
 

 
Abstract—Algorithm studies on the Hamilton cycle are 

mainly based on the Rotation-Extension method developed by 
Posa. However, due to the deficiency of Posa’s method, all these 
products are only efficient for much denser graphs or sparse 
but regular graphs. By many years’ study, we developed the 
“Enlarged Rotation-Extension” technique which utterly 
changed and expanded the Posa’s original one and can 
surmount its deficiency. Based on this technique, our algorithm 
can quickly calculate randomly produced un-directed graphs 
with up to ten thousand vertices on personal computer, no 
matter dense or sparse, the correctness is one hundred percent. 
We also calculated the data of hamilton cycles on a famous web 
site and we still got one hundred percent correctness. 
 

Index Terms—Computer Algorithm, Computational 
Complexity, Hamilton Cycle, Hamilton Path, Polynomial Time  
 

I. INTRODUCTION 

Hamilton path is a path between two vertices of a 
graph that visits each vertex exactly once. A Hamilton 

path that is also a cycle is called a Hamilton cycle. 
   Finding Hamilton cycles(paths) in simple undirected 
graphs is a classical NP Complete problem, known to be 
difficult both theoretically and computationally, so we can 
not expect to find polynomial time algorithms that always 
succeed, unless P=NP.[1][2]  
 For this algorithm, the challenging job still is: to develop 
an efficient random algorithm for all general graphs(in this 
paper, we only concern undirected graphs), i.e., this random 
algorithm can work for all kinds of graphs successfully with 
high probability. For this purpose, the main problem is: can 
this be possible? 
 For finding Hamilton cycles(paths), we would mention the 
famous rotation-extension technique, developed by Posa[8]. 
In fact, most of random algorithms are based on the 
rotation-extension technique. Due to this technique’s 
immanent deficiency, all these random algorithms can only 
work for dense graphs. So if we can overcome the 
rotation-extension technique’s immanent deficiency, it is 
possible for us to get an efficient random algorithm for all 
general graphs. 
 We develop a method which we call the “enlarged 
rotation-extension” technique. This technique can overcome 
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Posa’s deficiency. Our method contains all advantages of the 
rotation-extension technique but utterly enlarges its 
functions. By a lot of test, we confirm that our method is 
useful for both dense graphs and sparse graphs. 
 Based on this technique, we get an efficient algorithm for 

finding a Hamilton cycle(path) in an undirected graph. This 
algorithm works very well for all kinds of undirected graphs. 
A program on this algorithm has been tested over a hundred 
million times for graphs whose vertex number is between 100 
to 10000, no fails. 

II. WHAT IS THE ENLARGED ROTATION-EXTENSION 

TECHNIQUE? 

Suppose we have a path P=x0x1….xk in a graph G and 
we wish to find a path of length k+1. If x0 or xk has a neighbor 
not in P, then we can extend P by adding the neighbor. If not, 
suppose xk has a neighbor xi, where 0<=i<=k-2. If i=0 and G 
is connected, then there is an edge e=(xj, w) joining the cycle 
x0x1…xkx0 to the rest of the graph, and so the path 
wxjxj+1…xkx0…xi-1 has length k+1. This is called a cycle 
extension. If i!=0, then we construct the path 
x0x1…xixkxk-1…xi+1 of length k with a different endpoint xi+1 
and look for further extensions. This is called a rotation, or a 
simple transform. This is Posa’s Rotation-Extension 
technique. 

This method’s main deficiency is: it does the rotation or 
extension at the fixed place, in order to always fulfil the 
rotation or extension condition, the graph must have dense 
edges. So this technique is not useful for sparse graphs. We 
change it as following: 

First, let the n vertices sit side by side to form a cyclic 
sequence, we call this “broad cycle”. In this cycle, some two 
consecutive vertices may not be adjacent, we call this point 
“break point”. Apparently, a break point is constituted by two 
vertices.  

If a broad cycle has only one break point, we call it “one 
break point cycle”; If a broad cycle has two break points, we 
call it “two break points cycle”. And so on.  

Each time, cut a segment(we call a subsequence of a 
broad cycle a segment) from a break point, insert the segment 
in some place of the broad cycle. How to cut and insert? The 
rule is: make the number of new break points the least. Also 
we must design some way to prevent circulation or repeating 
job, and to limit the calculating times. 

We can see that our technique contains all advantages of 
the rotation-extension technique and the rotation-extension is 
only one special case of ours. So, we call ours the “enlarged 
rotation-extension” technique. We will describe our 
algorithms later which are mainly based on this technique. 
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III. ALGORITHM 

Definition 1  
For an undirected graph G with n vertices, let x_1, x_2, 

... ,x_n denote the n vertices. A broad cycle is defined as a 
cyclic sequence x_1, x_2, ... ,x_n, x_1 of the vertices of G 
where every pair x_i, x_{i+1} may or may not be adjacent in 
G. We call a pair (x_i, x_{i+1}) (including (x_n, x_1)) of 
non-adjacent vertices a break point. So the number of break 
points is between 0 and n for a broad cycle. Apparently, a 
break point is constituted by two vertices(say vertex a and b). 
We use a*b to denote this break point. If two consecutive 
vertices a and b are adjacent, we call them “connecting 
point”, we use ab to denote this connecting point. We use 
a…b to denote that there are some vertices between a and b. 
For an undirected graph with n vertices, the number of all 
possible different break points and connecting points is 
n(n-1)/2. A connecting point or a break point is also called “a 
general point”. A general point(a break point or a connecting 
point) is constituted by two vertices, we say that the general 
point contains these two vertices. 

A segment: in a broad cycle, we call any subsequence of 
this broad cycle a “segment”. So, for a broad cycle, any part 
between two general points is a segment, and there are n(n-1) 
different segments for this broad cycle. 

For a broad cycle, cut a segment at some place of this 
broad cycle, insert the segment between two consecutive 
vertices in some other place of the broad cycle. Before 
inserting, we may do the rotation and extension on the 
segment and then insert it. Note: for this rotation or 
extension, it is not necessary that the two end vertices are 
adjacent. We call this operation a “cut and insert”. The main 
operation in our algorithm is the “cut and insert”, now we 
explain it: Let x_1, ... ,x_n, x_1 denote a broad cycle, let s = 
x_i, x_{i+1}, ... ,x_{i+r} be a subsequence of this broad 
cycle(i.e., a segment), and let j be an index such that x_j and 
x_{j+1} are not in s. A broad cycle C is obtained by "cutting 
s and inserting it into x_j and x_{j+1}" if either C = x_j, x_i, 
x_{i+1}, ... ,x_{i+r}, x_{j+1}, x_{j+2}, ... ,x_n, x_1, ... 
,x_{j-1}, x_{j}, or C = x_{j}, x_{i+r}, x_{i+r-1}, ... ,x_{i}, 
x_{j+1}, x_{j+2}, ..., x_n, x_1, ... ,x_{j-1}, x_{j} (addition is 
meant modulo n). Also, before inserting, we may do the 
rotation and extension on the segment and then insert it. 

At each step of the algorithm, we need to choice a break 
point as the “main break point” as explained later in the 
algorithm. 

Algorithm 1 FindHTcycle 
Input: An adjacency matrix A to denote an undirected 

graph. A matrix B to record all main break points. An array C 
to record the broad cycle. An integer n, the number of 
vertices. 

Output: A Hamilton cycle(path)(if exists), or “No 
Hamilton cycle(path)” message. 

 
Void FindHTcycle(matrix A,matrix B,int[] C,int n) 
// if an edge between vertex i and j, then  A[i,j]=1, 
 //else A[i,j]=0 

1. int[] C=new int[n]; 
2. for(int i=0;i<n;i++) 
3.   C[i]=i;   //0~n-1 denote the n vertices, the C[0] 

//and C[n-1] are consecutive, so, C[] denotes the 
//broad cycle. 

4. For each break point in C, add an edge between 
the two vertices(say k, l) of the break point, set 

A[k,l]=A[l,k]=2 to remember all the added 
edges. Now, no break point in C. 

5. Check if there are some edges in C whose value 
in matrix A is 2, if no, output a message: 
“success get the hamilton cycle” and store C 
which is the Hamilton cycle then end the 
procedure. If yes, delete one of these edges to 
produce a break point, set its value in A to 0. we 
call this “main break point”, initialize all values 
of matrix B to 0. 

6. Set the value of the two vertices of the main 
break point in matrix B to 1. From the main 
break point in cycle C, cut a segment, insert the 
segment in some place of the cycle C. How to 
cut and insert? The rule is: make the number of 
new break points the least, and one new break 
point must be different from all former main 
break points(this new one as the new main break 
point, using matrix B to record all main break 
points, this guarantees our algorithm’s 
polynomial). Note: “make the number of new 
break points the least” means: only for all the 
possible “cut and inserts” to choice the best one, 
not the “real least”. Also, at least one of the two 
end vertices of the cut segment must be adjacent 
to one vertex of the inserting point. Notes: when 
calculating the number of new break points for 
getting the least, if more than one case have the 
same least number, choice any one of them. We 
must calculate and compare all possible cases. 
Then, if the number of new break points is 0, go 
to stage 7. Else if we get a new main break point 
which is different from all former main break 
points, go to the beginning of stage 6. Else if 
there is some fail in this step(i.e., the number of 
new break points is not 0 and we can not get a 
new main break point which is different from all 
former main break points), output the message 
“No Hamilton cycle” and end the procedure.  

7. Check if there are some other break points in 
cycle C. If yes, choice any one of them as the 
new main break point, go to 6. if no, go to 5. 

Notes: in the algorithm, if we always keep any two 
vertices as neighbors, we can get a Hamilton path between 
these two vertices.    

Now, we describe our Algorithm 2. 
As stated above, if a broad cycle has only one break 

point, we call it “one break point cycle”; If a broad cycle has 
two break points, we call it “two break points cycle”. And so 
on. Our algorithm 2 only handles these two kinds of broad 
cycles. 

At first, a broad cycle may have k break 
points(0<=k<n), we add k edges so that no break point in the 
path, so this cycle is a Hamilton cycle. We remember all the 
added k edges, each time, we delete one such edge, to get an 
“one break point cycle”, our algorithm only leads this one 
break point cycle to a Hamilton cycle(if exists). If our 
algorithm is polynomial, after deleting all the added k edges, 
the algorithm still is polynomial(i.e., we only need to repeat 
our algorithm at most k times). So, now, our algorithm’s job 
only is to transform an one break point cycle to a Hamilton 
cycle(if exits). 
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Algorithm 2 FindHCycle2 
Input: An adjacency matrix A to denote an undirected 

graph. A matrix B to record all main break points. An one 
break point cycle. An broad cycle array C to record all the 
new broad cycles at current step. An integer n, the number of 
vertices. 

Output: A Hamilton cycle(if exists), or “No Hamilton 
cycle” message. 

 
Our algorithm’s main job is: cut and insert. Now we use 

an example to discuss it again. 
 
0…. x y…..a b….c*d….n-1   (1) 
 
(1) is a broad cycle from vertex 0 to n-1, also vertex 0 is 

adjacent to n-1. Vertex x and vertex y are consecutive, so are 
vertex a and b, vertex c and d. “….” denotes many other 
vertices. Vertex c is not adjacent to d, let c*d is the main 
break point, we cut “b….c” from the broad cycle, insert it 
between x and y, then we can get a new broad cycle. This is 
the “cut and insert”. 

Our algorithm includes three functions: Do0(), Do1() 
and Do2().  

When we cut “b….c”, insert it between x and y, if vertex 
a adjacent to d, also, vertex b adjacent to x and vertex c 
adjacent to y, or, vertex b adjacent to y and vertex c adjacent 
to x, the result is  

0….x b….c y….a d….n-1    or     0….x c….b y….a 
d….n-1. 

Function Do0() does the above job. 
When we cut “b….c”, insert it between x and y, if vertex 

a adjacent to d, also, vertex b adjacent to x and vertex c is not 
adjacent to y and c*y was not as the main break point 
before(then c*y as the new main break point now), or, vertex 
c adjacent to y and vertex b is not adjacent to x and b*x was 
not as the main break point before(then b*x as the new main 
break point), or, vertex b adjacent to y and vertex c is not 
adjacent to x and c*x was not as the main break point 
before(then c*x as the new main break point), or, vertex c 
adjacent to x and vertex b is not adjacent to y and b*y was not 
as the main break point before(then b*y as the new main 
break point). 

Or, if vertex a is not adjacent to d and a*d was not as the 
main break point before(then a*d as the new main break 
point), also, vertex b adjacent to x and vertex c adjacent to y, 
or, vertex c adjacent to x and vertex b adjacent to y. 

Function Do1() does the above job. 
When we cut “b….c”, insert it between x and y, if vertex 

a is not adjacent to d, also, vertex b adjacent to x and vertex c 
is not adjacent to y and c*y was not as the main break point 
before(then c*y as the new main break point), or, vertex c 
adjacent to y and vertex b is not adjacent to x and b*x was not 
as the main break point before(then b*x as the new main 
break point), or, vertex b adjacent to y and vertex c is not 
adjacent to x and c*x was not as the main break point 
before(then c*x as the new main break point), or, vertex c 
adjacent to x and vertex b is not adjacent to y and b*y was not 
as the main break point before(then b*y as the new main 
break point). 

Or, if vertex a is not adjacent to d and a*d was not as the 
main break point before(then a*d as the new main break 
point), also, vertex b adjacent to x and vertex c is not adjacent 
to y, or, vertex c adjacent to y and vertex b is not adjacent to 

x, or, vertex b adjacent to y and vertex c is not adjacent to x, 
or, vertex c adjacent to x and vertex b is not adjacent to y. 

Function Do2() does this job. 
At first, we set B[i][j]=0 for all 0<=i<=n-1, and 

0<=j<=n-1. Also at first we have one broad cycle which has 
one break point(say c*d), let it as the main break point, the 
main break point cannot repeat later, so, we set 
B[c][d]=B[d][c]=1 to remember that it has been used. We try 
to do the function Do0(), if after this, we can get a Hamilton 
cycle, output it and stop the program.If not, then we try to do 
the function Do1(), we should do all possible “cut and insert” 
for function Do1() in one step(Note: only in one step, also 
note the words “all possible”), use broad cycle array to record 
all the new broad cycles, use array B to remember each new 
main break point(depth-first search). Then, do the function 
Do2(), also,we should do all possible “cut and insert” for 
function Do2() in one step, use broad cycle array to record all 
the new broad cycles, use array B to remember each new 
main break point(depth-first search). 

Note, for the new broad cycles, we only try to get one 
break point cycles and two break point cycles, first try to get 
one break point cycles. We donot need the broad cycles with 
more than two break points. 
        For each new broad cycle in the broad cycle array, do 
the same job as above, until we get a Hamilton cycle or we 
can not get any new broad cycle using the three functions(this 
means no Hamilton cycle in the graph).  

Apparently, this is a broad cycles tree, our algorithm 
uses depth-first search to travel this tree.  

Because the number of main break points is polynomial 
and it cannot repeat, the algorithm is polynomial. 

 By the way, we also can use B[i][j] to remember the 
main break points in one break point cycles, use B1[i][j] to do 
so for two break point cycles, sometimes this way is much 
quicker. 

IV. EXPERIMENT DATA 

We have three kinds of undirected graphs to test our 
algorithms. Programs on these algorithms have been 
designed in VC++. 

First, we use the random graphs. To discuss random 
graphs, we must first introduce the probability spaces(or 
models) of random graphs. All graphs are undirected. The 
model we focus on is G(n,p). The model G(n,p) (sometimes 
called the independently model) consists of all graphs with 
vertex set [n]={1,2…n} in which the edges are chosen 
independently with probability p, where 0<p<1. We consider 
a random graph G composed of a Hamilton path on n labeled 
vertices and some random edges that “hide” the path, the 
random edges are produced as above[7][8]. We carefully 
choice the probability p to make the graph is hard to 
calculate. 

Without loss of generality, for an undirected graph with 
N nodes, node number is 0,1,2…N-1, the algorithm 
calculates Hamilton path from node 0 to node N-1. The input 
data is randomly produced un-directed graphs. In order to test 
the program, each graph includes a randomly produced 
Hamilton path which the program does not know. We have 
tested the program of Algorithm 1 over one hundred million 
inputs, no one fails. The data is as Table I (computer: HP PC, 
CPU: Intel 1G, Memory:1G): 
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TABLE I    
EXPERIMENT DATA FOR THE FIRST KIND OF GRAPHS 

Number 
of Nodes  

Calculation 
number of 
times on 
different 
inputs 

Success 
number of 
times 

Average run 
time 

Longest run 
time 

100 100000000 100000000 0.0014second 0.01 second 
1000 10000000 10000000 0.07second 0.1 second 
10000 10000 10000 48seconds 192 seconds 

 

When randomly producing the un-directed graphs, we 
try to make the graphs as hard as possible to calculate. A lot 
of tests show that when its average vertex degree is about 
between 2.5 to 4 , the graph is hardest to calculate(even its 
biggest vertex degree is 3, this problem still is NP-Complete 
[21]). With the vertex number much greater, the hardest 
average vertex degree may increase very slowly. So, our 
random graphs are mainly with 2.5 to 4 average degree. 

Secondly, we get the test data from the famous web site, 
the famous standard test bed on  
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/. On 
this web, there are 9 files for hamilton cycles. Our program of 
Algorithm 1 can calculate all the 9 files, very easy, very fast. 
The calculating time for each is just like the time on the above 
table 1. For each file, we can quickly get a hamilton cycle 
which is different from the web owner’s, because each one 
has more than one hamilton cycle. 

Now, we discuss what kinds of graphs are hard to 
calculate. By a lot of test, we find that when the graph’s 
average vertex degree is between 2.5 to 4, it is hard to get the 
Hamilton cycle. When the average vertex degree is over 4, 
our Algorithm 1 can always get the result quickly. But, we 
only need to make a little change to the Algorithm 1, it still 
can always get the result quickly even when the graph’s 
average vertex degree is between 2.5 to 4. The change is: 
each time when we cut a segment, before we insert the 
segment in some point, do the cycle extension for the 
segment, then try to insert it.  

By a long time experiment and study, we find another kind 
of graphs which are very hard to calculate. Even using our 
changed Algorithm 1, we still can not calculate them quickly 
with high probability. This kind of graphs is: first we 
carefully design a hard 3SAT, then transform the 3SAT to 
Hamilton cycle problem(an undirected graph). For 3SAT, 
when its clauses is about 4 to 4.5 times of its variables, it is 
the hardest to calculate. So we design the 3SAT according to 
this rule. In this way, we get the graphs which are very hard to 
calculate for Hamilton cycle. Note: if only for hamilton 
path(not cycle, also not path between two vertices, only any 
hamilton path), our changed Algorithm 1 still can calculate 
this kind of  graphs with high probability. We first explain 
how to transform 3SAT to Hamilton cycle of an undirected 
graph. We use two vertices to denote a variable, and use 13 
vertices to denote a clause. We got this way after a long time 
research and we think this is the best way to transform 3SAT 
to Hamilton cycle directly. See M.R. GAREY [21]for another 
way to do this job. We have the same principle and logic with 
GAREY, but our way is the cheapest one(because his way 
only for a special kind of graphs). 

This is the third kind of graphs. Our Algorithm 2 can 
calculate these graphs very well. In order to guarantee the 
high correctness, we also make a little change to the 

Algorithm 2: each time when we cut a segment, before we 
insert the segment in some point, try to do the cycle extension 
for the segment, then try to insert it. Note, all graphs which 
the Algorithm 1 can calculate, the Algorithm 2 still can 
calculate. The experiment data is as Table II (computer: HP 
PC, CPU: Intel 2G, Memery:2G): 

 
TABLE II    

EXPERIMENT DATA FOR THE THIRD KIND OF GRAPHS 
Number 
of 
Nodes  

Calculatio
n number of 
times on 
different 
inputs 

Succe
ss 
number 
of times 

Average 
run time 

Longest 
run time 

650 10000 10000 47seconds 1 minute 
26 
seconds 

1250 1000 1000 9 minutes 21 
minutes 

2000 100 100 58 minutes 1 hour 52 
minutes 
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