

Abstract—Algorithm studies on the Hamilton cycle are

mainly based on the Rotation-Extension method developed by
Posa. However, due to the deficiency of Posa’s method, all these
products are only efficient for much denser graphs or sparse
but regular graphs. By many years’ study, we developed the
“Enlarged Rotation-Extension” technique which utterly
changed and expanded the Posa’s original one and can
surmount its deficiency. Based on this technique, our algorithm
can quickly calculate randomly produced un-directed graphs
with up to ten thousand vertices on personal computer, no
matter dense or sparse, the correctness is one hundred percent.
We also calculated the data of hamilton cycles on a famous web
site and we still got one hundred percent correctness.

Index Terms—Computer Algorithm, Computational
Complexity, Hamilton Cycle, Hamilton Path, Polynomial Time

I. INTRODUCTION

Hamilton path is a path between two vertices of a
graph that visits each vertex exactly once. A Hamilton

path that is also a cycle is called a Hamilton cycle.
 Finding Hamilton cycles(paths) in simple undirected
graphs is a classical NP Complete problem, known to be
difficult both theoretically and computationally, so we can
not expect to find polynomial time algorithms that always
succeed, unless P=NP.[1][2]
 For this algorithm, the challenging job still is: to develop
an efficient random algorithm for all general graphs(in this
paper, we only concern undirected graphs), i.e., this random
algorithm can work for all kinds of graphs successfully with
high probability. For this purpose, the main problem is: can
this be possible?
 For finding Hamilton cycles(paths), we would mention the
famous rotation-extension technique, developed by Posa[8].
In fact, most of random algorithms are based on the
rotation-extension technique. Due to this technique’s
immanent deficiency, all these random algorithms can only
work for dense graphs. So if we can overcome the
rotation-extension technique’s immanent deficiency, it is
possible for us to get an efficient random algorithm for all
general graphs.
 We develop a method which we call the “enlarged
rotation-extension” technique. This technique can overcome

Manuscript received November 18, 2013; revised December 23, 2013.
Lizhi Du. Author is with the College of Computer Science and

Technology,Wuhan University of Science and Technology, Hubei Province
Key Laboratory of Intelligent Information Processing and Real-time
Industrial System, Wuhan 430065, China (phone: 86-13554171855; e-mail:
edw95@ yahoo.com).

Posa’s deficiency. Our method contains all advantages of the
rotation-extension technique but utterly enlarges its
functions. By a lot of test, we confirm that our method is
useful for both dense graphs and sparse graphs.
 Based on this technique, we get an efficient algorithm for

finding a Hamilton cycle(path) in an undirected graph. This
algorithm works very well for all kinds of undirected graphs.
A program on this algorithm has been tested over a hundred
million times for graphs whose vertex number is between 100
to 10000, no fails.

II. WHAT IS THE ENLARGED ROTATION-EXTENSION

TECHNIQUE?

Suppose we have a path P=x0x1….xk in a graph G and
we wish to find a path of length k+1. If x0 or xk has a neighbor
not in P, then we can extend P by adding the neighbor. If not,
suppose xk has a neighbor xi, where 0<=i<=k-2. If i=0 and G
is connected, then there is an edge e=(xj, w) joining the cycle
x0x1…xkx0 to the rest of the graph, and so the path
wxjxj+1…xkx0…xi-1 has length k+1. This is called a cycle
extension. If i!=0, then we construct the path
x0x1…xixkxk-1…xi+1 of length k with a different endpoint xi+1
and look for further extensions. This is called a rotation, or a
simple transform. This is Posa’s Rotation-Extension
technique.

This method’s main deficiency is: it does the rotation or
extension at the fixed place, in order to always fulfil the
rotation or extension condition, the graph must have dense
edges. So this technique is not useful for sparse graphs. We
change it as following:

First, let the n vertices sit side by side to form a cyclic
sequence, we call this “broad cycle”. In this cycle, some two
consecutive vertices may not be adjacent, we call this point
“break point”. Apparently, a break point is constituted by two
vertices.

If a broad cycle has only one break point, we call it “one
break point cycle”; If a broad cycle has two break points, we
call it “two break points cycle”. And so on.

Each time, cut a segment(we call a subsequence of a
broad cycle a segment) from a break point, insert the segment
in some place of the broad cycle. How to cut and insert? The
rule is: make the number of new break points the least. Also
we must design some way to prevent circulation or repeating
job, and to limit the calculating times.

We can see that our technique contains all advantages of
the rotation-extension technique and the rotation-extension is
only one special case of ours. So, we call ours the “enlarged
rotation-extension” technique. We will describe our
algorithms later which are mainly based on this technique.

An Efficient Algorithm for Hamilton Cycle
Based on the Enlarged Rotation-Extension

Technique
Lizhi Du

A

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

III. ALGORITHM

Definition 1
For an undirected graph G with n vertices, let x_1, x_2,

... ,x_n denote the n vertices. A broad cycle is defined as a
cyclic sequence x_1, x_2, ... ,x_n, x_1 of the vertices of G
where every pair x_i, x_{i+1} may or may not be adjacent in
G. We call a pair (x_i, x_{i+1}) (including (x_n, x_1)) of
non-adjacent vertices a break point. So the number of break
points is between 0 and n for a broad cycle. Apparently, a
break point is constituted by two vertices(say vertex a and b).
We use a*b to denote this break point. If two consecutive
vertices a and b are adjacent, we call them “connecting
point”, we use ab to denote this connecting point. We use
a…b to denote that there are some vertices between a and b.
For an undirected graph with n vertices, the number of all
possible different break points and connecting points is
n(n-1)/2. A connecting point or a break point is also called “a
general point”. A general point(a break point or a connecting
point) is constituted by two vertices, we say that the general
point contains these two vertices.

A segment: in a broad cycle, we call any subsequence of
this broad cycle a “segment”. So, for a broad cycle, any part
between two general points is a segment, and there are n(n-1)
different segments for this broad cycle.

For a broad cycle, cut a segment at some place of this
broad cycle, insert the segment between two consecutive
vertices in some other place of the broad cycle. Before
inserting, we may do the rotation and extension on the
segment and then insert it. Note: for this rotation or
extension, it is not necessary that the two end vertices are
adjacent. We call this operation a “cut and insert”. The main
operation in our algorithm is the “cut and insert”, now we
explain it: Let x_1, ... ,x_n, x_1 denote a broad cycle, let s =
x_i, x_{i+1}, ... ,x_{i+r} be a subsequence of this broad
cycle(i.e., a segment), and let j be an index such that x_j and
x_{j+1} are not in s. A broad cycle C is obtained by "cutting
s and inserting it into x_j and x_{j+1}" if either C = x_j, x_i,
x_{i+1}, ... ,x_{i+r}, x_{j+1}, x_{j+2}, ... ,x_n, x_1, ...
,x_{j-1}, x_{j}, or C = x_{j}, x_{i+r}, x_{i+r-1}, ... ,x_{i},
x_{j+1}, x_{j+2}, ..., x_n, x_1, ... ,x_{j-1}, x_{j} (addition is
meant modulo n). Also, before inserting, we may do the
rotation and extension on the segment and then insert it.

At each step of the algorithm, we need to choice a break
point as the “main break point” as explained later in the
algorithm.

Algorithm 1 FindHTcycle
Input: An adjacency matrix A to denote an undirected

graph. A matrix B to record all main break points. An array C
to record the broad cycle. An integer n, the number of
vertices.

Output: A Hamilton cycle(path)(if exists), or “No
Hamilton cycle(path)” message.

Void FindHTcycle(matrix A,matrix B,int[] C,int n)
// if an edge between vertex i and j, then A[i,j]=1,
 //else A[i,j]=0

1. int[] C=new int[n];
2. for(int i=0;i<n;i++)
3. C[i]=i; //0~n-1 denote the n vertices, the C[0]

//and C[n-1] are consecutive, so, C[] denotes the
//broad cycle.

4. For each break point in C, add an edge between
the two vertices(say k, l) of the break point, set

A[k,l]=A[l,k]=2 to remember all the added
edges. Now, no break point in C.

5. Check if there are some edges in C whose value
in matrix A is 2, if no, output a message:
“success get the hamilton cycle” and store C
which is the Hamilton cycle then end the
procedure. If yes, delete one of these edges to
produce a break point, set its value in A to 0. we
call this “main break point”, initialize all values
of matrix B to 0.

6. Set the value of the two vertices of the main
break point in matrix B to 1. From the main
break point in cycle C, cut a segment, insert the
segment in some place of the cycle C. How to
cut and insert? The rule is: make the number of
new break points the least, and one new break
point must be different from all former main
break points(this new one as the new main break
point, using matrix B to record all main break
points, this guarantees our algorithm’s
polynomial). Note: “make the number of new
break points the least” means: only for all the
possible “cut and inserts” to choice the best one,
not the “real least”. Also, at least one of the two
end vertices of the cut segment must be adjacent
to one vertex of the inserting point. Notes: when
calculating the number of new break points for
getting the least, if more than one case have the
same least number, choice any one of them. We
must calculate and compare all possible cases.
Then, if the number of new break points is 0, go
to stage 7. Else if we get a new main break point
which is different from all former main break
points, go to the beginning of stage 6. Else if
there is some fail in this step(i.e., the number of
new break points is not 0 and we can not get a
new main break point which is different from all
former main break points), output the message
“No Hamilton cycle” and end the procedure.

7. Check if there are some other break points in
cycle C. If yes, choice any one of them as the
new main break point, go to 6. if no, go to 5.

Notes: in the algorithm, if we always keep any two
vertices as neighbors, we can get a Hamilton path between
these two vertices.

Now, we describe our Algorithm 2.
As stated above, if a broad cycle has only one break

point, we call it “one break point cycle”; If a broad cycle has
two break points, we call it “two break points cycle”. And so
on. Our algorithm 2 only handles these two kinds of broad
cycles.

At first, a broad cycle may have k break
points(0<=k<n), we add k edges so that no break point in the
path, so this cycle is a Hamilton cycle. We remember all the
added k edges, each time, we delete one such edge, to get an
“one break point cycle”, our algorithm only leads this one
break point cycle to a Hamilton cycle(if exists). If our
algorithm is polynomial, after deleting all the added k edges,
the algorithm still is polynomial(i.e., we only need to repeat
our algorithm at most k times). So, now, our algorithm’s job
only is to transform an one break point cycle to a Hamilton
cycle(if exits).

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

Algorithm 2 FindHCycle2
Input: An adjacency matrix A to denote an undirected

graph. A matrix B to record all main break points. An one
break point cycle. An broad cycle array C to record all the
new broad cycles at current step. An integer n, the number of
vertices.

Output: A Hamilton cycle(if exists), or “No Hamilton
cycle” message.

Our algorithm’s main job is: cut and insert. Now we use

an example to discuss it again.

0…. x y…..a b….c*d….n-1 (1)

(1) is a broad cycle from vertex 0 to n-1, also vertex 0 is

adjacent to n-1. Vertex x and vertex y are consecutive, so are
vertex a and b, vertex c and d. “….” denotes many other
vertices. Vertex c is not adjacent to d, let c*d is the main
break point, we cut “b….c” from the broad cycle, insert it
between x and y, then we can get a new broad cycle. This is
the “cut and insert”.

Our algorithm includes three functions: Do0(), Do1()
and Do2().

When we cut “b….c”, insert it between x and y, if vertex
a adjacent to d, also, vertex b adjacent to x and vertex c
adjacent to y, or, vertex b adjacent to y and vertex c adjacent
to x, the result is

0….x b….c y….a d….n-1 or 0….x c….b y….a
d….n-1.

Function Do0() does the above job.
When we cut “b….c”, insert it between x and y, if vertex

a adjacent to d, also, vertex b adjacent to x and vertex c is not
adjacent to y and c*y was not as the main break point
before(then c*y as the new main break point now), or, vertex
c adjacent to y and vertex b is not adjacent to x and b*x was
not as the main break point before(then b*x as the new main
break point), or, vertex b adjacent to y and vertex c is not
adjacent to x and c*x was not as the main break point
before(then c*x as the new main break point), or, vertex c
adjacent to x and vertex b is not adjacent to y and b*y was not
as the main break point before(then b*y as the new main
break point).

Or, if vertex a is not adjacent to d and a*d was not as the
main break point before(then a*d as the new main break
point), also, vertex b adjacent to x and vertex c adjacent to y,
or, vertex c adjacent to x and vertex b adjacent to y.

Function Do1() does the above job.
When we cut “b….c”, insert it between x and y, if vertex

a is not adjacent to d, also, vertex b adjacent to x and vertex c
is not adjacent to y and c*y was not as the main break point
before(then c*y as the new main break point), or, vertex c
adjacent to y and vertex b is not adjacent to x and b*x was not
as the main break point before(then b*x as the new main
break point), or, vertex b adjacent to y and vertex c is not
adjacent to x and c*x was not as the main break point
before(then c*x as the new main break point), or, vertex c
adjacent to x and vertex b is not adjacent to y and b*y was not
as the main break point before(then b*y as the new main
break point).

Or, if vertex a is not adjacent to d and a*d was not as the
main break point before(then a*d as the new main break
point), also, vertex b adjacent to x and vertex c is not adjacent
to y, or, vertex c adjacent to y and vertex b is not adjacent to

x, or, vertex b adjacent to y and vertex c is not adjacent to x,
or, vertex c adjacent to x and vertex b is not adjacent to y.

Function Do2() does this job.
At first, we set B[i][j]=0 for all 0<=i<=n-1, and

0<=j<=n-1. Also at first we have one broad cycle which has
one break point(say c*d), let it as the main break point, the
main break point cannot repeat later, so, we set
B[c][d]=B[d][c]=1 to remember that it has been used. We try
to do the function Do0(), if after this, we can get a Hamilton
cycle, output it and stop the program.If not, then we try to do
the function Do1(), we should do all possible “cut and insert”
for function Do1() in one step(Note: only in one step, also
note the words “all possible”), use broad cycle array to record
all the new broad cycles, use array B to remember each new
main break point(depth-first search). Then, do the function
Do2(), also,we should do all possible “cut and insert” for
function Do2() in one step, use broad cycle array to record all
the new broad cycles, use array B to remember each new
main break point(depth-first search).

Note, for the new broad cycles, we only try to get one
break point cycles and two break point cycles, first try to get
one break point cycles. We donot need the broad cycles with
more than two break points.
 For each new broad cycle in the broad cycle array, do
the same job as above, until we get a Hamilton cycle or we
can not get any new broad cycle using the three functions(this
means no Hamilton cycle in the graph).

Apparently, this is a broad cycles tree, our algorithm
uses depth-first search to travel this tree.

Because the number of main break points is polynomial
and it cannot repeat, the algorithm is polynomial.

 By the way, we also can use B[i][j] to remember the
main break points in one break point cycles, use B1[i][j] to do
so for two break point cycles, sometimes this way is much
quicker.

IV. EXPERIMENT DATA

We have three kinds of undirected graphs to test our
algorithms. Programs on these algorithms have been
designed in VC++.

First, we use the random graphs. To discuss random
graphs, we must first introduce the probability spaces(or
models) of random graphs. All graphs are undirected. The
model we focus on is G(n,p). The model G(n,p) (sometimes
called the independently model) consists of all graphs with
vertex set [n]={1,2…n} in which the edges are chosen
independently with probability p, where 0<p<1. We consider
a random graph G composed of a Hamilton path on n labeled
vertices and some random edges that “hide” the path, the
random edges are produced as above[7][8]. We carefully
choice the probability p to make the graph is hard to
calculate.

Without loss of generality, for an undirected graph with
N nodes, node number is 0,1,2…N-1, the algorithm
calculates Hamilton path from node 0 to node N-1. The input
data is randomly produced un-directed graphs. In order to test
the program, each graph includes a randomly produced
Hamilton path which the program does not know. We have
tested the program of Algorithm 1 over one hundred million
inputs, no one fails. The data is as Table I (computer: HP PC,
CPU: Intel 1G, Memory:1G):

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

TABLE I
EXPERIMENT DATA FOR THE FIRST KIND OF GRAPHS

Number
of Nodes

Calculation
number of
times on
different
inputs

Success
number of
times

Average run
time

Longest run
time

100 100000000 100000000 0.0014second 0.01 second
1000 10000000 10000000 0.07second 0.1 second
10000 10000 10000 48seconds 192 seconds

When randomly producing the un-directed graphs, we
try to make the graphs as hard as possible to calculate. A lot
of tests show that when its average vertex degree is about
between 2.5 to 4 , the graph is hardest to calculate(even its
biggest vertex degree is 3, this problem still is NP-Complete
[21]). With the vertex number much greater, the hardest
average vertex degree may increase very slowly. So, our
random graphs are mainly with 2.5 to 4 average degree.

Secondly, we get the test data from the famous web site,
the famous standard test bed on
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/. On
this web, there are 9 files for hamilton cycles. Our program of
Algorithm 1 can calculate all the 9 files, very easy, very fast.
The calculating time for each is just like the time on the above
table 1. For each file, we can quickly get a hamilton cycle
which is different from the web owner’s, because each one
has more than one hamilton cycle.

Now, we discuss what kinds of graphs are hard to
calculate. By a lot of test, we find that when the graph’s
average vertex degree is between 2.5 to 4, it is hard to get the
Hamilton cycle. When the average vertex degree is over 4,
our Algorithm 1 can always get the result quickly. But, we
only need to make a little change to the Algorithm 1, it still
can always get the result quickly even when the graph’s
average vertex degree is between 2.5 to 4. The change is:
each time when we cut a segment, before we insert the
segment in some point, do the cycle extension for the
segment, then try to insert it.

By a long time experiment and study, we find another kind
of graphs which are very hard to calculate. Even using our
changed Algorithm 1, we still can not calculate them quickly
with high probability. This kind of graphs is: first we
carefully design a hard 3SAT, then transform the 3SAT to
Hamilton cycle problem(an undirected graph). For 3SAT,
when its clauses is about 4 to 4.5 times of its variables, it is
the hardest to calculate. So we design the 3SAT according to
this rule. In this way, we get the graphs which are very hard to
calculate for Hamilton cycle. Note: if only for hamilton
path(not cycle, also not path between two vertices, only any
hamilton path), our changed Algorithm 1 still can calculate
this kind of graphs with high probability. We first explain
how to transform 3SAT to Hamilton cycle of an undirected
graph. We use two vertices to denote a variable, and use 13
vertices to denote a clause. We got this way after a long time
research and we think this is the best way to transform 3SAT
to Hamilton cycle directly. See M.R. GAREY [21]for another
way to do this job. We have the same principle and logic with
GAREY, but our way is the cheapest one(because his way
only for a special kind of graphs).

This is the third kind of graphs. Our Algorithm 2 can
calculate these graphs very well. In order to guarantee the
high correctness, we also make a little change to the

Algorithm 2: each time when we cut a segment, before we
insert the segment in some point, try to do the cycle extension
for the segment, then try to insert it. Note, all graphs which
the Algorithm 1 can calculate, the Algorithm 2 still can
calculate. The experiment data is as Table II (computer: HP
PC, CPU: Intel 2G, Memery:2G):

TABLE II

EXPERIMENT DATA FOR THE THIRD KIND OF GRAPHS
Number
of
Nodes

Calculatio
n number of
times on
different
inputs

Succe
ss
number
of times

Average
run time

Longest
run time

650 10000 10000 47seconds 1 minute
26
seconds

1250 1000 1000 9 minutes 21
minutes

2000 100 100 58 minutes 1 hour 52
minutes

REFERENCES
[1] S.A.Cook, The complexity of theorem proving procedures,

Proceedings of Third Annual ACM Symposium, on Theory of
Computing, Association for Computing Machinery, New York,
1971,151-158

[2] R.M.Karp, Reducibility among combinatorial problems, Complexity of
Computer Computations, R.E.Miller and J.W.Thatcher,eds.,Plenum
Press, New York, 1972, 85-104

[3] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math.
Soc., 2(1952) 69-81

[4] O. Ore., Note on Hamiltonian Circuits, Amer. Math. Monthly,
67(1960), 55

[5] G. H. Fan, New Sufficient Conditions for Cycles in Graphs, J. Combin.
Theory, Ser. B, 37(1984), 221-227

[6] J. Christophides, Graph Theory, An Algorithmic Approach, Academic
Press, New York, 1975

[7] P. Erdos and A. Renyi, On the evolution of random graphs, Bull. Inst.
Statist. Tokyo，38 (1961), 343-347.

[8] L. Posa, Hamiltonian circuits in random graphs, Discrete Math.
14(1976), 359-364

[9] J. Komlos and E. Szemeredi, Limit distributions for the existence of
Hamilton circuits in a random graph, Discrete Mathematics 43 (1983),
55-63.

[10] M. Krivelevich, E. Lubetzky, and B. Sudakov, "Hamiltonicity
thresholds in Achlioptas processes", presented at Random Struct.
Algorithms, 2010, 1-24.

[11] William Kocay, Pak-Ching Li, An Algorithm for Finding a Long Path
in a Graph, Utilitas Mathematica 45(1994), 169-185

[12] Christos H. Papadimitriou. Computational Complexity. New York:
Addison Wesley Publishing Company,1994.

[13] Sara Baase etc. Computer Algorithms: Introduction to Design and
Analysis. New York: Addison Wesley Publishing Company，2000.

[14] R.Diestel,Graph Theory,Springer, New York, 2000

[15] M.R.Garey,D.S.Johnson,Computers and Intractability:A Guid to the
Theory of NP-Completeness,Freeman,San Francisco,1979

[16] L.Lovasz,Combinatorial problems and exercises, Noth-Holland,
Amsterdam , 1979

[17] Yuri Gurevich and Saharon Shelah Expected computation time for
Hamiltonian Path Problem SIAM J. on Computing 16:3， (1987)
486—502

[18] Yuri Gurevich,Complete and Incomplete Randomized NP Problems
28th Annual Symposium on Foundations of Computer Science, (1987),
111-117.

[19] D.Johnson,The NP-completeness column-an ongoing guid,Journal of
Algorithms 5,(1984), .284-299

[20] William Kocay, “Groups & Graphs, a MacIntosh application for graph
theory”, Journal of Combinatorial Mathematics and Combinatorial
Computing 3 (1988), 195-206.

[21] M.R. GAREY etc. The planar Hamiltonian Circuit problem is
NP-Complete. SIAM J. COMPUT. Vol5, No. 4, 1976

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

