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Abstract— Protein structure prediction is the major goal to 

match up the count of known protein sequences and solved 

protein structures. Current template based modelling 

methodologies (TBM) rely on selection of structural folds or 

evolutionary related templates from already solved 

experimental structures. Even when the first predicted model 

conformation from correctly selected template(s) through any 

of the employed modelling algorithm is correct, the increased 

model sampling seems ruining the initial model’s topology. 

Increased sampling is not biased towards the correct near-

native state for a target sequence. Model assessment 

measures employed during model sampling also pose a huge 

problem in the reliable selection of the most accurate decoy 

among the generated ones for a protein sequence. Such 

persisting model sampling issues are thus carefully studied 

and streamlined to consistently yield highly accurate models 

for the majority of protein sequences. A TM and Z score 

guided sampling algorithm is designed to solve this problem 

in a logically efficient manner to make the predictions come 

closer to the actual native conformation for a target sequence. 

Our sampling methodology yields an average GDT-HA, 

TM_Score improvement of 4.802 and 0.031 respectively for 21 

CASP8 TBM-HA targets (35 Domains), against their best 

predicted CASP8 models, and thereby our models are found 

accurate not only for the individual domain(s) but also for the 

complete overall conformation of the target sequence.  

 

Index Terms— Model Sampling, MODELLER, DOPE, 

TM_Score 

 

I. INTRODUCTION 

STRUCTURAL information encrypted in protein sequences 

provides a substantial amount of knowledge about a cell 

system. Structural mapping of available protein sequence 

universe (translated, sequenced or annotated) is thus vital 

for functional studies. Despite the development of structure 

determination methodologies, the count of experimentally 
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solved protein structures is significantly lower than the total 

number of availabe protein sequences and this sequence-

structure gap is constantly increasing [1]. Computational 

prediction algorithms destined to bridge this ever-increasing 

gap, also comprise of several unavoidable problems 

including extremely large conformational space possible for a 

protein sequence, inefficiency of modelling algorithms to 

select reliable template(s) for a target sequence and 

perplexity of sampling algorithms. Computational structure 

prediction is thus a major challenge in structural biology.  

Conventionally, the protein structure prediction 

methodologies are categorized into three classes as de-novo 

or ab-initio, threading and homology or comparative 

modelling. While the ab-initio methodology predicts a 

structure solely based on knowledge-based potentials, 

assuming that the protein structure is at the lowest energy 

conformation, the comparative modelling methodology 

predicts a protein model by using experimentally solved 

protein structures as templates. Between these two ends, the 

threading methodology exists and employs both these 

algorithms to construct a protein model. Currently, all protein 

structure prediction algorithms are grouped as FM (Free 

Modelling) encompassing ab-initio algorithms and TBM 

(Template Based Modelling) comprising of comparative 

modelling and threading algorithms, by CASP (Critical 

Assessment of Structure Prediction), the global blind test 

that assesses the modelling accuracy of prediction 

methodologies every two years [2]. Among these two broad 

categories, TBM is found to be practically reliable algorithm 

to yield highly accurate model conformations [3]-[4].  

Template based modelling methodologies basically 

involves different steps including template search and 

selection, construction of target-template(s) alignment, 

model building, model sampling and assessment and model 

refinement. These steps are even repeated iteratively in some 

algorithms to generate a satisfactory model [5]. Each of these 

steps has been extensively studied to improve the protein 

modelling accuracy. Several algorithms including PSIPRED 

[6], Genthreader [7], COMA [8], and HHPred [9] have been 

developed to improve template search and selection. 

Similarly several tools and algorithms including MAFFT [10], 

MUSCLE [11] and PRALINE [12] are developed to improve 

target-template alignment accuracy. Modelling has been 

extensively improved through several algorithms like 

simulated annealing [13], Pro-SP3-TASSER [14], TITO [15] 
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and MODELLER [16]. The model assessment step is 

improved to a great extent with the development of several 

knowledge based scoring functions like TM_Score [17] and 

3DJury [18]. These assessment measures are normally used 

after model sampling for the considered target sequence [19]-

[20]. Model sampling constructs hundreds and thousands of 

models for a target sequence and then selects the best model 

conformation through different assessment measures [4]-[5]. 

These sampling methodologies iteratively perturb the first 

template based model topology for the specified number of 

iterations and attempts to screen the best possible 

conformational space available for a target sequence for 

predicting the most reliable conformation [21]. Despite these 

careful efforts, modelling algorithms do not consistently 

predict reliable models due to algorithmic and logical 

problems existing in the modelling steps. Even if the correct 

template along with an accurate alignment is considered, the 

modelling accuracy can decrease if the accurate model is not 

carefully selected from the pool of sampled decoys. Thus, 

Model sampling and assessment is considered to be one of 

the important steps to construct highly accurate models .  

 

II.  INCREASED SAMPLING AND MODEL ASSESSMENT  

Conventional increased sampling step aims to relieve the 

energetically unstable and erroneous atomic contacts that 

are normally present in a modelled conformation. The 

models, even constructed through pretty reliable template(s), 

often include some physically unreliable structures, with 

energetically unacceptable and non-physical localized atomic 

clashes. Model assessment is thus used after increased 

sampling to select the reliable conformation with an 

improved model topology, probably being closer to the 

actual native conformation.  

Several model assessment measures are usually employed 

for selecting the most accurate conformation. Such scoring 

measures normally include MOLPDF (MOLecular Probability 

Density Function), DOPE (Discrete Optimized Protein 

Energy), Z_Score and GA341 [22]-[23]. These measures are 

the normally employed scores in MODELLER, a tool used to 

model a protein sequence on the basis of distance maps 

extracted from the alignment file information for the target-

template aligned residue pairs. Several other measures 

including TM_Score, RMSD to employed template(s) or the 

actual experimentally solved structure (if it exists) are also 

normally employed. TM_Score computes a score between 0 

and 1, on basis of distance deviation between the equivalent 

pair of Cα coordinates, and also the count of such residues.  

Recently developed GDT (Global Displacement Test) 

score as GDT-TS (Total Score) and GDT-HA (High 

Accuracy) are also being regularly employed to assess the 

models. GDT-TS, GDT-HA along with maxcluster tools are 

based on Maxsub and TM_Score measures , which compute 

local as well as global structural similarity of two protein 

structures through a sequence guided optimal structural 

superimposition [24]-[25]. The employed GDT score is 

calculated as the average percentage of model Cα residues 

within a specific distance deviation to the corresponding 

residues of the experimental structure in sequence guided 

structural superimposition. GDT-TS score calculation 

considers the distance deviations of 1, 2, 4 and 8Å between 

the equivalent residues to calculate the average percentage 

of topologically correct model residues. In comparison to 

GDT_TS, GDT-HA measure is fairly more stringent measure 

to efficiently discriminate the models with close GDT-TS 

scores, as it considers the lower distance deviations of 0.5, 1, 

2 and 4Å for the calculation of an overall average score. 

However, the Maxsub score does not penalize the over-

prediction or it does not penalize the residue pairs that are 

incorrectly superimposed and is thus not considered [9]. 

Even after employing all these sampling and assessment 

measures, modelling algorithms do not consistently predict 

highly accurate models for most of the target sequences. 

This is not only due to inefficient model sampling algorithms, 

but it is also the result of incompetence of assessment 

measures. Most of these measures are only good at 

discriminating extremely bad and correct models. However, 

these measures do not guarantee an improved model 

topology on increased sampling, compared to the first 

constructed model. More importantly, these measures do not 

unanimously score a single model as the accurate 

conformation and show a great non-linearity among 

themselves. These measures do not unanimously justify a 

single model as the relatively better conformation.  

Selection of a reliable model conformation is considered to 

be tricky and thus several researchers do not prefer to 

generate large number of models as the chance of selecting a 

wrong model also increases proportionally with the number 

of generated decoys. Here we try to employ the best 

assessment measure(s) along with the increased model 

sampling to improve the accuracy of model predictions.  

We attempted the conventional sampling methodology in 

a different way. We have divided the normally employed, 

single long sampling step into several short samplings  in 

which each sampling step employs the best scoring 

previously sampled model for further searching the available 

conformational space of the considered target sequence. We 

sorted out the reliable assessment scores and streamlined 

them in an iterative algorithm to exploit their consensus 

scoring criteria to select a reliable model conformation after 

the increased sampling. Correct and more reliable assessment 

measure guided iterative model sampling improve the 

sampling accuracy and construct highly accurate model 

conformation. We find that our sampling strategy produces 

considerably improved model topology, compared to the first  

constructed model from the selected template(s) for the 

considered target sequences. 

III. METHODOLOGY 

We have selected CASP8 TBM-HA target sequence 

T0390,  which is a 182 residue long sequence [2]. The 

template is searched using HMM based template search 

package HHPred [9]. Model is generated by MODELLER9.9 

package [16] using EphB2 / EphrinA5 complex structure 

(PDB ID: 1SHW) as a template.  
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A. Model Assessment and Selection Strategy 

The following Model assessment and selection strategy is 

developed to choose the best model structure. The target 

sequence is used to model 100 decoy structures through 

MODELLER. The constructed model with the highest 

TM_Score is then employed to construct another 100 

models. The top 10 models with the highest TM_Scores are 

then scored through normally employed assessment 

measures, like MOLPDF, DOPE, GA341 and Z_Score, to 

study the correlation of these measures in reliably 

discriminating two pretty close models. The correlation of 

these different scoring measures is then scrutinized through 

these top 10 models. The consensus scoring set of 

assessment measures is  fixed together into a single scoring 

strategy to score and select the highly accurate model.  

B. Model Sampling Strategy  

 Contrary to traditional single long sampling, we employed 

an iterative model sampling strategy. Initially 1000 models 

were generated for the target sequence. The top 10 models 

with the highest TM_Score were then sorted out. Among 

these models, the one with the lowest Z-score was selected 

for further iteration. The combination of TM_Score and Z-

score criteria for selecting best model was adopted after 

evaluating the pereformance of other scoring schemes  like 

MOLPDF, DOPE and GA341 in reliably discriminating two 

pretty close models. The selected model was then used as a 

template to construct another set of 1000 models. Such 1000 

model sampling runs were iteratively employed, each time 

starting with the best model of the current sampling. Such 

iterative sampling runs were employed until the convergence 

was attained for the selected assessment measures for at-

least 3 sampling runs. Optimally sampled and consensus 

model with the highest TM_Score and lowest Z_Score was 

then selected as the best predicted conformation. To 

compare our results with the normally employed single 

sampling run, an equivalent number of protein models are 

constructed through a single long sampling run.  

 

IV. RESULTS 

A. Model Assessment and Selection  

It has been observed that there is a chaotic roaming of 

different model assessment measures during the model 

sampling and it becomes difficult to select the most accurate 

sampled conformation from the generated decoy structures. 

The assessment scores do not unanimously justify a single 

model as the actually most reliable prediction.  

Evaluating all the assessment measures viz. TM_Score, 

MOLPDF, DOPE, GA341 and Z_Score for the short 100 

model sampling run, we observed too much crinkling 

deviations in all scoring measures . Thus, selecting a reliable 

model among the generated decoys becomes a tricky 

exercise. Therefore to make it simpler, we screened the 

scoring measures which consistently rank and select the 

most accurate model(s). We observed that TM_Score [26] 

worked best during selection of the utmost reliable model. 

We thus selected TM_Score measure as our preliminary 

model evaluation criterion. The other assesment scores of 

the top 10 TM_Score models among 100 model sampling run 

are listed under the 5 column headings viz. TM_Score, 

MOLPDF, DOPE,GA341 and Z_Score in Table I.  

 MOLPDF and GA341 scoring seems to be ineffective as 

MOLPDF shows too much crinkling deviations across these 

models. As per Table I, GA341 score does not differentiate 

among close and structurally correct, near-native models. So, 

their reliability seems to be doubtful. Models with high 

GA341score are good models but it fails to discriminate 

between closely related good models. It is thus effective in 

efficiently discriminating between good and bad model. 

Similarly from Table I, MOLPDF score and TM_Score do not 

correlate with each other.  

Quite interestingly, the Z_Score shows a reliable 

undulation curl, with minimal deviations to the TM_Score 

measure across these 10 models. Normal DOPE score or 

energetic assessment on the other hand is quite unreliable. 

As enlisted in Table I, the energetic assessment is best for 

Model54, but its TM_Score is  not the highest among the 

models. Hence DOPE parameter becomes ineffective while 

selecting the highly accurate and reliable model. On the other 

hand, the Z_Score reliably discriminates two models with 

same TM_Score. To make the assessment measure more 

robust and effective in selection of the best model 

conformation, we employed the TM_Score and Z_Score 

together. Here for each model sampling, we sorted the top 5 

models with highest TM_Score and then finally selected the 

one with the lowest Z_Score and we found this assessment 

set to be very effective.  

B. Model Sampling  

During model sampling, we iteratively generated one 

thousand samples with the help of MODELLER and selected 

the best model on the basis of TM_Score and Z_Score. This 

iterative sampling was continued until the employed scoring 

measures got saturated for a minimum of 3 sampling runs . 

 It took altogether 12 sampling runs in our iterative 

sampling strategy. The assessment scores of each selected 

high scoring and intermittent sampling conformation is 

enlisted in Table II.  Here, the best sampled model screened  

TABLE I 

ASSESSMENT DETAILS MOLPDF, DOPE, GA341 AND Z_SCORE FOR 

THE TOP 10 MODELS WITH HIGHEST TM_SCORE. 

# 

TM_ 

SCORE 

MOL 

PDF DOPE 

GA 

341 

Z_ 

SCORE 

6 0.933 889.00 -14187.18 1 0.3441 

14 0.933 1171.95 -13712.27 1 0.5289 

9 0.932 918.82 -14143.62 1 0.3610 

17 0.932 1014.07 -13953.83 1 0.4349 

28 0.932 942.70 -14080.99 1 0.3854 

38 0.932 957.79 -14170.31 1 0.3507 

44 0.932 1012.26 -14171.64 1 0.3501 

52 0.932 965.55 -14068.48 1 0.3903 

54 0.932 992.71 -14204.79 1 0.3372 

64 0.932 888.58 -14138.81 1 0.3629 
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through TM_Score and Z_Score in each iterative run 

along with the first model and the finally predicted model 

have been scored as per the CASP defined domain boundary 

information [28]. These models have been assessed both 

against the actual native structure of the target sequence 

and the employed template. The TM_Score of model 

computed against the solved structure has been normalized 

by 126 residues (Assessed Domain Length) and is termed as 

TM_Score_answer. The TM_Score normalized by Template 

length (138 residues) is referred as TM_Score.  

 This iterative sampling strategy yields a model with 

GDT_TS, GDT_HA, TM_Score and RMSD score of 93.548, 

82.863, 0.945 and 0.919 respectively, as highlighted with bold 

characters in Table II. In comparison to our iterative 

sampling result, a single long increased sampling of 12000 

models (equivalent to our set of iterative sampling models) 

produced interesting results. TM_Score of the top model is 

marginally improved from TM_Score of first constructed 

model (0.933 vs 0.931). Similarly, GDT-TS score of top and 

first model remains same and it implies that single long 

sampling technique does not impove the structure quality.  

 

V. DISCUSSION 

A. Model Assessment and Selection  

 The MOLPDF and DOPE scoring functions show 

significant distinctive undulations as observed in Table I. 

They do not rank the best model simultaneously and are not 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

correlated with the TM_Score ranking. GA341 score is 

also completely ineffective in selecting the best model. 

These scoring functions  are thus inefficient in clearly 

discriminating the structurally close and similar near-native 

conformations. More importantly, for a correct model 

assessment, we must be extremely careful about the accurate 

overall topology of the model. Hence the scoring measures 

which can discriminate an accurate topology from the decoy 

set should be considered as the better ones. Our results 

show that the TM_Score based ranking of decoy structures 

is the most reliable measure that satisfies this  preliminary 

constraint and is thus vital in selection of an accurate model. 

Z_Score on the other hand is significantly better than the 

normal DOPE or energetic evaluation score, as the models 

with lowest Z_Score show significantly higher TM_Score. It 

is important to understand here that we have used only 

these measures to score our model predictions because 

when the experimental structure of the considered target 

sequence is not available, we cannot use other scoring 

measures like GDT-TS, GDT-HA and RMSD.  

B. Model Sampling  

 Increased sampling improves the model quality and 

accuracy compared to the first built conformation for a target 

sequence, only when it is carefully employed and assessed. 

In comparison to our iterative sampling results, the single 

long sampling yielded the best TM_Score model of 0.933. In 

this single sampling, the GDT-TS score of the best 

TM_Score model (91.129) is only improved marginally over 

the initial GDT-TS Score of 90.026. Hence, if the best model is  

correctly selected, the GDT-TS score is improved by 1.106 

TABLE II 

CORRECT ASSESSMENT GUIDED ITERATIVE SAMPLING RESULTS ENLISTING THE EVALUATED SCORES OF THE CONSIDERED 

ASSESSMENT MEASURES FOR THE TOP MODEL FOR EACH OF 12 ITERATIVE SAMPLING RUNS ALONG WITH THE BEST 

PREDICTED MODEL OF CASP8 AND BEST MODEL OF THE SINGLE LONG SAMPLING.  

Model Assessment 

against the 

template [27, 

28] 

(TM_Score) 

Z_Score Assessment against the solved structure[28] 

GDT-TS GDT-HA TM_Score_

answer 

 

RMSD_

Answer 

First Model 0.98439 0.370 90.726 77.621 0.931 1.075 

1 0.98032 0.504 90.726 76.613 0.937 1.014 

2 0.97501 0.571 91.935 78.427 0.937 0.990 

3 0.97155 0.509 92.137 79.234 0.939 0.979 

4 0.96655 0.493 92.137 80.040 0.940 0.961 

5 0.96518 0.505 92.137 80.847 0.942 0.949 

6 0.96482 0.496 92.742 81.250 0.943 0.933 

7 0.9594 0.481 92.540 81.452 0.944 0.918 

8 0.95139 0.477 92.742 82.056 0.945 0.902 

9 0.94876 0.467 93.548 82.863 0.945 0.919 

10 0.9478 0.546 92.944 81.250 0.943 0.943 

11 0.951 0.568 93.347 80.645 0.942 0.942 

12 0.94936 0.566 92.742 79.839 0.942 0.952 

 Best model of 

the Single long 

sampling 

0.98159 0.376 91.129 78.226 0.933 0.988 

Best CASP8 

Model  

0.90066 -1.012 90.726 78.831 0.929 0.990 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 26 February 2014) IMECS 2014



 

after sampling of 12000 models. On the other hand our 

proposed iterative sampling reliably predicts the near-native 

target conformation with GDT-TS, GDT-HA, TM_Score and 

RMSD scores of 93.548, 82.863, 0.945 and 0.919 respectively 

(Table II). In comparison with our predicted model, the 

corresponding scores for the best CASP8 Model are 90.726, 

78.831, 0.929 and 0.990 respectively. 

The normally employed sampling measures do not keep a 

track of the sampling path to improve the accuracy of model 

prediction towards the near-native conformation. Despite 

this lacuna, it is often muddled up in some wrong local 

minima prevailing in an energetic landscape. So if a wrong 

topology is incurred during the sampling, it is sequentially 

maintained until the very end and so if we could track the 

path through correct reliable assessment measures, we 

would be logically sampling the protein conformation on the 

correct path. We realize that employing a correct reliable set 

of assessment measures together consistently predicts more 

accurate conformation for a protein sequence.  

Our sampling methodology improves the model by 2.822 

GDT_TS score in comparison to the first constructed model. 

The TM and Z score guided iterative sampling methodology 

yields better model topology than the conventional single 

sampling run for the considered target sequence. This 

iterative sampling methodology push the model structure 

towards close and correct near-native conformation of the 

target sequence. Quite interestingly, GDT-TS improvement 

rate per model is almost negligible in the conventional model 

sampling run. However, in our methodology the model 

accuracy is improved quite significantly.  

As shown in Fig. 1, TM_Score of the model against 

chosen template marginally decreases in every successive 

iteration but its structural topology, as harnessed from the 

template and the alignment file, still remains  intact. It 

indicates that all these models still have the same count of 

the topologically correct modelled Cα residues within 5Å 

distance deviation against the template. Hence attaining the 

almost similar structural decoys with almost equivalent 

TM_Score for at-least 3 successive and iterative sampling 

runs implies the saturation of TM_Score measure during the 

sampling. It further implies that our sampling strategy 

optimally constructs the model with exactly the similar 

topology harnessed from template(s), but simultaneously, 

the model is also not exactly like template(s), as TM_Score 

decreases every successive iteration (Fig. 1). Quite 

interestingly, as represented in Fig. 2, our sampling predicts 

a more accurate near-native conformation. It is because the 

TM_Score_answer increases every successive iteration. 

Here in Fig. 2(b), the RMSD_answer decreases every 

successive iteration, i.e. the modelling slowly leaps towards 

the actual native conformation and is not biased towards the 

template. Hence, the model, where the TM_Score and 

Z_Score remain constant during the iterative sampling 

strategy with no further significant TM_Score alterations, 

seems to be the best sampled model and should thus be 

selected reliably. It is observed that Z_Score gives the best 

approximation in almost every single modelling case and 

when employed with TM_Score, its resultant assessment 

power substantially increases to reliably distinguish between 

good and bad models. Single increased sampling with no 

switching and selection of the better intermediary 

conformations does not improve model quality which was 

demonstrated by data in Table II. 

This assessment and sampling strategy was applied to 21 

CASP8 TBM-HA targets (T0388, T0390, T0396, T0398, 

T0400, T0402, T0404, T0418, T0422, T0423, T0426, T0428, 

T0432, T0435, T0438, T0442, T0444, T0447, T0458, T0470, 

T0499) with total 35 domains. In comparison to average GDT-

TS and TM_Score of 87.269, 0.911 for the best CASP8 

models, we generated models  with average GDT-TS and 

TM_Score of 91.570 and 0.942 respectively. Hence our 

models show a significant improvement of 4.802 GDT-HA 

score and 0.031 TM_Score. Moreover our single models are 

better than the best CASP8 models of different participants 

for each of the assessed domain(s). Thus our sampling 

strategy energetically relaxes the model very well to relieve 

its non-physical atomic clashes, significantly faster than the 

conventional sampling algorithms. 

 
Fig. 1. TM_Score and TM_Score_answer delineating the correct 

converging nature of our model sampling methodology  

             
Fig. 2(a). GDT-TS, GDT-HA assessment results of the                                                                

                               iterative optimal model sampling run.                                                             

 
Fig. 2(b). RMSD, TM_Score, Z_Score assessment results of the  

                            iterative optimal model sampling run. 
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Hence our sampling strategy is considerably better than 

the normal single long sampling to predict highly accurate 

models. This sampling strategy efficiently bypasses several 

intermittent saddle points to predict an improved model 

conformation [29]-[30]. However, we still need more efficient 

energy functions to reliably screen the correctly modelled 

conformations and for their sampling, we also need an 

improved sampling algorithm that is extremely competent at 

tackling the extremely large conformational space of target 

sequence. Development of an efficient model clustering 

method may further enhance accuracy of model predictions. 

 

VI. CONCLUSION 

The TM_Score and Z_Score guided sampling measure 

significantly improves the sampling accuracy of predicted 

protein models. The predicted model conformation was 

found to be accurate for overall structure and individual 

structural domains of the target sequences. Our sampling 

cum assessment strategy substantially improves the 

accuracy of predicted models, when compared to the first 

constructed model through the employed template(s).  
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