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Abstract—The simplex algorithm is a widely used method
for solving a linear programming problem (LP) which is first
presented by George B. Dantzig. One of the important steps
of the simplex algorithm is applying an appropriate pivot rule,
the rule to select the entering variable. An effective pivot rule
can lead to the optimal solution of LP with the small number
of iterations. In a minimization problem, Dantzig’s pivot rule
selects an entering variable corresponding to the most negative
reduced cost. The concept is to have the maximum improvement
in the objective value per unit step of the entering variable.
However, in some problems, Dantzig’s rule may visit a large
number of extreme points before reaching the optimal solution.
In this paper, we propose a pivot rule that could reduce the
number of such iterations over the Dantzig’s pivot rule. The
idea is to have the maximum improvement in the objective value
function by trying to block a leaving variable that makes a little
change in the objective function value as much as possible. Then
we test and compare the efficacy of this rule with Dantzig’
original rule.

Index Terms—linear programming; simplex algorithm; pivot
rule; absolute change pivot rule.

I. INTRODUCTION

L INEAR programming (LP) is widely used for modeling
and solving optimization problems in many industries.

An LP model includes an objective function subject to a
finite number of linear equality and inequality constraints. To
solve an LP problem, we need to consider the computational
complexity that depends on the number of constraints and
variables. The popular algorithm for solving LP problems
is the well-known simplex algorithm which is presented by
George B. Dantzig [1], in 1963.

One of the important steps of the simplex algorithm is
a pivot rule, the rule that is used for selecting the entering
variable. An effective rule can lead to the solution of LP
with small number of iterations. Dantzig’s original rule is
the standard pivot rule but this rule is efficient only for LP
with small sizes. Moreover Dantzig’s rule can not prevent
cycling in linear programming [2] and takes a lot of iterations
in some case. Klee and Minty [3] exhibited the worst case
running time of simplex algorithm using Dantzig’s pivot rule.
To avoid this weakness, there are many research studies
trying to improve simplex algorithm, via the pivot rule by
reducing the number of iterations and the solution time. In
1977, Forrest and Goldfarb [4] presented a way to reduce the
number of iterations which was called “Steepest-edge rule”.
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Later, other rules followed such as Devex rule by Harris [5]
and the largest-distance pivot rule by Pan [6].

In this paper, we proposes the new pivot rule called abso-
lute change pivot rule. The idea is trying to block a leaving
variable that makes a little change in the objective function
value as much as we can. If we can prevent such variables
to leave the basis, it could make the objective function value
improved further than using a regular Dantzig’s pivot rule and
therefore lead to fewer number of iterations. We report the
computational results by testing and comparing the number
of iterations from this new rule to Dantzig’ original pivot
rule.

This paper is divided in to five sections. Section 1 gives
a brief introduction; Section 2 describes the preliminaries
of linear programming, simplex algorithm and pivot rule.
Section 3 explain the main idea of our pivot rule and show
Klee and Minty problem [3] for an example. Section 4 deals
with the computational results by testing and comparing the
number of iterations from this new rule to another rule and
conclusion has been drawn at the end.

II. PRELIMINARIES

A. The simplex method

Consider the linear programming (LP) problem in the
standard form, where A ∈ Rm×n(m < n), b ∈ Rm, c ∈ Rn

and rank(A) = m.

Minimize cTx

subject to Ax = b (1)
x ≥ 0.

After possibly rearranging the column of A, let A =
[B N ] where B is an m × m invertible matrix and N is
m × (n − m) matrix. Here B is called the basic matrix
and N the associated nonbasic matrix. We denote basic and
nonbasic index set by IB and IN respectively. Let x =

[
xB

xN

]
be the solution of the equation Ax = b, where xB = B−1b
and xN = 0 is called a basic solution of the system. If
xB ≥ 0, x is called a basic feasible solution of the system.

Suppose that a basic feasible solution of the system (1) is[
B−1b
0

]
, whose objective value z0 is given by

z0 = cTBB
−1b. (2)

Now let x =

[
xB

xN

]
denote the set of basic and nonbasic

variables for the given basis. Then feasibility requires that
xB ≥ 0 and xN ≥ 0. We denote the jth column of A by
Aj . Then we can rewrite the system Ax = b as:

BxB +NxN = b. (3)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



Then
xB = b̄−

∑
j∈IN

(yjxj) (4)

where b̄ = B−1b and yj = B−1Aj . Let z be the objective
function value, we get

z = z0 −
∑
j∈IN

(zj − cj)xj (5)

where zj = cTBB
−1Aj for each nonbasic variable. The

negative reduced cost is obtained by zj − cj . The key result
exhibits that the optimal solution is achieved if the index set

J = {j | zj − cj > 0, j ∈ IN} (6)

is empty.

B. The simplex algorithm

Consider the algorithm of the simplex method with
Dantzig’s pivot rule for solving linear programming problem
of the system (1).
Initialization Step : Choose a starting basic feasible
solution with the basis B and the associated nonbasic N .
Main Step :

Step1. Determine the entering variable from the nonbasic
variables: By Dantzig’s rule
choose xk by zk − ck = max{zj − cj | j ∈ IN}.

Step2. If zk − ck ≤ 0, then
[
xB

xN

]
is an optimal solution.

Stop the algorithm.
Step3. Determine the leaving variable from the basic vari-

ables by the minimum ratio test.
Step4. Perform the pivot operation using the entering and

the leaving variable, and go to Step 1.

C. The simplex method in tableau format

Suppose that we have a starting basic feasible solution
x with basis B. The linear programming problem can be
represented as follows:

Minimize z

subject to z − cTBxB − cTNxN= 0 (7)
BxB +NxN = b (8)
xB , xN ≥ 0.

From equation (8) we have

xB +B−1NxN = B−1b. (9)

Multiplying (9) by cTB and adding to equation (7), we get

z + (cTBB
−1N − cTN )xN = cTBB

−1b. (10)

Set, xN = 0, and from equation (9) and (10) we get
xB = B−1b and z = cTBB

−1b. Also, from (9) and (10) we
can conveniently represent the current basic feasible solution
with basis B in the following tableau.

The tableau format, reports the value of the objective
function z = cTBB

−1b, the basic variables xB = B−1b and
the cost row cTBB

−1N − cTN , which consists of the zj − cj
values for the nonbasic variables. ∀j, zj − cj ≤ 0, then
LP is at optimal solution. If xk increases, then the vector
yk = B−1Ak, which is stored in the tableau in rows 1

z xB xN RHS

z 1 0 cTBB
−1N − cTN cTBB

−1b Row 0

xB 0 I B−1N B−1b Rows 1 through m

through m under the variable xk, will determine how much
xk can be increased. If yk ≤ 0, then xk can be increased
indefinitely without being blocked, and the optimal objective
value is unbounded. Conversely, if yk � 0, that is, if yk
has at least one positive component, then the increase in
xk will be blocked by one of the current basic variables,
which drops to zero. The minimum ratio test determines the
blocking variable.

D. Pivot rule
In terms of the geometric motivation of the simplex

method, a pivot operation is equivalent to moving from a
basic feasible solution to an adjacent basic feasible solution.
If we want to pivot at the non-negative and nonzero pivot
element, steps of pivot operations are as follows. First, select
a nonbasis variable in the column k as a pivot column, the
variable corresponding to the pivot column enters the set of
basic variable is called entering variable. Second, divide
all of element in the row r that associate with the selected
nonbasic column by its reciprocal to change this element to 1.
The entries in the column that containing the number 1 have
to change to 0 by row operation method, then the column
k becomes to the one of column of identity matrix. So the
entering variable is now a basic variable which is replacing
the variable in row r, the variable being replacing leaves the
set of basic variable is called the leaving variable.

The method that use to select an entering variable in the
simplex algorithm is called as pivot rule. The best pivot
rule would move along the path with the shortest number of
visited nodes from the starting point to an optimal solution.
It is well known that Dantzig’s pivot rule [1] is the first
rule to select the entering variable. If J ̸= ∅, the entering
variable xk based on Dantzig’s pivot rule is selected by the
most negative reduced cost as follows

k = argmax{zj − cj | j ∈ J}. (11)

After the pivot column has been selected, then we consider
only the positive entries in the pivot column k. If all entries in
pivot column k is not positive then the problem is unbounded.
If the pivot column is k, then the pivot row r is chosen so
that

r = argmin
{

b̄j
yjk

| yjk > 0, j ∈ {1, ...,m}
}

This is called the minimum ratio test.

III. ABSOLUTE CHANGE PIVOT RULE

To select the entering variable, Dantzig’s pivot rule con-
sider only the most negative reduced cost. It is possible
that we can select an entering variable that can improve
the objective function value as much as possible. Hence we
propose a pivot rule to improve the objective value by trying
to avoid the leaving variable that causes small change in the
objective function. We call it absolute change pivot rule.
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A. The concept of absolute change pivot rule

First, this rule looks for the row with the minimum
right-hand-side. The motivation behind this is that, given an
entering variable, the basic variable associated with this row
will have a tendency to become zero first and, as the result,
tends to become the leaving variable. By avoiding having
this variable leaving the basis, we can increase the value
of the entering variable further. To prevent such variable
from leaving the basis, we look for an entering variable that
has zero or negative value in that row so that the minimum
ratio is not applicable for that row. If there is more than
one candidate for such entering variable, we look for the
row with the next minimum right-hand-side and repeat the
process until we have only one candidate or until we cannot
find a row with zero or negative value anymore. If we still
end up with more than one entering candidate, we select
the one with the most negative reduced cost. In summary,
this rule heuristically selects the entering variable that can
improve the objective value more.

Simplex algorithm with absolute change pivot rule

Step1. Check zj − cj ≤ 0 for all j ∈ J , then
[
xB

xN

]
is an

optimal solution. Stop the algorithm.
Step2. Determine the entering variable by using absolute

change pivot rule.
i. Set CIB = IB . Let J = {j | zj − cj > 0, j ∈

IN}
ii. Select index r such that r =

argmin{b̄i | for i ∈ IB}
iii. Let Ĵ = {j ∈ J | Arj ≤ 0}. If Ĵ ̸= ∅, let

J = Ĵ .
• If |J | = 1, go to (iv). Else, remove i from

CIB . Go to (ii).
iv. Else, choose xk by zk − ck = max{zj −

cj | j ∈ J}
Step3. Determine the leaving variable from the basic vari-

ables by the minimum ratio test.
Step4. Perform the pivot operation using the entering and

the leaving variable, and go to Step 1.

B. Illustration of the method

The proposed pivot rule is shown with two examples,
one from the Klee and Minty problem and another one is
randomly generated linear programming problem.

Example 1. Klee and Minty problem

In 1972, Klee and Minty showed a collection of LP
problems that the worst-case complexity of the simplex
method with Dantzig’s pivot rule is exponential time. The
collection of LP is given by

Minimize −
n∑

j=1

10n−jxi,

subject to 2
i−1∑
j=1

10i−jxj + xi ≤ 100i−1, i = 1, . . . , n,

(12)
x ≥ 0, i = 1, . . . , n.

The simplex method with Dantzig’s pivot rule requires 2n−1
iterations to solve the Klee and Minty problem.

The following examples are presented to show the effi-
ciency of the proposed pivot rule. For simplicity, we use
Klee and Minty problem with n = 3.
Consider the following problem:

Minimize − 100x1 − 10x2 − x3,

subject to x1 ≤ 1,

20x1 + x2 ≤ 100,

200x1 + 20x2 + x3 ≤ 10000,

x1, x2, x3 ≥ 0.

The problem above can be written in tableau format, where
x4, x5, x6 are the slack variables, as follows:

z x1 x2 x3 x4 x5 x6 RHS

z 1 100 10 1 0 0 0 0

x4 0 1 0 0 1 0 0 1

x5 0 20 1 0 0 1 0 100

x6 0 200 20 1 0 0 1 10000

From the tableau we can see that the right-hand-side
entries are already sorted from smallest to largest values.
Consider the first row (x4), since the element in the second
and third column are zero then x2 and x3 can be the entering
variables. x1 is not considered as a candidate because the
element in the first column is non negative. Since we still
have two candidates, the second row has to be considered.
The second row has zero value at the third column so x3 is
a candidate while x2 is no longer a candidate since its entry
is positive. As the result, the entring variable is x3. From
the minimum ratio test we get x6 as the leaving variable.
After pivot operation, we obtain the optimal solution which
is shown in the tableau as follows.

z x1 x2 x3 x4 x5 x6 RHS

z 1 -100 -10 0 0 0 -1 -10000

x4 0 1 0 0 1 0 0 1

x5 0 20 1 0 0 1 0 100

x3 0 200 20 1 0 0 1 10000

For this example the optimal solution is x1 = 0, x2 = 0
and x3 = 10000. The optimal value is 10000 with the number
of iteration is 1.

Example 2. Consider the following randomly generated
linear programming problem :

Minimize − 50x1 − 2x2 − 46x3 − 40x4 − 15x5,

subject to 15x1 − 3x2 + 22x3 + 3x4 − 4x5 ≤ 1467,

17x1 + 11x2 + 23x3 + 19x4 − 28x5 ≤ 1733,

10x1 − 18x2 + 21x3 + 28x4 + 6x5 ≤ 1758,

−49x1 + 6x2 + 36x3 + 34x4 − 2x5 ≤ 606,

−33x1 + 25x2 + 48x3 − 14x4 + 12x5 ≤ 1365,

x1, x2, x3, x4, x5 ≥ 0.
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Let x6, x7, x8, x9, x10 be the slack variables associated
with all of constraints in example 2, respectively. The initial
simplex tableau for example 2 is:

z x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS
z 1 50 2 46 40 15 0 0 0 0 0 0
x6 0 15 -3 22 3 -4 1 0 0 0 0 1467
x7 0 17 11 23 19 -28 0 1 0 0 0 1733
x8 0 10 -1821 28 6 0 0 1 0 0 1758
x9 0 -49 6 36 34 -2 0 0 0 1 0 606
x10 0 -33 25 48-14 12 0 0 0 0 1 1365

From the tableau above if we follow the algorithm, after
the first iteration we get x1 as the entering variable and x6

as the leaving variable. After pivoting, the simplex tableau
becomes:

z x1 x2 x3 x4 x5 x6 x7x8x9x10 RHS
z 1 0 12 -27.333 30 28 -3.333 0 0 0 0 -4890
x1 0 1 -0.2 1.467 0.2 -0.3 0.067 0 0 0 0 97.8
x7 0 0 14.4 -1.933 15.6 -23 -1.133 1 0 0 0 70.4
x8 0 0 -16 6.333 26 8.7 -0.667 0 1 0 0 780
x9 0 0 -3.8 107.86743.8 -15 3.267 0 0 1 0 5392.2
x10 0 0 18.4 96.4 -7.4 3.2 2.2 0 0 0 1 4592.4

After the second iteration, x5 is the entering variable
and x8 is the leaving variable. The result simplex tableau
becomes:

z x1 x2 x3 x4 x5 x6 x7 x8 x9x10 RHS
z 1 0 64.3 -48.039 -55 0 -1.154 0 -3.269 0 0 -7440
x1 0 1 -0.7 1.661 1 0 0.046 0 0.031 0 0 121.8
x7 0 0 -29 15.215 86 0 -2.938 1 2.708 0 0 2182.4
x5 0 0 -1.8 0.731 3 1 -0.077 0 0.115 0 0 90
x9 0 0 -32 118.877 89 0 2.108 0 1.738 1 0 6754.2
x10 0 0 24.3 94.062 -17 0 2.446 0 -0.369 0 1 4304.4

In the last iteration of this example, x2 is the entering
variable and x10 is the leaving variable. The last simplex
tableau is:

z x1x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS
z 1 0 0 -296.9 -10.0 0 -7.6 0 -2.3 0 -2.6 -18827.6
x1 0 1 0 4.34 0.52 0 0.12 0 0.02 0 0.03 121.8
x7 0 0 0 127.1465.77 0 -0.03 1 2.27 0 1.19 2182.4
x5 0 0 0 7.88 1.71 1 0.11 0 0.09 0 0.08 90
x9 0 0 0 241.2266.89 0 5.29 0 1.26 1 1.30 6754.2
x2 0 0 1 3.87 -0.69 0 0.10 0 -0.02 0 0.04 4304.4

This simplex tableau is the optimal tableau with optimal
solution x1 = 121.8, x2 = 4304.4, x3 = 0, x4 = 0 and
x5 = 90. The optimal value is 18827.589 with the number
of iterations is 3 while the simplex method with Dantzig’s
pivot rule uses 5 iterations to achieve the optimal solution.

Note that if the tableau does not contain zero entries or
entries with negative value in the coefficient matrix, this rule
is simply the Dantzig’s. Therefore, to take advantage of this
pivot rule, we should consider only the problems with some
zero or negative entries that correspond to entering columns
in the coefficient matrix.

TABLE I
THE AVERAGE NUMBER OF ITERATIONS.

No.
Problem size Average no. of iterations

m n DP ACP

1 10 10 6.83 7.21

2 15 15 13.43 13.93

3 20 20 20.45 21.78

4 25 25 26.98 28.19

5 30 30 33.63 36.08

6 35 35 44.51 44.58

7 40 40 54.50 58.36

8 45 45 73.42 68.97

9 50 50 81.57 82.08

10 55 55 91.85 89.85

11 60 60 113.22 104.38

12 70 70 151.34 127.58

13 80 80 188.38 164.93

14 90 90 247.45 199.45

15 100 100 281.50 224.50

16 120 120 418.72 308.35

17 140 140 531.75 365.30

18 160 160 688.50 445.53

19 180 180 863.95 533.43

20 200 200 1041.03 634.63

21 250 250 1656.65 877.98

22 300 300 2367.47 1164.78

23 400 400 4219.51 1730.47

Average 574.64 318.80

IV. COMPUTATIONAL EXPERIMENTS

In this section, we present the computational results of
simplex algorithm with absolute change pivot rule. Absolute
change pivot rule was tested by solving randomly generated
linear programming problems of various sizes. We compare
the number of iterations of this pivot rule with Dantzig’s
pivot rule.

The programming language used was Python. All
codes were run under an Oracle VM VirtualBox version
4.3.4r91027 by software Sage [7] version 5.7 with base
memory 512 MB. The computer system processor is Intel(R)
Core(TM)i5 CPU M 460 @2.53GHz, 4.00 GB of memory,
and 64-bit Window 8.1 Operating System.

A. Problem generation
All randomly generated linear programming problems are

minimization problems and are generated according to the
following specifications: The cost vector c is generated with
ci ∈ [−10, 10]. The matrix A is generated with Aij ∈
[−10, 10]. To guarantee a feasible problem, we generate the
right-hand-side b by generating a feasible solution x with
xi ∈ [0, 10] and then b is calculated by b = Ax. All
constraints are in the form ≤.
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Fig. 1. Comparison of the simplex algorithm with DP and ACP.

The sides of problems are varied as shown in table I. For
each size, we generate 50 problems and find the mean results
for each method.

B. Comparison

To measure the performance of the absolute change pivot
rule, we compare this rule with Dantzig’s original pivot
rule. The performance measures used for comparison is
the number of iterations (pivot). Note that DP is simplex
algorithm with Dantzig’s pivot rule and ACP is simplex
algorithm with absolute change pivot rule.

Table I shows the comparison between the average number
of iterations from solving LP by the simplex algorithm with
DP and ACP. This table also shows that the average number
of iterations from ACP pivot rule is less than the one from
DP. ACP pivot rule achieves less number of iterations when
the number of constraints and variable in the problem is
higher. Moreover, in figure 1 we found that the number of
iteration between ACP and DP is not significantly different
in small problem while in large-scale problems ACP have a
better performance.

V. SUMMARY OF RESULTS

We proposed a pivot rule called the absolute change
pivot rule. The idea of this rule is to have the maximum
improvement in the objective value per unit step of the
entering variable. We believe that the proposed algorithm
could reduce the number of such iteration over the Dantzig’s
pivot rule. Table I offers a summary of the average number
of iteration of each method. We conclude that the simplex
algorithm using the absolute change pivot rule is very fast for
solving linear programming problems. Moreover, absolute
change pivot rule performs very well on a Klee and Minty
problems.

For future works, we may create a new pivot algorithm
that have more efficient than absolute change pivot rule and
can apply to any linear programming problems.
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