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Abstract— This study introduces a novel mathematical 

formulation that addresses the strategic design of a bicycle 

sharing network. The developed pure integer linear program 

takes into consideration data such as the potential future 

demand patterns during the day, the bike’s popularity in a city, 

the desired proximity of the stations and the available budget 

for such a network. With these input data, it optimizes the 

location of bike stations, the number of their parking slots and 

the distribution of the bicycle fleet over them in order to meet 

as much demand as possible and to offer the best service to the 

users. The estimated demand for the network is split into 

“Demand for Pick-Ups” and “Demand for Drop-offs” during 

the 24 hours of the day, which are discretized into time 

intervals. The proposed approach is implemented on the very 

center of the city of Athens, Greece. 

 
Index Terms— bike sharing, integer, mathematical model, 

multi-periodic 

I. INTRODUCTION 

ike sharing networks have received increasing attention 

during the last decades and especially in the 21st 

century as a no-emission option in order to improve the 

first/last mile connection to other modes of transportation, 

thus facilitating the mobility in a densely populated city. The 

bike sharing network consists of docking stations, bicycles 

and information technology (IT) interfaces that have been 

recently introduced to improve the quality offered to the 

users. 

There have been three generations of bike sharing 

programs over the past half century [1] with the 3
rd

 one 

emerging in 1996 at Portsmouth University (Bikeabout). 

However, it was not until 2005 that this generation 

flourished with the launch of Velo’v with 1500 bikes in 

Lyon. Two years later, Paris launched Velib’ and Barcelona 

launched Bicing, which are two of the most successful 

networks nowadays. Nowadays, there are 678 programs in 
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operation and 186 in planning or under construction all over 

the world (Metrobike, December 2013). 

This expanding trend of bike sharing networks 

necessitates their better planning and design in order that 

they are successful. The goal of this paper is to propose a 

novel mathematical formulation to design such networks 

incorporating the hourly demand estimation, the fixed costs 

of infrastructure, the proximity and density of stations, as 

well as their size. Given a set of candidate locations of 

stations and with a predefined available construction budget 

the model decides the number and the location of the 

stations, how large they will be and how many bikes should 

they have at the beginning of the day in order to meet the 

assumed demand. 

The remainder of the paper is organized as follows. 

Section II provides a brief literature review of the main 

approaches that have been proposed to solve similar 

problems. Section III presents the developed novel 

mathematical model. In section IV the case-study for the 

center of Athens is described followed by the results of the 

implementation of the model on it. Finally, in section V 

there is a commentary on the proposed model, its broader 

application and potential areas of future work. 

II. LITERATURE REWIEW 

Shu et al. (2010) [2] proposed practical models for the 

design and management of a bicycle-sharing network given 

the location of the stations. A stochastic network flow model 

is introduced in order to predict the flow of bicycles within 

the network and to estimate the number of trips supported by 

the system, the suitable number of bicycles to be deployed 

and the number of docks needed in each station examining 

the viability of periodic re-distribution of bicycles as well. In 

the herein research the number of the stations is not 

predefined, as in [2], but part of the design problem and the 

demand of each candidate location is deterministic. Finally, 

the present work addresses the design of such networks and 

not their management, so no re-distribution aspects are taken 

into consideration. 

Lin et al. (2011) [3] developed a pure integer non-linear 

program for the strategic design of a bike sharing network. 

Given a set of origins, destinations, candidate bicycle 

stations and the travel demands from origins to destinations 

with specific demand processes, it optimizes the location of 

the stations and bicycle lanes and the required inventory 
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level for sharing bicycles at each station to meet demand. 

The herein model is a pure integer linear program where no 

origin-destination flows are assumed, but every location is 

characterized by time-discretized demand for pick-ups and 

drop-offs during a single day. This approach is considered to 

give improved and less complicated simulation of the 

network’s future usage. Additionally, the bike sharing 

network is dealt with independently and so the establishment 

of bicycle lanes is not in the scope of the present research. 

Sayarshad et al. (2011) [4] introduce a multi-periodic 

optimization formulation to determine the minimum required 

bike fleet size that minimizes simultaneously unmet demand, 

unutilized bikes and the need to transport empty bikes 

between rental stations. The herein model, also, uses multi-

periodic formulation without re-distribution concerns 

because it addresses only the network design problem and 

not its usage, as in [4]. 

Martinez et al. (2012) [5] present a heuristic, 

encompassing a mixed integer linear program, which 

optimizes the location of bike stations and the fleet 

dimension, while measuring the required bicycle re-

distribution activities. It considers a mixed fleet of regular 

and electric bikes and several fare collection methods of the 

system. The present research considers only regular bikes 

assuming that electric ones are yet to come in such a 

network. Moreover, it includes no fare policy as this may be 

decided after the establishment of the bike sharing network. 

García-Palomares et al. (2012) [6] use Geographical 

Information System (GIS) to calculate the spatial 

distribution of the potential demand for trips, locate stations 

using location-allocation models, determine station capacity 

and define the characteristics of the demand for stations. In 

the herein project the GIS is not used as access to a 

respective software could not be granted. The demand data 

are derived by the recorded usage data of already 

implemented similar bike sharing networks. 

III. MODEL FORMULATION 

A. Problem Definition 

Given a set of candidate locations of bike stations and the 

time-dependent demand for bikes at these locations during 

an average day it is necessary to know where to place the 

bike stations and how many parking slots and bikes should 

each one have. The available budget of a city for the 

construction of the whole bike sharing system is predefined 

and so are the costs of a single bike, a single parking slot and 

a single station. The walking time between the locations is 

another parameter of the problem used to manipulate the 

proximity of the constructed stations.  

As regards demand in each location, it is split into 

“Demand for Pick-Ups”, i.e. how many users would like to 

take a bike from a station, and “Demand for Drop-Offs”, i.e. 

how many riders would like to leave a bike into a station. 

The 24 hours of the day are discretized into time intervals of 

one hour, during which different numbers of users come to a 

station either to pick up or drop off a bicycle. 

B. Mathematical Model 

The model includes the following subscripts and sets, 

input parameters and decision variables: 

Subscripts and Sets: 

,i k N : the candidate locations of bicycle stations 

,t p T : the time intervals in a single day 

Input Parameters: 

CB : cost of purchasing a single bicycle, 

CS : cost of establishing a bike station (without any 

parking slots), 

CTH : cost of constructing a single parking slot into an 

established station, 

ikAPE : walking time from location i to location k (in 

minutes), 

 maxper : maximum walking time (in minutes) between 

two candidate locations, of which the one has an established 

station and the other one does not have a station. This 

parameter is introduced in order to manipulate the proximity 

of the finally proposed stations to be established, 

BDG : total available budget for the establishment of the 

whole bike sharing network, 

itDF : “Demand for Pick-Ups” from location i during time 

interval t, 

itDE : “Demand for Drop-Offs” at location i during time 

interval t, 

pDD : a parameter that equals 1 if the “Demand for Drop-

Offs” is more than the “Demand for Pick-Ups” until time 

interval p and 0 otherwise, 

minZ :  minimum number of parking slots a station could 

have , 

maxZ : maximum number of parking slots a station could 

have, 

perde :  percentage of the demand that is transferred from 

a location where a station is not established to an established 

station. It is assumed that if a station is not established at a 

location, part of its demand is lost (1 perde ). This 

parameter is a measure of the citizens’ inclination to bike-

riding, 

CDT : penalty cost per unit of demand and per minute of 

walking time, if a customer has to walk from his/her location 

with no established station to the nearby station, 

CDEMAND : penalty cost for a unit of unmet demand, 

M : a very large number, 

m : a very small number, 

Decision Variables 

k
X : binary variable that equals 1 if a station is established 

at location k and 0 otherwise, 

ik
Z :  binary variable that equals 1 if candidate location i is 

served by the established station at location k and 0 

otherwise, 

k
DN : general integer variable that equals the number of 

constructed bicycle parking slots at station k, 

kt
BN : general integer variable that equals the number of 
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bicycles that are available at station k at the beginning of 

time interval t, 

kt
BF : general integer variable that equals the number of 

bicycles that could leave station k during time interval t, 

where 
kt

BN  bicycles are available, 

kt
BE : general integer variable that equals the number of 

bicycles that could arrive at station k during time interval t, 

where 
k

DN  parking slots are established and 
kt

BN  bicycles 

are available, 

kt
UDBinF : binary variable that equals 1 if a station k 

cannot serve some “Demand for Pick-Ups” at time interval t 

and 0 otherwise (not enough available bicycles), 

kt
UDBinE : binary variable that equals 1 if a station k 

cannot serve some “Demand for Drop-Offs” at time interval 

t and 0 otherwise (not enough available parking slots), 

In Fig. 1 the thorough consideration of the problem is 

explained. N locations i are predefined together with their 

“Demand for Pick-Ups” (i.e. itDF ) and “Demand for Drop-

Offs” (i.e. itDE ) at all time intervals during an average day.  

It is a matter of optimization how many bike stations will be 

established and where, so that every location has a nearby 

station. The locations k, where stations are established, is a 

subset of the locations i. 

The demand patterns of each candidate location express 

the will of the location’s citizens to use the network if a 

station were finally established there. In case a station is not 

established at a specific location (not all locations will have 

a station), the location’s citizens will have to walk to the 

nearest established station, which is maxper  walking time 

away, in order to use the network. In this way, it is assumed 

that location i is served by station k, i.e. 
ik

Z =1. The 

percentage of the citizens that are willing to do this is 

expressed by the parameter perde . This parameter is 

assumed to be a measure of the bike’s popularity in a 

specific city. For example, if the citizens are keen riders, 

they would be willing to walk from their location to the 

nearest station so as to pick up a bike and use the network 

( 1perde  ). However, if the bike is not a very popular 

means of transport in a city, then only few of the demand of 

a location with no station would be transferred to the nearest 

one ( 0perde  ). The rest of the demand is not served 

supposing that this part of citizens will not take a bike due to 

the distance of the station k from their location i.  

Objective Function 

The objective function of the model is a minimization of 

three terms: 

: * * ( ) * *

* ( )

* ( )

it it ik ik

i k t

kt kt

t k

kt kt

t k

MINIMIZE CDT perde DF DE Z APE

CDEMAND DF BF

CDEMAND DE BE

 

  

 







  (1)               

The first term expresses the amount of demand that is 

transferred from a location i to its allocated station k, which 

are a specific walking time away from one another. 

The second and the third term of the objective function 

are introduced in order to minimize the unmet demand. 

The goal of the model is not only to meet as much 

demand as possible (second and third term), but also to 

provide best service to the users. For this reason, the first 

term is introduced so that only few customers from location i 

with no station (i.e. * ( )it itperde DF DE ) will have to walk 

for a minimum time (i.e. ikAPE ) to station k (i.e.
ik

Z ). 

Otherwise, without this term the model proposes a solution 

where high-demand locations are served by not so close low-

demand stations. 

The three terms are multiplied with a parameter in order 

to be expressed in the same unit (€). Thus, the units of 

CDT are (€/customer/minute) and those of CDEMAND  are 

(€/customer). The second and the third term are multiplied 

by the same penalty unit cost CDEMAND  meaning that no 

different weight is given to either the “Demand for Pick-

Ups” or the “Demand for Drop-Offs”. 

Constraints 

The mathematical model is subject to the following 

constraints: 

0

* * *
kt k k

k k k

CB BN CS X CTH DN BDG           (2)                                           

 * min * max,
k k k

X Z DN X Z k                             (3)                                                                                   

, ,
kt k

BN DN k t                                                          (4)                                                                        

0

,
kt kt

k k

BN BN t                                                     (5)                                                               

1
, ,

kt kt kt kt
BN BN BE BF k t


                                     (6)                                              

, ,
ik k

Z X i k                                                              (7)                                                                  

,
k kk

X Z k                                                                 (8)                                                             

1,
ik

k

Z i                                                                     (9)                                                              

maxper
, , ,

ik

ik

Z i k i k
APE

                                              (10)                                                         

, ,
kt kt

BF BN k t                                                        (11)                                                               

 
   Fig. 1.  Network structure of bike sharing system.  
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, ,
kt k kt

BE DN BN k t                                            (12)                                                             

( * * ), ,kt it
kt ik

i k

BF DF Z DF perde k t
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( * * ), ,kt it
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i k

BE DE Z DE perde k t

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kt it
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i k
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i k

DF Z DF perde BN m

DF Z DF perde BN m k t





   
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 
  

 
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


             (15)                                                                 

( * * ) ( ) * UDBinE
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kt it
ik k kt kt

i k

kt it
ik k kt

i k

DE Z DE perde DN BN m
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

    
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 
  

 
  


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             (16)                                                             

( * * ) *

( * * ) * , ,

kt it
ik kt kt

i k

kt it
ik kt

i k

DF Z DF perde M UDBinF BF

DF Z DF perde M UDBinF k t





   

   




             (17)                                                                         

* (1 ) * (1 ),

,

kt kt kt kt kt
BN M UDBinF BF BN M UDBinF

k t

     


        (18)                                    

( * * ) * ( )

( * * ) * ( ), ,

kt it t
ik kt kt

i k

kt it t
ik kt

i k

DE Z DE perde M UDBinE DD BE

DE Z DE perde M UDBinE DD k t





    
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


          (19)                                                                  

( ) * (1 )

( ) * (1 ), ,

t
k kt kt kt

t
k kt kt

DN BN M UDBinE DD BE

DN BN M UDBinE DD k t

     

     

        (20)                                                                                  

{0,1},
k

X k                                                            (21)                                              

{0,1}, ,
ik

Z i k                                                         (22)                                                 

UDBinF {0,1}, ,
kt

k t                                                    (23)                                               

UDBinE {0,1}, ,
kt

k t                                                  (24)                                                                                                

0, general integer
k

DN k                                              (25)                                                                                             

0, , general integer
kt

BN k t                                           (26)                                                                                            

0, , general integer
kt

BE k t                                   (27)                                                                                                                   

0, , general integer
kt

BF k t                                     (28)  

Constraint (2) warrants that the total cost for the 

establishment of all stations, the construction of all parking 

slots in them and the purchase of all bikes does not exceed 

the available budget. Constraint (3) ensures that the bicycle 

parking slots (i.e.
k

DN ) at each constructed station are 

between the permissible minimum and maximum value (i.e. 

minZ and maxZ ). Constraint (4) ensures that at all time 

intervals, each station cannot have more bikes than the 

number of its parking slots.  

Constraint (5) means that at all time intervals the total 

number of bicycles at all stations will not exceed the total 

number of bicycles at the first time interval. This constraint 

is introduced because the first time interval is assumed to be 

4-5am, so at 4am all bikes are considered to be parked into 

the stations and no user keeps a bike away. During the day a 

user can keep a bike for more than the duration of the time 

interval (e.g. one hour) and return it to a station at a later 

time interval. So in a given time interval t due to more 

“Demand for Pick-Ups” than “Demand for Drop-Offs” the 

total number of available bikes at all stations will be less 

than the initial number. Afterwards, in a later time interval 

t’>t due to more “Demand for Drop-Offs” than “Demand for 

Pick-Ups” the available bikes at all stations will be more 

than those in time interval t, but not greater than the total 

number of bikes in t0. This constraint also ensures that the 

model does not add bikes to the network during the day, i.e. 

the bike sharing network is a closed network.  

Constraint (6) expresses that the number of bicycles at 

station k at the beginning of time interval t+1 is equal to the 

ones it had at the beginning of time interval t plus the bikes 

that arrive minus the ones that leave during time interval t. 

Constraint (7) guarantees that a location i cannot be 

served by location k, if a station is not built in location k. 

Constraint (8) warrants that if a station is constructed at 

location k this location will be served by its own station. 

Constraint (9) ensures that each location i may be served by 

exactly one bike station k. Constraint (10) expresses that a 

constructed station k can serve only locations which are 

located within a maximum walking time away from it.  

Constraint (11) guarantees that at every time interval the 

bicycles that can leave the station can be no more than the 

available ones. Constraint (12) ensures that at every time 

interval the bikes that can come to a station can be no more 

than the free parking slots. Constraint (13) expresses that at 

every time interval the bikes that can leave a station can be 

no more than the demand for pick-ups of this station plus a 

percentage of the demand of all other locations this station 

serves. Constraint (14) expresses the same as the previous 

one, but for the demand for drop-offs. 

Constraints (15) and (16) force the variables 
kt

UDBinF  and 

kt
UDBinE   to be 1 if a station k cannot serve some “Demand 

for Pick-Ups” or “Demand for Drop-Offs” respectively 

during time interval t and 0 otherwise.  

Constraints (17) and (18) guarantee that if there is 

unsatisfied “Demand for Pick-Ups”, all available bikes will 

leave the station and if there is no unsatisfied “Demand for 

Pick-Ups”, the whole demand will be met.  

Constraints (19) and (20) guarantee that if there is 

unsatisfied “Demand for Drop-Offs”, all bikes will fill the 

available slots and if there is no unsatisfied “Demand for 

Drop-Offs”, the whole demand will be met. These two 

constraints are relaxed if the “Demand for Drop-Offs” is 

more than the “Demand for Pick-Ups” until time interval p 

(i.e. 1pDD  ), which is a deformation of the assumed 

demand (until time interval t the total number of users that 

want to drop off a bike at all stations cannot be more than 

the ones that have already picked up one). The bike sharing 

network is a closed network and with this parameter at these 

two constraints the model is not obliged to meet the whole 

“Demand for Drop-Offs” at the time intervals at which this 

deformation happens. 

Finally the constraints (21), (22), (23), (24), and (25), 

(26), (27), (28) are the integrality and the non-negativity 
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constraints, respectively. 

At this point it is necessary to explain how the model 

decides the number of a station’s parking slots (i.e.
k

DN ) 

and its bikes at first time interval (i.e.
0

kt
BN ). Giving a value 

at these two variables it determines the values of 

kt
UDBinF and 

kt
UDBinE  (constraints (15) and (16)). The latter 

variables determine the values of the bikes that will leave or 

come to the station k at the first time interval (i.e. 

0
kt

BF and
0

kt
BE , constraints (17) to (20)). The last ones 

determine the available bikes of the station k at the 

beginning of the next time interval t1 (i.e.
1

kt
BN , constraint 

(6)) and so goes on. Heading to minimize unmet demand the 

model proposes those values of 
k

DN  and 
0

kt
BN at each 

station that will result into having the suitable number of 

available bikes and free parking slots in the following time 

intervals given the station’s different distribution of demand 

during the day.                                                                                                                                                                    

IV. ATHENS CASE-STUDY 

A. Data settings 

Generally, it should be noticed that the goal of this 

research is to develop a globally applicable modeling 

approach for the design of the bike sharing network and not 

the estimation of demand.  

However, so as to estimate the potential demand of a bike 

sharing network for the city of Athens, the three existing in 

the literature papers were analyzed and one of them was 

taken into consideration. Froehlich et al. (2009) [7] provide 

spatiotemporal analysis of the bicycle station usage in 

Barcelona’s shared bicycling network, called Bicing. Lathia 

et al. (2012) [8] analyze the usage data of the London 

Barclay Cycle Hire network. Finally, Etienne et al. (2012) 

[9] propose a model to form clusters of the stations of the 

Velib’ network of Paris based on their usage data. 

The last one was considered more helpful due to the 

ampler way it describes stations’ dynamics. In converting the 

usage data of the Velib’ network in whole Paris into 

potential demand of a future bike sharing network in the 1st 

Municipal District of Athens, the authors took into 

consideration several factors, such as population density, 

[10] and [11], stations’ proximity to the city center and 

urban characteristics. 

The candidate locations in the problem of Athens are 

categorized into four clusters depending on their location.  

Fig. 2 depicts the mean demand values of each one of the 

four clusters of stations during the weekdays in Athens.  

Based on the urban design and the transportation network 

characteristics of the center of Athens, the authors of this 

paper chose 50 candidate locations where bike sharing 

stations could be established. These 50 locations were 

categorized into the previously described 4 clusters and each 

one was given a scaling factor of 0.25 (depicts a low-activity 

location) to 2 (depicts a high-activity location). 

The values of the rest of the input parameters for the case 

study of Athens are shown in Table I. 

B. Results 

The problem was formulated as a pure integer linear 

problem and was solved using CPLEX optimizer through a 

C++ code. The code was implemented on a laptop computer 

(Intel 2.67 GHz Core i5 and 4GB of RAM). 

 In this paragraph, the results of 2 solved cases of the 

problem will be presented. In the first one it is considered 

that the bike is a very popular means of transport among the 

Athenians ( 1perde  ) and in the second one that it is not so 

popular ( 0.5perde  ). Whether the first or the second 

scenario is actually the case is something to be decided by a 

social survey in the center of Athens, which is not in the 

scope of this paper. All other parameters are the same for 

both cases.  

Fig. 3 and 4 depict the proposed established bike stations 

in case 1 and 2 respectively. The shape of each dot 

corresponds to the station’s cluster, whereas its size 

represents the number of parking slots each station should 

have. 

 
Fig. 2. a ) The hourly “Demand for Pick-Ups” of each cluster during a 

weekday in Athens,  b) The hourly “Demand for Drop-Offs” of each cluster 

during a weekday in Athens. 

TABLE I 

DATA 

Parameter Value 

CB 500€ 

CS 12,000€ 

CTH 900€ 

BDG 1,000,000€ 

maxper 7 minutes 

Zmin 8 parking slots 

Zmax 70 parking slots 

CDT 1€/customer/minute 

CDEMAND 30€/ lost customer 
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In the first case the total number of docking stations is 34 

and the number of parking slots is 517 making a mean value 

of 517/34=15.2 slots per station. The total number of bikes 

in the network is 253 and their distribution over the 

established stations at the first time interval of the day shows 

that stations of the cluster “Housing” are nearly full of bikes 

in order to meet the increased “Demand for Pick-Ups” 

during the morning peak. On the other hand, the stations of 

the cluster “Employment” do not have many bikes. This 

results in having more free parking slots in order to meet the 

increased “Demand for Drop-Offs” during the morning peak. 

In the second case the established stations are 40 with a 

total number of 461 parking slots. This makes a mean value 

of 461/40=11.525 slots per station. The purchased bikes are 

210. The same notice as regards the bike distribution over 

the stations at the first time interval can be made in this case 

as well. 

Comparing the results of the two cases, it should be 

mentioned that there is a difference between them in the 

number and the size of the established stations. In the first 

case the locations with no established station transfer their 

whole demand to the nearby station ( 1perde  ). So the 

model proposes fewer but larger stations to meet the added 

demand by nearby locations. In the second case wherever 

the model does not established a station and serves the 

specific location from a nearby station, it “loses” 50% of its 

demand (1 1 0.5 50%perde    ). For this reason, the 

second solution proposes more stations than the first one 

having less money to build enough parking slots and thus 

making them smaller. 

V. CONCLUSION  

It is crucial that the bike sharing networks are designed 

according to the demand they are to meet in the future. The 

knowledge gained from the already implemented networks 

can and should be used for the design of future ones. In this 

paper the authors modified the usage data from the Velib’ 

network of Paris so as to predict demand in Athens and 

design a suitable bike sharing network to meet that demand. 

 However, the value of this paper lies rather on the 

mathematical formulation itself than on its implementation. 

The mathematical formulation allows the user to alter 

different parameters of the future bike sharing network (such 

as the demand patterns, maxper , perde , the budget etc.) and 

take a solution of how this network should be. In this paper a 

sensitivity analysis over one parameter ( perde ) was 

provided to show the changes on the solution. The values of 

these parameters need to be drawn from a social survey of 

the under-study region and then inserted into the 

mathematical model to get an optimal design of a bike 

sharing network. 

 Moreover, different “runs” of the developed code can 

be made to get a solution, where the available budget is 

changed or the demand profiles approximate the seasonal 

differences (winter-summer) or the week differences 

(weekdays-weekend). The different solutions taken can then 

be combined in order to get a better network design. This 

combination might be a matter of a future work. 
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Fig. 3 The established stations of the solution of the 1st case categorized 

in clusters and with their size. (Reference: http://www.bing.com/maps/) 

 

 
Fig. 4 The established stations of the solution of the 2st case categorized 

in clusters and with their size. (Reference: http://www.bing.com/maps/) 
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