
 

 
Abstract—Biswapped networks are a family of two-level 

interconnection networks built by taking multiple copies of a 
factor network as modules and connecting them in a simple 
swapped rule,  and have been shown to be suitable for building 
massive parallel computers due to their attractive attributes. In 
this paper, the bipancyclicity properties of a Biswapped 
network are investigated based on a given cycle in its factor 
network. By establishing a close relationship between a cycle in 
the Biswapped network and two associated closed paths in the 
factor network, we propose an algorithm for constructing cycles 
of various even lengths in the Biswapped network.  From this 
algorithm, it is shown that cycles of all even lengths from 8 up to 
2l2 can be embedded in the Biswapped network if its factor 
network contains an l-length cycle. This shows that a 
Biswapped network is 8-bipancyclic if its factor network is 
Hamiltonian. 
 

Index Terms—Biswapped Network, Cycle, Embedding, 
Interconnection Network 
 

I. INTRODUCTION 

ISWAPPED networks are modified versions of 
well-known OTIS (Optical Transpose Interconnection 

System) networks [1]. An OTIS network, also called a 
swapped network, is built by taking multiple copies of a 
factor network as modules and connecting these modules in a 
simple swapped rule. OTIS networks have received 
considerable attention over the past two decades due to many 
favorable attributes coming from their simple connectivity 
rule [2, 3, 4, 5]. However, the very connectivity rule causes a 
small asymmetry in OTIS networks and many analyses and 
algorithms for OTIS networks become complicated. 
Biswapped networks have a similar to but more unified 
connectivity rule than the corresponding OTIS networks, 
which removes the inherent asymmetry of OTIS networks, as 
well as the attendant complications in analyses and 
applications [1]. Fig.1 depicts an example factor network and 
the associated swapped network and Biswapped network. It 
has been shown that Biswapped networks are superior to 
corresponding OTIS networks with regard to a number of 
performance criteria [6], including symmetry and fault 
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tolerance, as well as simplicities in analyses and algorithms. 
These results indicate that the Biswapped network 
architecture is a competitive scheme for constructing large, 
scalable, modular, and robust networked systems [7, 8]. 

Embedding cycles of different lengths in networks is one 
of the fundamental problems in network virtualization 
because many applications are based on cycles [9, 10]. For 
example, cycle embedding can transplant parallel algorithms 
developed for cycles to a new network without any efficiency 
loss. Nevertheless, techniques of embedding cycles of 
various lengths in different networks are distinct because 
they are generally constructive and topology-specific [11, 12, 
13, 14]. Hence, it is hard to extend the techniques from one 
network topology to another one even in the same family. To 
the best of our knowledge, previous research in this direction 
was mainly restricted to the hypercube network and its 
variants [15, 16, 17, 18]. Recently, it has been proved by a 
constructive method that if a factor network contains an 
l-cycle, then cycles of all lengths from 7 up to l2 can be 
embedded in the corresponding OTIS network. This 
indicates that an OTIS network is 7-pancyclic when its factor 
network is Hamiltonian [19, 20]. This motivates this work. 
From Fig.1, we easily see that each cycle in the Biswapped 
network has an even length (no cycles of odd lengths exist). 
In this paper, we investigate the problem of embedding 
even-length cycles in Biswapped networks. Using a simple 
constructive method, we prove that if there exists an l-cycle 
in the factor network, then cycles of all even lengths from 8 to 
2l2 are easily embedded in the Biswapped network, which 
implies that the Biswapped network is 8-bipancyclic if its 
factor network is Hamiltonian. 

The remainder of this paper is organized as follows. 
Section II introduces some definitions and notations, and 
Section III gives our algorithm for embedding even-length 
cycles in Biswapped networks with the bipancyclic 
properties analyzed. Section VI concludes this paper.  

 

II. PRELIMINARIES 

In this paper, terms graph and network are used 
interchangeably because networks are modeled as graphs. 

A. Bipancyclicity 

    Let G be a simple undirected graph (graph, for short) with 
the node set V(G) and the edge set E(G). A path is a sequence 
(v1,v2, …,vk) of nodes such that, for 1ik1, (vi, vi+1)E(G), 
where the first node v1 and the last node vk are called its 
end-nodes. The length of a path P is the number of edges 
contained within P, denoted by |P|. A path is called closed if
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Fig. 1.  An example factor network and the associated swapped network and Biswapped network.

its end-nodes are the same. A cycle is a closed path that 
repeats no node, except for the end-nodes. An l-cycle is a 
cycle of length l, and is called Hamiltonian cycle in the case 
of l=|V(G)|. Graph G is called Hamiltonian if it contains a 
Hamiltonian cycle. Alternatively, we denote by uv the 
edge (u,v)E(G), and by v1v2…vk-1vk the path 
(v1,v2, …,vk-1,vk). Other notation and terminology used in this 
paper follow [21] unless otherwise stated. 

In general, pancyclicity and bipancyclicity of a graph are 
defined as follows [10]. 
Definition 1.  A graph G is t-pancyclic if it contains cycles of 
all lengths from t up to |V(G)|, where t is an integer such that 
3 t |V(G)|. A graph G is t-bipancyclic if it contains cycles of 
all even lengths from t up to |V(G)|, where t is an even number 
such that 4 t |V(G)|. 

B. Biswapped Networks 

Biswapped networks are defined as follows [1]. 
Definition 2. Biswapped Network(BSN): Given a factor 
graph , the Biswapped network constructed from graph , 
denoted by BSN(), is a graph with node set V(BSN()) = {i, 
g, p| g, pV(), i=0,1} and edge set E(BSN()) that 
consists of intra-cluster edges {(i, g, p,i, g, q)| (p, 
q)E(), gV(), i=0,1} and inter-cluster edges {i, g, 
p,1i, p, g) | g, pV(), i=0,1}.  

Let |V()|=n and V()={0,1,…,n1}. BSN() has N= 2n2 
nodes and is composed of two parts (called part 0 and part 1), 
each part of which can be divided into n sub-networks (called 
clusters 0,1,…,n1, respectively) with each isomorphic to the 

factor network . A node with identifier i, g, p corresponds 
to node p of cluster g in part i. Node i, g, p is connected to 
node 1i, p, g via inter-cluster edge (i, g, p, 1i, p, g). 
Fig. 1 gives an example Biswapped network with a cycle of 
four nodes as the factor network . Obviously, if every 
cluster of BSN() is viewed as a super-node, then the 
resulting graph of all the super-nodes along with all the 
inter-cluster edges will be a complete bipartite graph. 
Biswapped networks are also called bipartite swapped 
networks.  

C. Notations 

 In the remainder of this paper, we assume that the factor 
graph  contains a cycle of length l (3 l n), denoted by 
C

(l). Without loss of generality, we further assume that the 
node set of cycle C

(l)  is {0, 1 ,…, l1}, and C
(l)  is denoted 

by 012…l1 0 clockwise, or by 0l1 
l2…1 0 counter-clockwise. For convenience, we use 
the following notations for any two distinct x, y{0, 1, … , 
l1}:  

 P[x,y]: The sub-path from x to y clockwise in C
(l) , 

i.e., x x+1 x+2…y1y. 
 P-1[x,y]: The sub-path from x to y counter-clockwise 

in C
(l) , i.e., x x1 x2…y+1 y.  

 xy : The sub-path from x to y in C
(l), which is either 

P[x,y] or P-1[x,y]. 
In the above notations, arithmetic operations “+” and “” 

are the corresponding mod l arithmetic operation. We use |P| 
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Fig. 2. An illustration of combined closed paths of the factor network  derived from a cycle in the Biswapped network BSN(). 

 

to denote the length of path P. For any two distinct x, y{0, 
1, …, l1}, P[x,y] and P-1[x,y] are counter paths of each other, 
and |P[x,y]|+|P-1[x,y]| = l. 
 

III. CONSTRUCTING EVEN-LENGTH CYCLES 

In this section, we first characterize an arbitrary cycle 
CBSN() in BSN() based on the given cycle C

(l) in the factor 
network , and then give an algorithm for constructing cycles 
of various even lengths in BSN(). 

A. Basic Idea 

In order to obtain a method for constructing cycles in 
Biswapped networks in a general sense, we restrict all 
intra-cluster edges used in CBSN() to those corresponding 
edges of C

(l) in every cluster since it is isomorphic to the 
factor network . For convenience, moreover, we allow CBSN() 
to pass through any cluster at most one time. According to the 
connectivity rule for the Biswapped network architecture, we 
have either CBSN() is completely contained within a cluster, 
or CBSN() goes through even (at least 4) clusters with half 
clusters in each part. The former case, where CBSN() is 
isomorphic to C

(l), is trivial. Now assume that CBSN() passes 
through one by one cluster y1 of part 0, cluster x1 of part 1, 
cluster y2 of part 0, cluster x2 of part 1,..., cluster yk of part 0, 
cluster xk of part 1, where k{2,3,…,l}. An illustration is 
shown in Fig.2. It is clear that all the sub-paths of CBSN() that 
are contained in the clusters of part 0 form a k-segment 
combined closed path of factor graph : 
x1x2…xk-1xkx1, denoted by C0, and that all the 
sub-paths of CBSN() that are contained in the clusters of part 1 
form a k-segment combined closed path of factor graph : 
y1y2…yk-1yky1, denoted by C1. Let C01 be the set 
of all inter-cluster edges in CBSN() that connect the sub-paths 
of part 0 with the sub-paths of part 1. Then, the length of 
cycle CBSN() can be calculated by 

CBSN()C0C1C01

where |C01|=2k, and 

                 



 

1

1
110

k

i
kii xxxxC ||||||  





 

1

1
111

k

i
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Obviously, we easily obtain a cycle CBSN() in BSN() 
based on two k-segment combined closed paths constructed 
respectively for part 0 and part 1 for any k{2, 3,…, l}. The 
length of CBSN() depends on the value of k and the lengths of 
all k sub-paths in every combined closed path. 

Recall that each sub-path x y in C
(l) is either P[x,y] or 

P-1[x,y], which have different lengths (the sum of these two 
lengths is l ). By choosing P[x,y] or P-1[x,y] for each sub-path 
x y in every combined closed path, we can get combined 
closed paths of various different lengths. The following two 
lemmas give respectively some possible lengths of a 
2-segment combined closed path and an l-segment combined 
closed path provided that the factor network contains an 
l-length cycle.  

Lemma 1. Given an l-length cycle in factor network , for 
any t{2, 4, 6,…,2(l1)}, there exists a 2-segment combined 
closed path of length t in . 

Proof. For any i{1, 2,…, l1}, P[0,i]P-1[i,0] is a 
combined closed path of length 2i. This completes the proof.  
� 
Lemma 2. Given an l-length cycle in factor network , for 
any t{l, l+2, l+4,…, 3l4)}{2l, 2l+2, 2l+4,…, l2l)}, 
there exists an l-segment combined closed path M[i,j] in  
with |M[i, j]|=2i+(l2)j=t  for i, j{1, 2,…, l1}. 

Proof.  For any i{1, 2,…, l1}, let M[i,1] be the 
following path  

0ii1…21i+1…l2l10 
Specifically speaking, the path is 

P[0,i]P-1[i,i1]...P-1[2,1]P[1,i+1]…P[l2,l1] 
P[l1,0]. 

Fig. 3 (a) and (b) gives respectively the cycle C
(l) 

contained in the factor network  and the l-segment 
combined closed path M[i,1]. Clearly, M[i,1] is an l-segment 
combined closed path of length 2i+l2, which can take all 
numbers from set { l, l+2, l+4,…, 3l4} due to i{1, 2,…, 
l1}. Note that all l sub-paths of M[1,1] are of unit length, 
and for each i{2, 3,…, l1}, M[i,1] has exactly l2 
sub-paths of unit length among all its l sub-paths. Thus, we 
can replace any j sub-paths of unit length in M[i,1] with their 
corresponding counter paths of length l1 (i{1, 2,…, l1}, 
j{1, 2,…, l2}). The resulting combined closed path, 
denoted by M[i,j], has length 2i+(l2)j (i{1, 2,…, l1}, 
j{2, 3,…, l1}), which can take all even numbers from 2l to 
l2l. This completes this proof.  �   
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B. Algorithm 

Based on the above two lemmas, an algorithm for 
constructing even-length cycles in a Biswapped network with 
a factor network containing an l-length cycle is described in 
Alg.1. 

_______________________________________     __ _ 
Algorithm 1 Constructing Even-Length Cycles in BSNs        
Input: A factor network  containing a cycle of length l, 
and an even number t (8 t 2l2). 
Output: A cycle CBSN() of length t in BSN(). 
Begin 
1. Case 1 (8t2l+4):  

k2; 
C0P[0,1]P-1[1,0]; 
C1P[0,t/23]P-1[t/23,0] 

2. Case 2 (2l+6t4l):  
k2; 
C0P[0, l1]P-1[l1,0]; 
C1P[0,t/2l1]P-1[t/2l1,0] 

3. Case 3 (4l+2t6l2):   
kl; 
C0M[2,1]; 
C1M[t/22l,1] 

4. Case 4 (6ltl2+3l):  
kl; 
C0M[2,2]; 
C1M[i,j], where |M[i,j]|= t4l for i, j{1,2,…,l1} 

5. Case 5 (l2+3l+2t2l2):  
kl; 
C0M[l1, l1]; 
C1M[i,j], where |M[i,j]|= tl2l for i, j{1,2,…,l1}  

6. Construct CBSN() according to k, C0 and C1 
End________________________________      ______ 
 

C. Algorithm Analysis 

The following theorem states the properties of Alg.1 with 
regard to the correctness and the time complexity. 
Theorem 1. Given an l-length cycle in factor network , 
where l 3, for any t {8, 10, 12,…, 2l2}, Alg.1 yields a cycle 
of length t in BSN() in time O(n2), where n is the number of 
nodes in . 

Proof.  Firstly, according to the above discussion, we have 
that the path CBSN() generated by Alg.1 is a cycle in BSN(). 
Secondly, the length of CBSN() can be immediately 

calculated according to Eq.(1) and Lemmas 1 and 2, which is 
clearly t.  The constructions of the combined closed paths C0 
and C1 in Steps 1-5 in Alg. 1 is very straightforward, and  it is 
trivial to obtain CBSN() in Step 6 based on the generated k, C0 
and C1. Hence, the algorithm has time complexity O(n2) due 
to l n.   This proof is complete.  � 

 
Recall that BSN() has N=2n2 nodes if the factor network 

 has n nodes. Alg.1 is very efficient since it yields the 
required cycle in BSN() in linear time. On the other hand, if 
the factor network  contains a cycle of length n, i.e., it is 
Hamiltonian, BSN() will contain all even-length cycles 
whose lengths range from 8 up to 2n2 by the above theorem.  
This immediately yields the following result about 
bipancyclicity of BSN(). 

 
Theorem 2.  If factor network  is Hamiltonian, then BSN() 
is 8-bipancyclic. 

D. Examples 

In the following, we give results of Alg. 1 when run on the 
following input instances: the factor network shown in Fig. 
1(a) that is Hamiltonian, l=4 and t = 8,10,…,2l2. 

According to the method proposed in Section II, given a k 
and two k-segment combined closed paths C0 and C1 in the 
factor network, where C0=  x1x2…xk-1xkx1 and  
C1=  y1y2…yk-1yky1, the corresponding cycle in 
the Biswapped network is as follows. 

CBSN()= 0,y1,xkx11,x1,y1y20,y2,x1x2 

1,x2,y2y3...0,yk-1,xk-2xk-11,xk-1,yk-1yk 

0,yk,xk-1xk1,xk,yky1 

Here we use  () to represent an inter-cluster edge from a 
node of a cluster in part 0 (part 1) to a node of a cluster in part 
1(part 0). For convenience, we only give the k and the two 
k-segment combined closed paths C0 and C1 generated by Alg. 
1 for every input instance considered here. The results are as 
follows.  

 t=8  (Case 1):   k=2;  
        C0= 010;   
        C1= 010 
 t=10 (Case 1):   k=2;  
        C0= 010;   

    C1= 02(12)0 (10) 
 t=12 (Case 1):  k=2;  
        C0= 010;   

  C1= 03(123)0 (210) 
 t=14 (Case 2):  k=2;  

 C0= 03(123)0 (210);   
        C1= 02(12)0 (10) 
 t=16 (Case 2):  k=2;  
        C0= 03(123)0 (210); 
        C1= 03(123)0 (210) 
 t=18 (Case 3):  k=4;  
        C0=M[2,1]= 02(12)13(23)0; 
        C1=M[1,1]= 01230 
 t=20 (Case 3):  k=4;  
        C0=M[2,1]= 02(12)13(23)0;  

Fig. 3.  (a) The cycle C
(l) contained in the factor network . (b) The 

l-segment combined closed path M[i,1] in the factor network , where 
0i  and 1i+1 respectively represent  paths 0i  and 1i+1. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



 

        C1=M[2,1]= 02(12)13(23)0 
 t=22 (Case 3):  k=4;  
       C0=M[2,1]= 02(12)13(23)0;  

C1=M[3,1]= 03(123)210(23 
0) 

 t=24 (Case 4):  k=4;  
C0=M[2,2]= 02(12)13(23)0(2             

10);  
C1=M[3,1]= 03(123)210(23       
                     0) 

 t=26 (Case 4):  k=4;  
C0=M[2,2]= 02(12)13(23)0(2             

10);  
C1=M[3,2]= 03(123) 2(012)1 

0(230) 
 t=28 (Case 4):  k=4;  

C0=M[2,2]= 02(12)13(23)0(2             
10);     

C1=M[3,3]= 03(123) 2(012)1 
(301)0(230) 

 t=30 (Case 5):  k=4;  
C0=M[3,3]= 03(123) 2(012) 1 

(301)0(230);                  
C1=M[3,2]= 03(123) 2(012)1 

0(230) 
 t=32 (Case 5):  k=4;  

C0=M[3,3]= 03(123) 2(012) 1 
(301)0(230); 

      C1=M[3,3]= 03(123) 2(012) 1  
                            (301)0(230) 
 

IV. CONCLUSION 

Given an l-cycle in the factor network, a simple algorithm 
has been proposed for embedding cycles of various even 
lengths ranging from 8 up to 2l2 in the Biswapped network 
based on the feature of modularity and the interconnection 
rule in the topology. This result indicates that a Biswapped 
network is 8-bipancyclic if its factor network is Hamiltonian. 
The basic idea behind the algorithm is to characterize the 
structure of a cycle in the Biswapped network, and then 
establish the relationship between the cycle in the Biswapped 
network and two associated closed paths in the factor 
network. 

In some Biswapped networks, including the one shown in 
Fig.1(c), no odd-length cycles exist. This fact may result 
from the observation that Biswapped networks are closely 
related with bipartite graphs.  An interesting open problem is 
what odd-length cycles can be embedded in a Biswapped 
network if its factor network contains an odd-length cycle.  

 

REFERENCES 
[1] W.Xiao, B.Parhami, W.Chen, M.He, W.Wei, “Fully Symmetric 

Swapped Networks Based on Bipartite Cluster Connectivity,” 
Information Processing Letters, vol. 110, pp. 211-215, 2010.  

[2] G.C.Marsden, P.J.Marchand, P.Harvey, et al., “Optical Transpose 
Interconnection System Architectures,” Optical Letters, vol. 18, pp. 
1083-1085, 1993.  

[3] C.-F.Wang, S.Sahni, “Image Processing on the OTIS-Mesh 
Optoelectronic Computer,” IEEE Transactions on Parallel and 
Distributed Systems, vol. 11, pp. 97-109, 2000.  

[4] B.Parhami, “Swapped interconnection networks: Topological, 
Performance, and Robustness Attributes,” J. Parallel Distrib. Comput., 
vol. 65, pp. 1443-1452, 2005.  

[5] W.Chen, W.Xiao, B. Parhami, “Swapped (OTIS) Networks Built of 
Connected Basis Networks are Maximally Fault Tolerant,” IEEE 
Transactions on Parallel and Distributed Systems, vol. 20, pp. 361-366, 
2009.  

[6] W.Chen, W.Xiao, “Topological Properties of Biswapped 
Networks(BSNs): Node Sysmmetry and Maximal Fault Torerance,” 
Chinese Journal of Computers(in Chinese), vol. 33, pp. 822-832, 2010. 

[7] W. Xiao, H. Liang, B. Parhami, “A Class of Data-Center Network 
Models Offering Symmetry, Scalability and Reliability,” Parallel 
Processing Letters, vol. 22, no. 4, pp. 1250013:1-10, 2012. 

[8] S. Ling, W. Chen, “Node-to-Set Disjoint Paths in Biswapped 
Networks,” The Computer Journal, doi:10.1093/comjnl/bxt034, 2013. 

[9] J.-M. Xu, M. Ma, “Survey on path and cycle embedding in some 
networks,” Front. Math. China, vol. 4, no. 2, pp. 217-252, 2009. 

[10] Y. Xiang, I.A. Stewart, “Bipancyclicity in k-Ary n-Cubes with Faulty 
Edges under a Conditional Fault Assumption,” IEEE Transactions on 
Parallel and Distributed Systems, vol. 22, pp. 1506-1513, 2011. 

[11] A. Kanevsky, C. Feng, “On the embedding of cycles in pancake 
graphs,” Parallel Computing, vol. 21, pp. 923-936, 1995. 

[12] C.-H. Tsai, “Linear Array and Ring Embeddings in Conditional Faulty 
Hypercubes,” Theoretical Computer Science, vol. 314, pp. 431-443, 
2004. 

[13] T.-K. Li, “Cycle embedding in star graphs with edge faults,” Applied 
Mathematics and Computation, vol. 167, pp. 891-900, 2005. 

[14] S.-Y. Hsieh, J.-Y. Shiu, “Cycle embedding of augmented cubes,” 
Applied Mathematics and Computation, vol. 191, pp. 314-319, 2007. 

[15] J. Fan, X. Lin, X. Jia, “Node-Pancyclicity and edge-Pancyclicity of 
crossed cubes,” Information Processing Letters, vol. 93, pp. 133-138, 
2005. 

[16] S.-Y.Hsieh, T.-J.Lin, and H.-L.Huang, “Panconnectivity and 
Edge-Pancyclicity of 3-Ary n -Cubes,” J. Supercomputing, vol. 42, pp. 
225-233, 2007. 

[17] C.-H.Tsai, “Fault-tolerant cycles embedded in hypercubes with mixed 
link and node failures,” Applied Mathematics Letters, vol. 21, no. 8, pp. 
855-860, 2008. 

[18] S.-Y.Hsieh and C.-W.Lee, “Pancyclicity of Restricted Hypercube-Like 
Networks under the Conditional Fault Model,” SIAM J. Discrete Math., 
vol. 23, pp. 2100-2119, 2010. 

[19] T.Shafiei, M.R.Hoseiny-Farahabady, A.Movaghar, H.Sarbazi-Azad, 
“On pancyclicity properties of OTIS-mesh,” Information Processing 
Letters, vol. 111, pp. 353-359, 2011. 

[20] M. Malekimajd, M.R.Hoseiny-Farahabady, A.Movaghar, 
H.Sarbazi-Azad, “Pancyclicity of OTIS (swapped) networks based on 
properties of the factor graph,” Information Processing Letters, vol. 
111, pp. 1114-1119, 2011. 

[21] D.B.West, Introduction to Graph Theory, 2nd ed., Upper Saddle River 
NJ: Prentice Hall, 2001. 

 
 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014




