms. Cambridge, MA: MIT Press, 2001.

[10] E. Di Giacomo, W. Didimo, G. Liotta, H. Meijer, F. Trotta, S. K.
Wismath, “k-colored point-set embeddability of outer planar graphs,”
Journal of Graph Algorithms and Applications, vol 12, pp 29-49,
2008.

[11] E. Di Giacomo, W. Didimo, G. Liotta, H. Meijer, S. Wismath, “Point-
set embedding of trees with edge constraints,” In: Proceeding of
Graph Drawing, 2008, vol 4875, pp 113-124.

[12] E. Di Giacomo, W. Didimo, G. Liotta, H. Meijer, S. Wismath, “Point-
set embedding of trees with given partial drawings,” Computational
Geometry: Theory and Applications, vol 42, pp 664-676, 2009.

[13] E. Di Giacomo, G. Liotta, F. Trotta, “On embedding a graph on two
sets of points,” International Journal of Foundations of Computer
Science, vol 17 (5), pp 1071-1094, 2006.

[14] M. D. Hansen, “Approximation algorithms for geometric embeddings
in the plane with applications to parallel processing problems,” 30th
Annual Symposium on Foundations of Computer Science, 1989, pp.
604-609.

[15] T. M. Chan, “A Dynamic Data Structure for 3-d Convex Hulls and 2-
d Nearest Neighbor Queries”, Journal of the ACM, vol 57(3):16,
2010.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

